Current Pharmaceutical Biotechnology

Author(s): Lu Zhang, Xiao-Yan Zhang, Yu-Lan Hu* and Jian You*

DOI: 10.2174/1389201024666230612114059

Synthesis, Characterization and Biosafety Evaluation of Hollow Gold Nanospheres

Page: [340 - 349] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Objectives: In order to assess the biosafety of HAuNS using zebrafish models and the cancer cell lines HepG2, HEK293, and A549, this study prepared HAuNS in a variety of sizes and alterations.

Methods: By oxidizing cobalt nanoparticles encased in gold shells, HAuNS were created. In the meantime, PEG- and PEI-coated HAuNS were created. The diameters of the HAuNS that were produced were 30~40 nm, 50~60 nm, and 70~80 nm. MTT assay was used to assess the toxicity of HAuNS on HepG2, HEK293, and A549 cells. For the investigation of their toxicities, HAuNS (50~60 nm) of various concentrations were incubated with zebrafish embryos. Then, cell death was determined using acridine orange staining.

Results: In a cell line model, it was demonstrated that purified HAuNS exhibit lower toxicity than unpurified HAuNS. Meanwhile, it was discovered that surface-modified HAuNS was less hazardous than unmodified HAuNS. Unpurified HAuNS (5060 nm) exposure to embryos caused deformity and increased mortality. Moreover, embryos exposed to HAuNS displayed an increase in cell death, showing that HAuNS can put zebrafish under physiological stress.

Conclusion: The possible toxicity of HAuNS is now more understood thanks to this investigation. The details could improve our comprehension of the nanotoxicity of medication delivery systems. Comparing HAuNS (50~60 nm) to the other two particle sizes, its toxicity was quite low. Compared to unpurified HAuNS, purified HAuNS displayed less toxicity. Comparing PEI-HAuNS and HAuNS to PEG-HAuNS, cytotoxicity was found to be lower. Our data support the use of pure HAuNS, HAuNS-PEG, and HAuNS (50~60 nm) as possible photothermal conductors when seen as a whole.

