Administration of Inhibitory Molecules through Nanoparticles in Breast Cancer Therapy

Page: [726 - 761] Pages: 36

  • * (Excluding Mailing and Handling)

Abstract

According to Global Cancer Statistics, breast cancer is the second leading cause of mortality in women. While there are several treatments for breast cancer, they are not always effective. In most cases, after initial treatment, patients may present a low response to therapy, more severe relapses, and even drug resistance. Hence, more effective and targeted therapies are needed. Recently, the use of nanoparticles has emerged as a promising alternative that will allow the controlled release of drugs in response to stimuli, precise delivery to the site of action, lower levels of toxicity, and fewer side effects. In this review, we provide an overview of the recent evidence proposing the delivery of inhibitory molecules encapsulated in nanoparticles as a new therapy for breast cancer that targets the signaling pathways governing the processes of tumor formation, maintenance, and expansion.

[1]
Emens, L.A. Breast cancer immunotherapy: Facts and hopes. Clin. Cancer Res., 2018, 24(3), 511-520.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3001] [PMID: 28801472]
[2]
Wang, Y.; Li, Y.; Liu, B.; Song, A. Identifying breast cancer subtypes associated modules and biomarkers by integrated bioinformatics analysis. Biosci. Rep., 2021, 41(1), BSR20203200.
[http://dx.doi.org/10.1042/BSR20203200] [PMID: 33313822]
[3]
Wang, Y.; Minden, A. Current molecular combination therapies used for the treatment of breast cancer. Int. J. Mol. Sci., 2022, 23(19), 11046.
[http://dx.doi.org/10.3390/ijms231911046] [PMID: 36232349]
[4]
Alves, R.C.; Perosa Fernandes, R.; Lira de Farias, R.; da Silva, P.B.; Santos Faria, R.; Quijia, C.R.; Galvão Frem, R.C.; Azevedo, R.B.; Chorilli, M. Fabrication of functional bioMOF-100 prototype as drug delivery system for breast cancer therapy. Pharmaceutics, 2022, 14(11), 2458.
[http://dx.doi.org/10.3390/pharmaceutics14112458] [PMID: 36432650]
[5]
Alves, R.C.; Schulte, Z.M.; Luiz, M.T.; Bento da Silva, P.; Frem, R.C.G.; Rosi, N.L.; Chorilli, M. Breast cancer targeting of a drug delivery system through postsynthetic modification of curcumin@ N3-bio-MOF-100 via click chemistry. Inorg. Chem., 2021, 60(16), 11739-11744.
[http://dx.doi.org/10.1021/acs.inorgchem.1c00538] [PMID: 34101467]
[6]
dos Santos, K.C.; dos Reis, L.R.; Rodero, C.F.; Sábio, R.M.; Junior, A.G.T.; Gremião, M.P.D.; Chorilli, M. Bioproperties, nanostructured system and analytical and bioanalytical methods for determination of rapamycin: A review. Crit. Rev. Anal. Chem., 2022, 52(5), 897-905.
[http://dx.doi.org/10.1080/10408347.2020.1839737] [PMID: 33138632]
[7]
Luiz, M.T.; Dutra, J.A.P.; Ribeiro, T.C.; Carvalho, G.C.; Sábio, R.M.; Marchetti, J.M.; Chorilli, M.; Physicochemical, S.A.; Aspects, E. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy. Colloids Surf. A Physicochem. Eng. Asp., 2022, 645, 128935.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128935]
[8]
Quijia, C.R.; Tavares Luiz, M.; Fernandes, R.P.; Sábio, R.M.; Frem, R.; Chorilli, M. In situ synthesis of piperine-loaded MIL-100 (Fe) in microwave for breast cancer treatment. J. Drug Deliv. Sci. Technol., 2022, 75, 103718.
[http://dx.doi.org/10.1016/j.jddst.2022.103718]
[9]
Tsang, J.Y.S.; Tse, G.M. Molecular classification of breast cancer. Eur. J. Breast Health, 2020, 27(1), 27-35.
[PMID: 31045583]
[10]
Aumeeruddy, M.Z.; Mahomoodally, M.F. Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone. Cancer, 2019, 125(10), 1600-1611.
[http://dx.doi.org/10.1002/cncr.32022] [PMID: 30811596]
[11]
Chen, Y.; Shi, X.E.; Tian, J.H.; Yang, X.J.; Wang, Y.F.; Yang, K.H. Survival benefit of neoadjuvant chemotherapy for resectable breast cancer. Medicine, 2018, 97(20), e10634.
[http://dx.doi.org/10.1097/MD.0000000000010634] [PMID: 29768327]
[12]
Mueller, C.; Haymond, A.; Davis, J.B.; Williams, A.; Espina, V. Protein biomarkers for subtyping breast cancer and implications for future research. Expert Rev. Proteomics, 2018, 15(2), 131-152.
[http://dx.doi.org/10.1080/14789450.2018.1421071] [PMID: 29271260]
[13]
Samadi, P.; Saki, S.; Dermani, F.K.; Pourjafar, M.; Saidijam, M. Emerging ways to treat breast cancer: Will promises be met? Cell. Oncol., 2018, 41(6), 605-621.
[http://dx.doi.org/10.1007/s13402-018-0409-1] [PMID: 30259416]
[14]
Zhang, X. Molecular classification of breast cancer: Relevance and challenges. Arch. Pathol. Lab. Med., 2023, 147(1), 46-51.
[http://dx.doi.org/10.5858/arpa.2022-0070-RA] [PMID: 36136295]
[15]
Rojo, F.; Albanell, J.; Rovira, A.; Corominas, J.M.; Manzarbeitia, F. Targeted therapies in breast cancer. Semin. Diagn. Pathol., 2008, 25(4), 245-261.
[http://dx.doi.org/10.1053/j.semdp.2008.08.001] [PMID: 19013891]
[16]
An, J.; Peng, C.; Tang, H.; Liu, X.; Peng, F. New advances in the research of resistance to neoadjuvant chemotherapy in breast cancer. Int. J. Mol. Sci., 2021, 22(17), 9644.
[http://dx.doi.org/10.3390/ijms22179644] [PMID: 34502549]
[17]
Lau, K.H.; Tan, A.M.; Shi, Y. New and emerging targeted therapies for advanced breast cancer. Int. J. Mol. Sci., 2022, 23(4), 2288.
[http://dx.doi.org/10.3390/ijms23042288] [PMID: 35216405]
[18]
Márquez-Garbán, D.C.; Deng, G.; Comin-Anduix, B.; Garcia, A.J.; Xing, Y.; Chen, H.W.; Cheung-Lau, G.; Hamilton, N.; Jung, M.E.; Pietras, R.J. Antiestrogens in combination with immune checkpoint inhibitors in breast cancer immunotherapy. J. Steroid Biochem. Mol. Biol., 2019, 193, 105415.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105415] [PMID: 31226312]
[19]
Al-Mahayri, Z.N.; Patrinos, G.P.; Ali, B.R. Toxicity and pharmacogenomic biomarkers in breast cancer chemotherapy. Front. Pharmacol., 2020, 11, 445.
