In this study, we successfully synthesized amine-functionalized SBA-15 mesoporous silicasupported Nickel nanoparticles (Ni NPs) and investigated their potential for CO2 transition to formic acid via high-pressure hydrogenation reaction. The metal-support interface between the Ni NPs and the amine-functionalized SBA-15 mesoporous silica was examined using various techniques, including BET, TEM, and XPS analyses. Our findings reveal a robust metal-support interaction between the NiNPs and the mesoporous silica substrate, highlighting the suitability of the catalyst for the CO2 conversion reaction. Additionally, the catalyst CAT$Ni-1 exhibited good catalytic activity over CAT$Ni-2 and CAT$Ni-3, and we were able to recycle them up to five runs with no significant reduction in catalytic activity. These results suggest that the synthesized Ni NP catalysts have the potential for large-scale CO2 conversion, contributing to the development of sustainable technologies for reducing greenhouse gas emissions.