Graphical Abstract

[1]
Curnis, F.; Fiocchi, M.; Sacchi, A.; Gori, A.; Gasparri, A.; Corti, A. NGR-tagged nano-gold: A new CD13-selective carrier for cytokine delivery to tumors. Nano Res., 2016, 9(5), 1393-1408.
[http://dx.doi.org/10.1007/s12274-016-1035-8] [PMID: 27226823]
[2]
Xue, Y.; Zhao, L.; Tang, J. Research progress on application of gold magnetic nanocomposite in biomedicine. J. Biomed. Eng., 2014, 31(2), 462-466.
[3]
Melancon, M.P.; Zhou, M.; Zhang, R.; Xiong, C.; Allen, P.; Wen, X.; Huang, Q.; Wallace, M.; Myers, J.N.; Stafford, R.J.; Liang, D.; Elling-ton, A.D.; Li, C. Selective uptake and imaging of aptamer- and antibody-conjugated hollow nanospheres targeted to epidermal growth fac-tor receptors overexpressed in head and neck cancer. ACS Nano, 2014, 8(5), 4530-4538.
[http://dx.doi.org/10.1021/nn406632u] [PMID: 24754567]
[4]
Lee, H.J.; Liu, Y.; Zhao, J. In vitro and in vivo mapping of drug release after laser ablation thermal therapy with doxorubicin-loaded hol-low gold nanoshells using fluorescence and photoacoustic imaging. J. Control. Release, 2013, 172(1), 152-158.
[5]
Tian, M.; Lu, W.; Zhang, R.; Xiong, C.; Ensor, J.; Nazario, J.; Jackson, J.; Shaw, C.; Dixon, K.A.; Miller, J.; Wright, K.; Li, C.; Gupta, S. Tumor uptake of hollow gold nanospheres after intravenous and intra-arterial injection: PET/CT study in a rabbit VX2 liver cancer model. Mol. Imaging Biol., 2013, 15(5), 614-624.
[http://dx.doi.org/10.1007/s11307-013-0635-x] [PMID: 23608932]
[6]
Deng, X.; Chen, Y.; Cheng, Z.; Deng, K.; Ma, P.; Hou, Z.; Liu, B.; Huang, S.; Jin, D.; Lin, J. Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: Simultaneous chemo/photothermal/photodynam-ic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy. Nanoscale, 2016, 8(12), 6837-6850.
[http://dx.doi.org/10.1039/C5NR08253F] [PMID: 26956400]
[7]
Lu, W.; Xiong, C.; Zhang, G.; Huang, Q.; Zhang, R.; Zhang, J.Z.; Li, C. Targeted photothermal ablation of murine melanomas with melano-cyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin. Cancer Res., 2009, 15(3), 876-886.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1480] [PMID: 19188158]
[8]
Viroj, W.; Amornpun, S.; Rojrit, R. Effect of gold nanoparticles on spermatozoa: The first world report. Fertil. Steril., 2009, 91(1), 2.
[9]
Wang, R.; Song, B.; Wu, J.; Zhang, Y.; Chen, A.; Shao, L. Potential adverse effects of nanoparticles on the reproductive system. Int. J. Nanomedicine, 2018, 13(5), 8487-8506.
[http://dx.doi.org/10.2147/IJN.S170723] [PMID: 30587973]
[10]
Guo, L.; Panderi, I.; Yan, D.D.; Szulak, K.; Li, Y.; Chen, Y.T.; Ma, H.; Niesen, D.B.; Seeram, N.; Ahmed, A.; Yan, B.; Pantazatos, D.; Lu, W. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. ACS Nano, 2013, 7(10), 8780-8793.
[http://dx.doi.org/10.1021/nn403202w] [PMID: 24053214]
[11]
Zhang, Y.; Cong, L.; He, J.; Wang, Y.; Zou, Y.; Yang, Z.; Hu, Y.; Zhang, S.; He, X. Photothermal treatment with EGFRmAb–AuNPs induc-es apoptosis in hypopharyngeal carcinoma cells via PI3K/AKT/mTOR and DNA damage response pathways. Acta Biochim. Biophys. Sin., 2018, 50(6), 567-578.
[http://dx.doi.org/10.1093/abbs/gmy046] [PMID: 29718150]
[12]
Yang, Y.; Fan, S.; Chen, Q.; Lu, Y.; Zhu, Y.; Chen, X.; Xia, L.; Huang, Q.; Zheng, J.; Liu, X. Acute exposure to gold nanoparticles aggra-vates lipopolysaccharide-induced liver injury by amplifying apoptosis via ROS-mediated macrophage-hepatocyte crosstalk. J. Nanobi-otechnol., 2022, 20(1), 37.
[http://dx.doi.org/10.1186/s12951-021-01203-w] [PMID: 35057820]
[13]
González-Rosa, J.M. Zebrafish Models of Cardiac Disease: From Fortuitous Mutants to Precision Medicine. Circ. Res., 2022, 130(12), 1803-1826.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.320396] [PMID: 35679360]
[14]
Hsu, C.H.; Wen, Z.H.; Lin, C.S.; Chakraborty, C. The zebrafish model: use in studying cellular mechanisms for a spectrum of clinical disease entities. Curr. Neurovasc. Res., 2007, 4(2), 111-120.
[http://dx.doi.org/10.2174/156720207780637234] [PMID: 17504209]
[15]
Belyaeva, N.F.; Kashirtseva, V.N.; Medvedeva, N.V.; Khudoklinova, Y.Y.; Ipatova, O.M.; Archakov, A.I. Zebrafish as a model system for biomedical studies. Biomed. Khim., 2010, 56(1), 120-131.
[http://dx.doi.org/10.18097/pbmc20105601120] [PMID: 21328916]
[16]
Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J.C.; Koch, R.; Rauch, G.J.; White, S.; Chow, W.; Kilian, B.; Quintais, L.T.; Guerra-Assunção, J.A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S.F.; Laird, G.K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliott, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Barker, G.; Whitehead, S.; Kay, M.; Brown, J.; Murnane, C.; Gray, E.; Humphries, M.; Sycamore, N.; Barker, D.; Saunders, D.; Wallis, J.; Babbage, A.; Hammond, S.; Mashreghi-Mohammadi, M.; Barr, L.; Martin, S.; Wray, P.; Ellington, A.; Matthews, N.; Ellwood, M.; Wood-mansey, R.; Clark, G.; Cooper, J.D.; Tromans, A.; Grafham, D.; Skuce, C.; Pandian, R.; Andrews, R.; Harrison, E.; Kimberley, A.; Garnett, J.; Fosker, N.; Hall, R.; Garner, P.; Kelly, D.; Bird, C.; Palmer, S.; Gehring, I.; Berger, A.; Dooley, C.M.; Ersan-Ürün, Z.; Eser, C.; Geiger, H.; Geisler, M.; Karotki, L.; Kirn, A.; Konantz, J.; Konantz, M.; Oberländer, M.; Rudolph-Geiger, S.; Teucke, M.; Lanz, C.; Raddatz, G.; Osoegawa, K.; Zhu, B.; Rapp, A.; Widaa, S.; Langford, C.; Yang, F.; Schuster, S.C.; Carter, N.P.; Harrow, J.; Ning, Z.; Herrero, J.; Searle, S.M.J.; Enright, A.; Geisler, R.; Plasterk, R.H.A.; Lee, C.; Westerfield, M.; de Jong, P.J.; Zon, L.I.; Postlethwait, J.H.; Nüsslein-Volhard, C.; Hubbard, T.J.P.; Crollius, H.R.; Rogers, J.; Stemple, D.L. The zebrafish reference genome sequence and its relationship to the human ge-nome. Nature, 2013, 496(7446), 498-503.
[http://dx.doi.org/10.1038/nature12111] [PMID: 23594743]
[17]
You, J.; Zhang, G.; Li, C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano, 2010, 4(2), 1033-1041.
[http://dx.doi.org/10.1021/nn901181c] [PMID: 20121065]
[18]
Water quality - Determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)] - Part 3: Flow-through method. ISO 7346- 3:1996. 1996. Available from: https://www.iso.org/standard/14030.html
[19]
Liu, F.; Kong, F.; Li, Q.; Yuan, H.; Du, Y.; Hu, F.; Sun, J.; You, J. Low molecular weight polyethylenimine-conjugated gold nanospheres: A platform for selective gene therapy controlled by near-infrared light. Nanomedicine, 2017, 12(5), 511-534.
[http://dx.doi.org/10.2217/nnm-2016-0273] [PMID: 28178869]
[20]
You, J.; Zhou, J.; Zhou, M.; Liu, Y.; Robertson, J.D.; Liang, D.; Van Pelt, C.; Li, C. Pharmacokinetics, clearance, and biosafety of polyeth-ylene glycol-coated hollow gold nanospheres. Part. Fibre Toxicol., 2014, 11(1), 26-40.
[http://dx.doi.org/10.1186/1743-8977-11-26] [PMID: 24886070]
[21]
Xiaomeng, G.; Wei, L.; Jialin, Z. Specific photothermal ablation therapy of endometriosis by targeting delivery of gold nanospheres. Small, 2017, 13(15)
[22]
Jiang, L.; Wang, Q.; Cui, W. Influence of gold nanoparticles on the cytotoxity and cell growth. Huaxue Jinzhan, 2013, 25(10), 1631-1641.
[23]
Rodriguez-Montelongo, S.A.; Gonzalez-Hernandez, J.; Macias, A.H.; Silva-Ramirez, A.S.; Castillo Martin del Campo, C.G.; Gutierrez-Hernandez, J.M.; Ruiz, F.; Gonzalez-Ortega, O. Synthesis, characterization, and toxicity of hollow gold nanoshells. J. Nanopart. Res., 2018, 20(11), 311-324.
[http://dx.doi.org/10.1007/s11051-018-4420-2]
[24]
Pongrac, I.M.; Ahmed, L.B.; Mlinarić, H.; Urašin, D.D.; Pavičić, I.; Marjanović Čermak, A.M.; Milić, M.; Gajović, S.; Vinković, V. Surface coating affects uptake of silver nanoparticles in neural stem cells. J. Trace Elem. Med. Biol., 2017, 50(50), 684-692.
[25]
Gupta, S.; Fink, M.K.; Ghosh, A.; Tripathi, R.; Sinha, P.R.; Sharma, A.; Hesemann, N.P.; Chaurasia, S.S.; Giuliano, E.A.; Mohan, R.R. Novel combination BMP7 and HGF gene therapy instigates selective myofibroblast apoptosis and reduces corneal haze in vivo. Invest. Ophthalmol. Vis. Sci., 2018, 59(2), 1045-1057.
[http://dx.doi.org/10.1167/iovs.17-23308] [PMID: 29490341]
[26]
Vales, G.; Suhonen, S.; Siivola, K.M.; Savolainen, K.M.; Catalán, J.; Norppa, H. Size, surface functionalization, and genotoxicity of gold nanoparticles in vitro. Nanomaterials, 2020, 10(2), 271-284.
[http://dx.doi.org/10.3390/nano10020271] [PMID: 32041143]
[27]
Zhang, X.; Wang, F.; Liu, B.; Kelly, E.Y.; Servos, M.R.; Liu, J. Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles. Langmuir, 2014, 30(3), 839-845.
[http://dx.doi.org/10.1021/la404633p] [PMID: 24387035]
[28]
Silva, L.H.A.; Silva, S.M.; Lima, E.C.D.; Silva, R.C.; Weiss, D.J.; Morales, M.M.; Cruz, F.F.; Rocco, P.R.M. Effects of static magnetic fields on natural or magnetized mesenchymal stromal cells: Repercussions for magnetic targeting. Nanomedicine, 2018, 14(7), 2075-2085.
[http://dx.doi.org/10.1016/j.nano.2018.06.002] [PMID: 29933023]
[29]
Dembereldorj, U.; Choi, S.Y.; Ganbold, E.O.; Song, N.W.; Kim, D.; Choo, J.; Lee, S.Y.; Kim, S.; Joo, S.W. Gold nanorod-assembled PEGylated graphene-oxide nanocomposites for photothermal cancer therapy. Photochem. Photobiol., 2014, 90(3), 659-666.
[http://dx.doi.org/10.1111/php.12212] [PMID: 24303894]
[30]
Haruta, M. Size and support-dependency in the catalysis of gold. Catal. Today, 1997, 36(1), 153-166.
[http://dx.doi.org/10.1016/S0920-5861(96)00208-8]