[http://dx.doi.org/10.3389/fphar.2020.00445] [PMID: 32351390]
[20]
Ayana, G.; Ryu, J.; Choe, S. Ultrasound-responsive nanocarriers for breast cancer chemotherapy. micromachines, 2022, 13(9), 1508.
[http://dx.doi.org/10.3390/mi13091508] [PMID: 36144131]
[21]
Tavakoli Dastjerd, N.; Gheibi, N.; Ahmadpour Yazdi, H.; Shariatifar, H.; Farasat, A. Design and characterization of liposomal methotrexate and its effect on BT-474 breast cancer cell line. Med. J. Islam. Repub. Iran, 2021, 35, 158.
[http://dx.doi.org/10.47176/mjiri.35.158] [PMID: 35341082]
[22]
Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201.
[http://dx.doi.org/10.1038/s41392-021-00572-w] [PMID: 34054126]
[23]
Dong, K.; Zhao, Z.Z.; Kang, J.; Lin, L.R.; Chen, W.T.; Liu, J.X.; Wu, X.L.; Lu, T.L. Cinnamaldehyde and doxorubicin co-loaded graphene oxide wrapped mesoporous silica nanoparticles for enhanced MCF-7 cell apoptosis. Int. J. Nanomedicine, 2020, 15, 10285-10304.
[http://dx.doi.org/10.2147/IJN.S283981] [PMID: 33376322]
[24]
Joseph, M.M.; Aswathy, G.; Manojkumar, T.K.; Sreelekha, T.T. Galactoxyloglucan-doxorubicin nanoparticles exerts superior cytotoxic effects on cancer cells-A mechanistic and in silico approach. Int. J. Biol. Macromol., 2016, 92, 20-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.093] [PMID: 27373427]
[25]
Misra, R.; Mohanty, S. Self-assembled liquid-crystalline folate nanoparticles for in vitro controlled release of doxorubicin. Biomed. Pharmacother., 2015, 69, 326-336.
[http://dx.doi.org/10.1016/j.biopha.2014.12.015] [PMID: 25661378]
[26]
Shafei, A.; El-Bakly, W.; Sobhy, A.; Wagdy, O.; Reda, A.; Aboelenin, O.; Marzouk, A.; El Habak, K.; Mostafa, R.; Ali, M.A.; Ellithy, M. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother., 2017, 95, 1209-1218.
[http://dx.doi.org/10.1016/j.biopha.2017.09.059] [PMID: 28931213]
[27]
Abu Samaan, T.M.; Samec, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules, 2019, 9(12), 789.
[http://dx.doi.org/10.3390/biom9120789] [PMID: 31783552]
[28]
Foglietta, F.; Spagnoli, G.C.; Muraro, M.G.; Ballestri, M.; Guerrini, A.; Ferroni, C.; Aluigi, A.; Sotgiu, G.; Varchi, G. Anticancer activity of paclitaxel-loaded keratin nanoparticles in two-dimensional and perfused three-dimensional breast cancer models. Int. J. Nanomedicine, 2018, 13, 4847-4867.
[http://dx.doi.org/10.2147/IJN.S159942] [PMID: 30214193]
[29]
Rivera-Rodriguez, A.; Chiu-Lam, A.; Morozov, V.M.; Ishov, A.M.; Rinaldi, C. Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells. Int. J. Nanomedicine, 2018, 13, 4771-4779.
[http://dx.doi.org/10.2147/IJN.S171130] [PMID: 30197514]
[30]
Sharifi-Rad, J.; Quispe, C.; Patra, J.K.; Singh, Y.D.; Panda, M.K.; Das, G.; Adetunji, C.O.; Michael, O.S.; Sytar, O.; Polito, L. Živković, J.; Cruz-Martins, N.; Klimek-Szczykutowicz, M.; Ekiert, H.; Choudhary, M.I.; Ayatollahi, S.A.; Tynybekov, B.; Kobarfard, F.; Muntean, A.C.; Grozea, I.; Daştan, S.D.; Butnariu, M.; Szopa, A.; Calina, D. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxid. Med. Cell. Longev., 2021, 2021, 1-24.
[http://dx.doi.org/10.1155/2021/3687700] [PMID: 34707776]
[31]
Masoud, V.; Pagès, G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J. Clin. Oncol., 2017, 8(2), 120-134.
[http://dx.doi.org/10.5306/wjco.v8.i2.120] [PMID: 28439493]
[32]
Demir Cetinkaya, B.; Biray Avci, C. Molecular perspective on targeted therapy in breast cancer: A review of current status. Med. Oncol., 2022, 39(10), 149.
[http://dx.doi.org/10.1007/s12032-022-01749-1] [PMID: 35834030]
[33]
Drekolias, D.; Mamounas, E.P. Metaplastic breast carcinoma: Current therapeutic approaches and novel targeted therapies. Breast J., 2019, 25(6), 1192-1197.
[http://dx.doi.org/10.1111/tbj.13416] [PMID: 31250492]
[34]
Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150.
[http://dx.doi.org/10.1016/S0140-6736(16)31891-8] [PMID: 27865536]
[35]
Shea, E.K.H.; Koh, V.C.Y.; Tan, P.H. Invasive breast cancer: Current perspectives and emerging views. Pathol. Int., 2020, 70(5), 242-252.
[http://dx.doi.org/10.1111/pin.12910] [PMID: 32039524]
[36]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[37]
Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[38]
Bhattacharyya, A. Disaster, Risk and Vulnerablity Conference 2011, 2011, pp. 116-120.
[39]
Sheoran, S.; Arora, S.; Samsonraj, R.; Govindaiah, P. vuree, S. Lipid-based nanoparticles for treatment of cancer. Heliyon, 2022, 8(5), e09403.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09403] [PMID: 35663739]
[40]
Guney Eskiler, G.; Cecener, G.; Egeli, U.; Tunca, B. Talazoparib nanoparticles for overcoming multidrug resistance in triple-negative breast cancer. J. Cell. Physiol., 2020, 235(9), 6230-6245.
[http://dx.doi.org/10.1002/jcp.29552] [PMID: 32017076]
[41]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[42]
Abedin, M.R.; Powers, K.; Aiardo, R.; Barua, D.; Barua, S. Antibody–drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells. Sci. Rep., 2021, 11(1), 7347.
[http://dx.doi.org/10.1038/s41598-021-86762-6] [PMID: 33795712]
[43]
Al-saden, N.; Lam, K.; Chan, C.; Reilly, R.M. Positron-emission tomography of HER2-positive breast cancer xenografts in mice with 89 Zr-labeled trastuzumab-DM1: A comparison with 89 Zr-labeled trastuzumab. Mol. Pharm., 2018, 15(8), 3383-3393.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00392] [PMID: 29957952]
[44]
Cao, F.; Yao, Q.; Yang, T.; Zhang, Z.; Han, Y.; Feng, J.; Wang, X.H. Marriage of antibody–drug conjugate with gold nanorods to achieve multi-modal ablation of breast cancer cells and enhanced photoacoustic performance. RSC Advances, 2016, 6(52), 46594-46606.
[http://dx.doi.org/10.1039/C6RA01557C]
[45]
Cruz, E.; Kayser, V. Synthesis and enhanced cellular uptake in vitro of Anti-HER2 multifunctional gold nanoparticles. Cancers, 2019, 11(6), 870.
[http://dx.doi.org/10.3390/cancers11060870] [PMID: 31234432]
[46]
Gu, S.; Ngamcherdtrakul, W.; Reda, M.; Hu, Z.; Gray, J.W.; Yantasee, W. Lack of acquired resistance in HER2-positive breast cancer cells after long-term HER2 siRNA nanoparticle treatment. PLoS One, 2018, 13(6), e0198141.
[http://dx.doi.org/10.1371/journal.pone.0198141] [PMID: 29879129]
[47]
Hapuarachchige, S.; Kato, Y.; Artemov, D. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models. Sci. Rep., 2016, 6(1), 24298.
[http://dx.doi.org/10.1038/srep24298] [PMID: 27068794]
[48]
Keyaerts, M.; Xavier, C.; Heemskerk, J.; Devoogdt, N.; Everaert, H.; Ackaert, C.; Vanhoeij, M.; Duhoux, F.P.; Gevaert, T.; Simon, P.; Schallier, D.; Fontaine, C.; Vaneycken, I.; Vanhove, C.; De Greve, J.; Lamote, J.; Caveliers, V.; Lahoutte, T.; Phase, I.; Phase, I. Study of 68 Ga-HER2-Nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J. Nucl. Med., 2016, 57(1), 27-33.
[http://dx.doi.org/10.2967/jnumed.115.162024] [PMID: 26449837]
[49]
Ngo Ndjock Mbong, G.; Lu, Y.; Chan, C.; Cai, Z.; Liu, P.; Boyle, A.J.; Winnik, M.A.; Reilly, R.M. Trastuzumab labeled to high specific activity with 111 in by site-specific conjugation to a metal-chelating polymer exhibits amplified auger electron-mediated cytotoxicity on her2-positive breast cancer cells. Mol. Pharm., 2015, 12(6), 1951-1960.
[http://dx.doi.org/10.1021/mp5007618] [PMID: 25919639]
[50]
Owen, S.C.; Patel, N.; Logie, J.; Pan, G.; Persson, H.; Moffat, J.; Sidhu, S.S.; Shoichet, M.S. Targeting HER2 + breast cancer cells: Lysosomal accumulation of anti-HER2 antibodies is influenced by antibody binding site and conjugation to polymeric nanoparticles. J. Control. Release, 2013, 172(2), 395-404.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.011] [PMID: 23880472]
[51]
Rodallec, A.; Sicard, G.; Giacometti, S.; Carré, M.; Pourroy, B.; Bouquet, F.; Savina, A.; Lacarelle, B.; Ciccolini, J.; Fanciullino, R. From 3D spheroids to tumor bearing mice: Efficacy and distribution studies of trastuzumab-docetaxel immunoliposome in breast cancer. Int. J. Nanomedicine, 2018, 13, 6677-6688.
[http://dx.doi.org/10.2147/IJN.S179290] [PMID: 30425482]
[52]
Rong, L.; Zhou, S.; Liu, X.; Li, A.; Jing, T.; Liu, X.; Zhang, Y.; Cai, S.; Tang, X. Trastuzumab-modified DM1-loaded nanoparticles for HER2+ breast cancer treatment: An in vitro and in vivo study. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1708-1718.
[PMID: 29069935]
[53]
Roozbehi, S.; Dadashzadeh, S.; Mirshahi, M.; Sadeghizadeh, M.; Sajedi, R.H. Targeted anticancer prodrug therapy using dextran mediated enzyme–antibody conjugate and β-cyclodextrin-curcumin inclusion complex. Int. J. Biol. Macromol., 2020, 160, 1029-1041.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.225] [PMID: 32479931]
[54]
Tang, X.; Dai, H.; Zhu, Y.; Tian, Y.; Zhang, R.; Mei, R.; Li, D. Maytansine-loaded star-shaped folate-core PLA-TPGS nanoparticles enhancing anticancer activity. Am. J. Transl. Res., 2014, 6(5), 528-537.
[PMID: 25360217]
[55]
Tang, X.; Liang, Y.; Zhu, Y.; Cai, S.; Sun, L.; Chen, T. Enhanced anticancer activity of DM1-loaded star-shaped folate-core PLA-TPGS nanoparticles. Nanoscale Res. Lett., 2014, 9(1), 563.
[http://dx.doi.org/10.1186/1556-276X-9-563] [PMID: 25339854]
[56]
Tang, X.; Lyu, Y.; Zhu, Y.; Hou, W.; Liang, Y.; Dai, J.; Cai, S.; Mei, R.; Zhang, C.; Fan, Q. Enhanced Anti-PDL1(+) cancer activity of DM1-loaded-PLA-TPGS nanoparticles mediated with MPDL3280A. J. Nanosci. Nanotechnol., 2016, 16(7), 7055-7063.
[http://dx.doi.org/10.1166/jnn.2016.11355]
[57]
Zhang, Y.; Yue, S.; Haag, R.; Sun, H.; Zhong, Z. An intelligent cell-selective polymersome-DM1 nanotoxin toward triple negative breast cancer. J. Control. Release, 2021, 340, 331-341.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.014] [PMID: 34774889]
[58]
Zhong, P. Gu, X.; Cheng, R.; Deng, C.; Meng, F.; Zhong, Z. αvβ3 integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. Int. J. Nanomedicine, 2017, 12, 7913-7921.
[http://dx.doi.org/10.2147/IJN.S146505] [PMID: 29138558]
[59]
Vodyashkin, A.A.; Kezimana, P.; Vetcher, A.A.; Stanishevskiy, Y.M. Biopolymeric nanoparticles–multifunctional materials of the future. polymers, 2022, 14(11), 2287.
[http://dx.doi.org/10.3390/polym14112287] [PMID: 35683959]
[60]
Puri, A.; Loomis, K.; Smith, B.; Lee, J-H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(6), 523-580.
[61]
Rahman, M.M.; Islam, M.R.; Akash, S.; Harun-Or-Rashid, M.; Ray, T.K.; Rahaman, M.S.; Islam, M.; Anika, F.; Hosain, M.K.; Aovi, F.I.; Hemeg, H.A.; Rauf, A.; Wilairatana, P. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomed. Pharmacother., 2022, 153, 113305.
[http://dx.doi.org/10.1016/j.biopha.2022.113305] [PMID: 35717779]
[62]
Lawson, H.D.; Walton, S.P.; Chan, C. Interfaces, metal–organic frameworks for drug delivery: A design perspective. ACS Appl. Mater. Interfaces, 2021, 13(6), 7004-7020.
[http://dx.doi.org/10.1021/acsami.1c01089] [PMID: 33554591]
[63]
O’Connor, M.J. Targeting the DNA damage response in cancer. Mol. Cell, 2015, 60(4), 547-560.
[http://dx.doi.org/10.1016/j.molcel.2015.10.040] [PMID: 26590714]
[64]
Cortesi, L.; Rugo, H.S.; Jackisch, C. An overview of PARP inhibitors for the treatment of breast cancer. Target. Oncol., 2021, 16(3), 255-282.
[http://dx.doi.org/10.1007/s11523-021-00796-4] [PMID: 33710534]
[65]
Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.J.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; Martin, N.M.B.; P., Jackson S.; Smith, G. C M.; Ashworth, A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Letters, 2005, 434(7035), 917-921.
[66]
Bryant, H.E.; Schultz, N.; Thomas, H.D.; Parker, K.M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N.J.; Helleday, T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 2005, 434(7035), 913-917.
[67]
Mazzucchelli, S.; Truffi, M.; Baccarini, F.; Beretta, M.; Sorrentino, L.; Bellini, M.; Rizzuto, M.A.; Ottria, R.; Ravelli, A.; Ciuffreda, P.; Prosperi, D.; Corsi, F. H-Ferritin-nanocaged olaparib: A promising choice for both BRCA-mutated and sporadic triple negative breast cancer. Sci. Rep., 2017, 7(1), 7505.
[http://dx.doi.org/10.1038/s41598-017-07617-7] [PMID: 28790402]
[68]
Hu, H.; Zhang, Y.; Ji, W.; Mei, H.; Wu, T.; He, Z.; Wang, K.; Shi, C. Hyaluronic acid-coated and Olaparib-loaded PEI - PLGA nanoparticles for the targeted therapy of triple negative breast cancer. J. Microencapsul., 2022, 39(1), 25-36.
[http://dx.doi.org/10.1080/02652048.2021.2014586] [PMID: 34859741]
[69]
Zhang, Y.; Hu, H.; Tang, W.; Zhang, Q.; Li, M.; Jin, H.; Huang, Z.; Cui, Z.; Xu, J.; Wang, K.; Shi, C. A multifunctional magnetic nanosystem based on “two strikes” effect for synergistic anticancer therapy in triple-negative breast cancer. J. Control. Release, 2020, 322, 401-415.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.036] [PMID: 32246976]
[70]
Jung, K.O.; Jo, H.; Yu, J.H.; Gambhir, S.S.; Pratx, G. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials, 2018, 177, 139-148.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.048] [PMID: 29890363]
[71]
Guney Eskiler, G.; Cecener, G.; Egeli, U.; Tunca, B. Synthetically lethal BMN 673 (Talazoparib) loaded solid lipid nanoparticles for BRCA1 mutant triple negative breast cancer. Pharm. Res., 2018, 35(11), 218.
[http://dx.doi.org/10.1007/s11095-018-2502-6] [PMID: 30255456]
[72]
Eskiler, G.G.; Cecener, G.; Dikmen, G.; Egeli, U.; Tunca, B. Talazoparib loaded solid lipid nanoparticles: Preparation, characterization and evaluation of the therapeutic efficacy in vitro. Curr. Drug Deliv., 2019, 16(6), 511-529.
[http://dx.doi.org/10.2174/1567201816666190515105532] [PMID: 31113350]
[73]
Zhang, D.; Baldwin, P.; Leal, A.S.; Carapellucci, S.; Sridhar, S.; Liby, K.T. A nano-liposome formulation of the PARP inhibitor talazoparib enhances treatment efficacy and modulates immune cell populations in mammary tumors of BRCA-deficient mice. Theranostics, 2019, 9(21), 6224-6238.
[http://dx.doi.org/10.7150/thno.36281] [PMID: 31534547]
[74]
Mehra, N.K.; Tekmal, R.R.; Palakurthi, S. Development and evaluation of talazoparib nanoemulsion for systemic therapy of BRCA1-mutant cancer. Anticancer Res., 2018, 38(8), 4493-4503.
[http://dx.doi.org/10.21873/anticanres.12753] [PMID: 30061215]
[75]
Brodie, S.G.; Xu, X.; Qiao, W.; Li, W.M.; Cao, L.; Deng, C.X. Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene, 2001, 20(51), 7514-7523.
[http://dx.doi.org/10.1038/sj.onc.1204929] [PMID: 11709723]
[76]
Zhou, L.; Chen, J.; Sun, Y.; Chai, K.; Zhu, Z.; Wang, C.; Chen, M.; Han, W.; Hu, X.; Li, R.; Yao, T.; Li, H.; Dong, C.; Shi, S. A self-amplified nanocatalytic system for achieving “1 + 1 + 1 > 3” chemodynamic therapy on triple negative breast cancer. J. Nanobiotechnology, 2021, 19(1), 261.
[http://dx.doi.org/10.1186/s12951-021-00998-y] [PMID: 34481495]
[77]
Zhang, H.; Yu, N.; Chen, Y.; Yan, K.; Wang, X. Cationic liposome codelivering PI3K pathway regulator improves the response of BRCA1-deficient breast cancer cells to PARP1 inhibition. J. Cell. Biochem., 2019, 120(8), 13037-13045.
[http://dx.doi.org/10.1002/jcb.28574] [PMID: 30873673]
[78]
Misra, R.; Patra, B.; Varadharaj, S.; Verma, R.S. Establishing the promising role of novel combination of triple therapeutics delivery using polymeric nanoparticles for Triple negative breast cancer therapy. Bioimpacts, 2020, 11(3), 199-207.
[http://dx.doi.org/10.34172/bi.2021.27] [PMID: 34336608]
[79]
DuRoss, A.N.; Neufeld, M.J.; Landry, M.R.; Rosch, J.G.; Eaton, C.T.; Sahay, G.; Thomas, C.R., Jr; Sun, C. Micellar formulation of talazoparib and buparlisib for enhanced DNA damage in breast cancer chemoradiotherapy. ACS Appl. Mater. Interfaces, 2019, 11(13), 12342-12356.
[http://dx.doi.org/10.1021/acsami.9b02408] [PMID: 30860347]
[80]
Neufeld, M.J.; DuRoss, A.N.; Landry, M.R.; Winter, H.; Goforth, A.M.; Sun, C. Co-delivery of PARP and PI3K inhibitors by nanoscale metal–organic frameworks for enhanced tumor chemoradiation. Nano Res., 2019, 12(12), 3003-3017.
[http://dx.doi.org/10.1007/s12274-019-2544-z]
[81]
Anwar, M.M.; Abd El-Karim, S.S.; Mahmoud, A.H.; Amr, A.E.G.E.; Al-Omar, M.A. A comparative study of the anticancer activity and PARP-1 inhibiting effect of benzofuran–pyrazole scaffold and its nano-sized particles in human breast cancer cells. Molecules, 2019, 24(13), 2413.
[http://dx.doi.org/10.3390/molecules24132413] [PMID: 31261939]
[82]
Cheng, H.W.; Chiang, C.S.; Ho, H.Y.; Chou, S.H.; Lai, Y.H.; Shyu, W.C.; Chen, S.Y. Dextran-modified Quercetin-Cu(II)/hyaluronic acid nanomedicine with natural poly(ADP-ribose) polymerase inhibitor and dual targeting for programmed synthetic lethal therapy in triple-negative breast cancer. J. Control. Release, 2021, 329, 136-147.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.061] [PMID: 33278482]
[83]
Liu, J.; Yang, Y.; Zhu, W.; Yi, X.; Dong, Z.; Xu, X.; Chen, M.; Yang, K.; Lu, G.; Jiang, L.; Liu, Z. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials, 2016, 97, 1-9.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.034] [PMID: 27155362]
[84]
Verret, B.; Cortes, J.; Bachelot, T.; Andre, F.; Arnedos, M. Efficacy of PI3K inhibitors in advanced breast cancer. Ann. Oncol., 2019, 30(S.10), x12-x20.
[http://dx.doi.org/10.1093/annonc/mdz381]
[85]
Carrera, A.C.; Anderson, R. The cell biology behind the oncogenic PIP3 lipids. J. Cell Sci., 2019, 132(1), jcs228395.
[http://dx.doi.org/10.1242/jcs.228395] [PMID: 30602575]
[86]
Dowling, R.J.O.; Topisirovic, I.; Fonseca, B.D.; Sonenberg, N. Dissecting the role of mTOR: Lessons from mTOR inhibitors. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(3), 433-439.
[http://dx.doi.org/10.1016/j.bbapap.2009.12.001] [PMID: 20005306]
[87]
Lee, J.J.; Loh, K.; Yap, Y.S. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol. Med., 2015, 12(4), 342-354.
[PMID: 26779371]
[88]
Zhu, K.; Wu, Y.; He, P.; Fan, Y.; Zhong, X.; Zheng, H.; Luo, T. PI3K/AKT/mTOR-targeted therapy for breast cancer. Cells, 2022, 11(16), 2508.
[http://dx.doi.org/10.3390/cells11162508] [PMID: 36010585]
[89]
Gradishar, W.J.; Moran, M.S.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K.H.; Blair, S.L.; Burstein, H.J.; Dang, C.; Elias, A.D.; Giordano, S.H.; Goetz, M.P.; Goldstein, L.J.; Hurvitz, S.A.; Isakoff, S.J.; Jankowitz, R.C.; Javid, S.H.; Krishnamurthy, J.; Leitch, M.; Lyons, J.; Matro, J.; Mayer, I.A.; Mortimer, J.; O’Regan, R.M.; Patel, S.A.; Pierce, L.J.; Rugo, H.S.; Sitapati, A.; Smith, K.L.; Smith, M.L.; Soliman, H.; Stringer-Reasor, E.M.; Telli, M.L.; Ward, J.H.; Wisinski, K.B.; Young, J.S.; Burns, J.L.; Kumar, R. NCCN Guidelines® Insights: Breast cancer, version 4.2021. J. Natl. Compr. Canc. Netw., 2021, 19(5), 484-493.
[http://dx.doi.org/10.6004/jnccn.2021.0023] [PMID: 34794122]
[90]
Sharma, V.; Sharma, A.K.; Punj, V.; Priya, P. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer. Semin. Cancer Biol., 2019, 59, 133-146.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.005] [PMID: 31408722]
[91]
Steelman, L.S.; Martelli, A.M.; Cocco, L.; Libra, M.; Nicoletti, F.; Abrams, S.L.; McCubrey, J.A. The therapeutic potential of mTOR inhibitors in breast cancer. Br. J. Clin. Pharmacol., 2016, 82(5), 1189-1212.
[http://dx.doi.org/10.1111/bcp.12958] [PMID: 27059645]
[92]
Iwase, Y.; Maitani, Y. Preparation and in vivo evaluation of liposomal everolimus for lung carcinoma and thyroid carcinoma. Biol. Pharm. Bull., 2012, 35(6), 975-979.
[http://dx.doi.org/10.1248/bpb.35.975] [PMID: 22687542]
[93]
Bonizzi, A.; Truffi, M.; Sevieri, M.; Allevi, R.; Sitia, L.; Ottria, R.; Sorrentino, L.; Sottani, C.; Negri, S.; Grignani, E.; Mazzucchelli, S.; Corsi, F. everolimus nanoformulation in biological nanoparticles increases drug responsiveness in resistant and low-responsive breast cancer cell lines. Pharmaceutics, 2019, 11(8), 384.
[http://dx.doi.org/10.3390/pharmaceutics11080384] [PMID: 31382388]
[94]
Quagliariello, V.; Iaffaioli, R.V.; Armenia, E.; Clemente, O.; Barbarisi, M.; Nasti, G.; Berretta, M.; Ottaiano, A.; Barbarisi, A. Hyaluronic acid nanohydrogel loaded with quercetin alone or in combination to a macrolide derivative of rapamycin RAD001 (Everolimus) as a new treatment for hormone-responsive human breast cancer. J. Cell. Physiol., 2017, 232(8), 2063-2074.
[http://dx.doi.org/10.1002/jcp.25587] [PMID: 27607841]
[95]
Houdaihed, L.; Evans, J.C.; Allen, C. Codelivery of paclitaxel and everolimus at the optimal synergistic ratio: A promising solution for the treatment of breast cancer. Mol. Pharm., 2018, 15(9), 3672-3681.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00217] [PMID: 29863881]
[96]
Sottani, C.; Grignani, E.; Mazzucchelli, S.; Bonizzi, A.; Corsi, F.; Negri, S.; Prati, F.; Calleri, E.; Cottica, D. Development and validation of a simple and versatile method for the quantification of everolimus loaded in H-ferritin nanocages using UHPLC-MS/MS. J. Pharm. Biomed. Anal., 2020, 191, 113644.
[http://dx.doi.org/10.1016/j.jpba.2020.113644] [PMID: 32987250]
[97]
Houdaihed, L.; Evans, J.C.; Allen, C. In vivo evaluation of dual-targeted nanoparticles encapsulating paclitaxel and everolimus. Cancers, 2019, 11(6), 752.
[http://dx.doi.org/10.3390/cancers11060752] [PMID: 31146485]
[98]
Lee, D.Y.; Lee, K.P.; Beak, S.; Park, J.S.; Kim, Y.J.; Kim, K.N.; Kim, S.R.; Yoon, M.S. Antibreast cancer activity of aspirin-conjugated chalcone polymeric micelles. Macromol. Res., 2021, 29(1), 105-110.
[http://dx.doi.org/10.1007/s13233-021-9010-y]
[99]
Abu-Dief, A.M.; Nassar, I.F.; Elsayed, W.H. Magnetic NiFe2 O4 nanoparticles: Efficient, heterogeneous and reusable catalyst for synthesis of acetylferrocene chalcones and their anti-tumour activity. Appl. Organomet. Chem., 2016, 30(11), 917-923.
[http://dx.doi.org/10.1002/aoc.3521]
[100]
Zhao, Y.; Zhang, T.; Duan, S.; Davies, N.M.; Forrest, M.L. CD44-tropic polymeric nanocarrier for breast cancer targeted rapamycin chemotherapy. Nanomedicine, 2014, 10(6), 1221-1230.
[http://dx.doi.org/10.1016/j.nano.2014.02.015] [PMID: 24637218]
[101]
Behrouz, H.; Esfandyari-Manesh, M.; Khoeeniha, M.K.; Amini, M.; Shiri Varnamkhasti, B.; Atyabi, F.; Dinarvand, R. Enhanced cytotoxicity to cancer cells by codelivery and controlled release of paclitaxel-loaded sirolimus-conjugated albumin nanoparticles. Chem. Biol. Drug Des., 2016, 88(2), 230-240.
[http://dx.doi.org/10.1111/cbdd.12750] [PMID: 26913996]
[102]
Nandi, U.; Onyesom, I.; Douroumis, D. An in vitro evaluation of antitumor activity of sirolimus-encapsulated liposomes in breast cancer cells. J. Pharm. Pharmacol., 2021, 73(3), 300-309.
[http://dx.doi.org/10.1093/jpp/rgaa061] [PMID: 33793879]
[103]
Nandi, U.; Onyesom, I.; Douroumis, D. Transferrin conjugated Stealth liposomes for sirolimus active targeting in breast cancer. J. Drug Deliv. Sci. Technol., 2021, 66, 102900.
[http://dx.doi.org/10.1016/j.jddst.2021.102900]
[104]
Onyesom, I.; Lamprou, D.A.; Sygellou, L.; Owusu-Ware, S.K.; Antonijevic, M.; Chowdhry, B.Z.; Douroumis, D. Sirolimus encapsulated liposomes for cancer therapy: Physicochemical and mechanical characterization of sirolimus distribution within liposome bilayers. Mol. Pharm., 2013, 10(11), 4281-4293.
[http://dx.doi.org/10.1021/mp400362v] [PMID: 24099044]
[105]
Blanco, E.; Sangai, T.; Wu, S.; Hsiao, A.; Ruiz-Esparza, G.U.; Gonzalez-Delgado, C.A.; Cara, F.E.; Granados-Principal, S.; Evans, K.W.; Akcakanat, A.; Wang, Y.; Do, K.A.; Meric-Bernstam, F.; Ferrari, M. Colocalized delivery of rapamycin and paclitaxel to tumors enhances synergistic targeting of the PI3K/Akt/mTOR pathway. Mol. Ther., 2014, 22(7), 1310-1319.
[http://dx.doi.org/10.1038/mt.2014.27] [PMID: 24569835]
[106]
Dai, W.; Yang, F.; Ma, L.; Fan, Y.; He, B.; He, Q.; Wang, X.; Zhang, H.; Zhang, Q. Combined mTOR inhibitor rapamycin and doxorubicin-loaded cyclic octapeptide modified liposomes for targeting integrin α3 in triple-negative breast cancer. Biomaterials, 2014, 35(20), 5347-5358.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.036] [PMID: 24726747]
[107]
Liu, P.; Liu, X.; Cheng, Y.; Zhong, S.; Shi, X.; Wang, S.; Liu, M.; Ding, J.; Zhou, W. Core–shell nanosystems for self-activated drug–gene combinations against triple-negative breast cancer. ACS Appl. Mater. Interfaces, 2020, 12(48), 53654-53664.
[http://dx.doi.org/10.1021/acsami.0c15089] [PMID: 33205940]
[108]
Peddi, S.; Roberts, S.K.; MacKay, J.A. Nanotoxicology of an elastin-like polypeptide rapamycin formulation for breast cancer. Biomacromolecules, 2020, 21(3), 1091-1102.
[http://dx.doi.org/10.1021/acs.biomac.9b01431] [PMID: 31927993]
[109]
Tam, Y.T.; Repp, L.; Ma, Z.X.; Feltenberger, J.B.; Kwon, G.S. Oligo (lactic acid)8-rapamycin prodrug-loaded poly(ethylene glycol)-block-poly(lactic acid) micelles for injection. Pharm. Res., 2019, 36(5), 70.
[http://dx.doi.org/10.1007/s11095-019-2600-0] [PMID: 30888509]
[110]
Houdaihed, L.; Evans, J.C.; Allen, C. Dual-targeted delivery of nanoparticles encapsulating paclitaxel and everolimus: A novel strategy to overcome breast cancer receptor heterogeneity. Pharm. Res., 2020, 37(3), 39.
[http://dx.doi.org/10.1007/s11095-019-2684-6] [PMID: 31965330]
[111]
Karthikeyan, C.; Narayana Moorthy, N.S.H.; Ramasamy, S.; Vanam, U.; Manivannan, E.; Karunagaran, D.; Trivedi, P. Advances in chalcones with anticancer activities. Recent Patents Anticancer Drug Discov., 2014, 10(1), 97-115.
[http://dx.doi.org/10.2174/1574892809666140819153902] [PMID: 25138130]
[112]
Gao, F.; Huang, G.; Xiao, J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med. Res. Rev., 2020, 40(5), 2049-2084.
[http://dx.doi.org/10.1002/med.21698] [PMID: 32525247]
[113]
Dewi, C.; Fristiohady, A.; Amalia, R.; Khairul Ikram, N.K.; Ibrahim, S.; Muchtaridi, M. Signaling pathways and natural compounds in triple-negative breast cancer cell line. Molecules, 2022, 27(12), 3661.
[http://dx.doi.org/10.3390/molecules27123661] [PMID: 35744786]
[114]
Benjamin, D.; Colombi, M.; Moroni, C.; Hall, M.N. Rapamycin passes the torch: A new generation of mTOR inhibitors. Nat. Rev. Drug Discov., 2011, 10(11), 868-880.
[http://dx.doi.org/10.1038/nrd3531] [PMID: 22037041]
[115]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med., 2019, 4(3), e10143.
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[116]
Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831.
[117]
Pramanik, S.D.; Kumar Halder, A.; Mukherjee, U.; Kumar, D.; Dey, Y.N. R, M. Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front Chem., 2022, 10, 948217.
[http://dx.doi.org/10.3389/fchem.2022.948217] [PMID: 36034650]
[118]
Robert, T.; Vanoli, F.; Chiolo, I.; Shubassi, G.; Bernstein, K.A.; Rothstein, R.; Botrugno, O.A.; Parazzoli, D.; Oldani, A.; Minucci, S.; Foiani, M. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature, 2011, 471(7336), 74-79.
[http://dx.doi.org/10.1038/nature09803] [PMID: 21368826]
[119]
Wang, C.; Henkes, L.M.; Doughty, L.B.; He, M.; Wang, D.; Meyer-Almes, F.J.; Cheng, Y.Q. Thailandepsins: Bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities. J. Nat. Prod., 2011, 74(10), 2031-2038.
[http://dx.doi.org/10.1021/np200324x] [PMID: 21793558]
[120]
Xiao, K.; Li, Y.P.; Wang, C.; Ahmad, S.; Vu, M.; Kuma, K.; Cheng, Y.Q.; Lam, K.S. Disulfide cross-linked micelles of novel HDAC inhibitor thailandepsin A for the treatment of breast cancer. Biomaterials, 2015, 67, 183-193.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.033] [PMID: 26218744]
[121]
Marks, P.A.; Xu, W.S. Histone deacetylase inhibitors: Potential in cancer therapy. J. Cell. Biochem., 2009, 107(4), 600-608.
[http://dx.doi.org/10.1002/jcb.22185] [PMID: 19459166]
[122]
Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Combination of palladium nanoparticles and tubastatin-A potentiates apoptosis in human breast cancer cells: A novel therapeutic approach for cancer. Int. J. Nanomedicine, 2017, 12, 6503-6520.
[http://dx.doi.org/10.2147/IJN.S136142] [PMID: 28919751]
[123]
Rompicharla, S.V.K.; Trivedi, P.; Kumari, P.; Muddineti, O.S.; Theegalapalli, S.; Ghosh, B.; Biswas, S. Evaluation of anti-tumor efficacy of vorinostat encapsulated self-assembled polymeric micelles in solid tumors. AAPS PharmSciTech, 2018, 19(7), 3141-3151.
[http://dx.doi.org/10.1208/s12249-018-1149-2] [PMID: 30132129]
[124]
Alp, E.; Damkaci, F.; Guven, E.; Tenniswood, M. Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int. J. Nanomedicine, 2019, 14, 1335-1346.
[http://dx.doi.org/10.2147/IJN.S191837] [PMID: 30863064]
[125]
Abdel-Ghany, S.; Raslan, S.; Tombuloglu, H.; Shamseddin, A.; Cevik, E.; Said, O.A.; Madyan, E.F.; Senel, M.; Bozkurt, A.; Rehman, S.; Sabit, H. Vorinostat-loaded titanium oxide nanoparticles (anatase) induce G2/M cell cycle arrest in breast cancer cells via PALB2 upregulation. 3 Biotech,, 2020, 10(9), 40.
[http://dx.doi.org/10.1007/s13205-020-02391-2]
[126]
Ma, W.; Sun, J.; Xu, J.; Luo, Z.; Diao, D.; Zhang, Z.; Oberly, P.J.; Minnigh, M.B.; Xie, W.; Poloyac, S.M.; Huang, Y.; Li, S. Sensitizing triple negative breast cancer to tamoxifen chemotherapy via a redox-responsive vorinostat-containing polymeric prodrug nanocarrier. Theranostics, 2020, 10(6), 2463-2478.
[http://dx.doi.org/10.7150/thno.38973] [PMID: 32194813]
[127]
Farooq, M.A.; Xinyu, H.; Jabeen, A.; Ahsan, A.; Seidu, T.A.; Kutoka, P.T.; Wang, B. Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS-modified liposomes. Colloids Surf. B Biointerfaces, 2021, 199, 111523.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111523] [PMID: 33360624]
[128]
Jindal, S.; Ghosh, S.S.; Gopinath, P. Core-shell nanofibre scaffold mediated co-delivery of connexin-43 gene and histone deacetylase inhibitor for anticancer therapy. Mater. Today Commun., 2021, 29, 102886.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102886]
[129]
Kim, B.; Hebert, J.M.; Liu, D.; Auguste, D.T. A Lipid targeting, pH-responsive nanoemulsion encapsulating a DNA intercalating agent and HDAC inhibitor reduces tnbc tumor burden. Adv. Ther., 2021, 4(3), 2000211.
[http://dx.doi.org/10.1002/adtp.202000211]
[130]
Sherr, C.J.; Beach, D.; Shapiro, G.I. Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov., 2016, 6(4), 353-367.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0894] [PMID: 26658964]
[131]
Rocca, A.; Schirone, A.; Maltoni, R.; Bravaccini, S.; Cecconetto, L.; Farolfi, A.; Bronte, G.; Andreis, D. Progress with palbociclib in breast cancer: Latest evidence and clinical considerations. Ther. Adv. Med. Oncol., 2017, 9(2), 83-105.
[http://dx.doi.org/10.1177/1758834016677961] [PMID: 28203301]
[132]
Xiang, Y.; Liu, C.; Chen, L.; Li, L.; Huang, Y. Active targeting nanoparticle self-assembled from cisplatin-palbociclib amphiphiles ensures optimal drug ratio for combinatorial chemotherapy. Adv. Ther., 2021, 4(6), 2000261.
[http://dx.doi.org/10.1002/adtp.202000261]
[133]
Rajan, M.; Praphakar, R.A.; Govindaraj, D.; Arulselvan, P.; Kumar, S.S. Cytotoxicity assessment of palbociclib-loaded chitosan-polypropylene glycol nano vehicles for cancer chemotherapy. Mater. Today Chem., 2017, 6, 26-33.
[http://dx.doi.org/10.1016/j.mtchem.2017.08.002]
[134]
McKeage, K.; Curran, M.P.; Plosker, G.L. Fulvestrant. Drugs, 2004, 64(6), 633-648.
[http://dx.doi.org/10.2165/00003495-200464060-00009] [PMID: 15018596]
[135]
Hascicek, C.; Sengel-Turk, C.T.; Gumustas, M.; Ozkan, A.S.; Bakar, F.; Das-Evcimen, N.; Savaser, A.; Ozkan, Y. Fulvestrant-loaded polymer-based nanoparticles for local drug delivery: Preparation and in vitro characterization. J. Drug Deliv. Sci. Technol., 2017, 40, 73-82.
[http://dx.doi.org/10.1016/j.jddst.2017.06.001]
[136]
Lee, S.Y.; Jang, C.; Lee, K.A. Polo-like kinases (plks), a key regulator of cell cycle and new potential target for cancer therapy. Balsaeng’gwa Saengsig, 2014, 18(1), 65-71.
[http://dx.doi.org/10.12717/DR.2014.18.1.065] [PMID: 25949173]
[137]
Ganesh, A.N.; McLaughlin, C.K.; Duan, D.; Shoichet, B.K.; Shoichet, M.S. A new spin on antibody–drug conjugates: Trastuzumab-fulvestrant colloidal drug aggregates target HER2-positive cells. ACS Appl. Mater. Interfaces, 2017, 9(14), 12195-12202.
[http://dx.doi.org/10.1021/acsami.6b15987] [PMID: 28319364]
[138]
Zuo, Z.Q.; Chen, K.G.; Yu, X.Y.; Zhao, G.; Shen, S.; Cao, Z.T.; Luo, Y.L.; Wang, Y.C.; Wang, J. Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials, 2016, 82, 48-59.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.014] [PMID: 26751819]
[139]
Zhang, J. Wang, Y.; Li, J.; Zhao, W.; Yang, Z.; Feng, Y. α-Santalol functionalized chitosan nanoparticles as efficient inhibitors of polo-like kinase in triple negative breast cancer. RSC Advances, 2020, 10(9), 5487-5501.
[http://dx.doi.org/10.1039/C9RA09084C] [PMID: 35498298]
[140]
Peng, J.; Xiao, Y.; Li, W.; Yang, Q.; Tan, L.; Jia, Y.; Qu, Y.; Qian, Z. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Adv. Sci., 2018, 5(5), 1700891.
[http://dx.doi.org/10.1002/advs.201700891] [PMID: 29876215]
[141]
Wang, Y.; Song, W.; Hu, M.; An, S.; Xu, L.; Li, J.; Kinghorn, K.A.; Liu, R.; Huang, L. Nanoparticle-mediated HMGA1 silencing promotes lymphocyte infiltration and boosts checkpoint blockade immunotherapy for cancer. Adv. Funct. Mater., 2018, 28(36), 1802847.
[http://dx.doi.org/10.1002/adfm.201802847]
[142]
Zhang, R.; Zhu, Z.; Lv, H.; Li, F.; Sun, S.; Li, J.; Lee, C.S. Immune checkpoint blockade mediated by a small-molecule nanoinhibitor targeting the PD-1/PD-L1 pathway synergizes with photodynamic therapy to elicit antitumor immunity and antimetastatic effects on breast cancer. Small, 2019, 15(49), 1903881.
[http://dx.doi.org/10.1002/smll.201903881] [PMID: 31702880]
[143]
Gong, T.; Cai, Y.; Sun, F.; Chen, J.; Su, Z.; Shuai, X.; Shan, H. A nanodrug incorporating siRNA PD-L1 and Birinapant for enhancing tumor immunotherapy. Biomater. Sci., 2021, 9(23), 8007-8018.
[http://dx.doi.org/10.1039/D1BM01299A] [PMID: 34714906]
[144]
Pacheco-Torres, J.; Penet, M.F.; Krishnamachary, B.; Mironchik, Y.; Chen, Z.; Bhujwalla, Z.M. PD-L1 siRNA theranostics with a dextran nanoparticle highlights the importance of nanoparticle delivery for effective tumor PD-L1 downregulation. Front. Oncol., 2021, 10, 614365.
[http://dx.doi.org/10.3389/fonc.2020.614365] [PMID: 33718115]
[145]
Wang, Y.; Yu, J.; Li, D.; Zhao, L.; Sun, B.; Wang, J.; Wang, Z.; Zhou, S.; Wang, M.; Yang, Y.; Liu, H.; Zhang, H.; Lv, Q.; Jiang, Q.; He, Z.; Wang, Y. Paclitaxel derivative-based liposomal nanoplatform for potentiated chemo-immunotherapy. J. Control. Release, 2022, 341, 812-827.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.023] [PMID: 34953979]
[146]
Tian, Y.; Wang, X.; Zhao, S.; Liao, X.; Younis, M.R.; Wang, S.; Zhang, C.; Lu, G. JQ1-loaded polydopamine nanoplatform inhibits c-MYC/Programmed cell death ligand 1 to enhance photothermal therapy for triple-negative breast cancer. ACS Appl. Mater. Interfaces, 2019, 11(50), 46626-46636.
[http://dx.doi.org/10.1021/acsami.9b18730] [PMID: 31751121]
[147]
Cimas, F.J.; Niza, E.; Juan, A.; Noblejas-López, M.M.; Bravo, I.; Lara-Sanchez, A.; Alonso-Moreno, C.; Ocaña, A. Controlled Delivery of BET-PROTACs: in vitro evaluation of MZ1-loaded polymeric antibody conjugated nanoparticles in breast cancer. Pharmaceutics, 2020, 12(10), 986.
[http://dx.doi.org/10.3390/pharmaceutics12100986] [PMID: 33086530]
[148]
Maggisano, V.; Celano, M.; Malivindi, R.; Barone, I.; Cosco, D.; Mio, C.; Mignogna, C.; Panza, S.; Damante, G.; Fresta, M.; Andò, S.; Russo, D.; Catalano, S.; Bulotta, S. Nanoparticles loaded with the BET inhibitor JQ1 block the growth of triple negative breast cancer cells in vitro and in vivo. cancers, 2019, 12(1), 91.
[http://dx.doi.org/10.3390/cancers12010091] [PMID: 31905936]
[149]
Zhou, F.; Gao, J.; Xu, Z.; Li, T.; Gao, A.; Sun, F.; Wang, F.; Wang, W.; Geng, Y.; Zhang, F.; Xu, Z.P.; Yu, H. Overcoming immune resistance by sequential prodrug nanovesicles for promoting chemoimmunotherapy of cancer. Nano Today, 2021, 36, 101025.
[http://dx.doi.org/10.1016/j.nantod.2020.101025]
[150]
Yang, X.Z.; Dou, S.; Sun, T.M.; Mao, C.Q.; Wang, H.X.; Wang, J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J. Control. Release, 2011, 156(2), 203-211.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.035] [PMID: 21839126]
[151]
Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front. Pharmacol., 2017, 8, 561.
[http://dx.doi.org/10.3389/fphar.2017.00561] [PMID: 28878676]
[152]
Wang, J.; Li, G.L.; Ming, S.L.; Wang, C.F.; Shi, L.J.; Su, B.Q.; Wu, H.T.; Zeng, L.; Han, Y.Q.; Liu, Z.H.; Jiang, D.W.; Du, Y.K.; Li, X.D.; Zhang, G.P.; Yang, G.Y.; Chu, B.B. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses. PLoS Pathog., 2020, 16(3), e1008429.
[http://dx.doi.org/10.1371/journal.ppat.1008429] [PMID: 32208449]
[153]
Ban, M. Petrić, Miše, B.; Vrdoljak, E. Early HER2-positive breast cancer: Current treatment and novel approaches. Breast Care, 2020, 15(6), 560-569.
[http://dx.doi.org/10.1159/000511883] [PMID: 33447229]
[154]
Venetis, K.; Crimini, E.; Sajjadi, E.; Corti, C.; Guerini-Rocco, E. viale, G.; Curigliano, G.; Criscitiello, C.; Fusco, N. HER2 low, ultra-low, and novel complementary biomarkers: Expanding the spectrum of HER2 positivity in breast cancer. Front. Mol. Biosci., 2022, 9, 834651.
[http://dx.doi.org/10.3389/fmolb.2022.834651] [PMID: 35372498]
[155]
Zhang, L.; Zhang, S.; Ruan, S.; Zhang, Q.; He, Q.; Gao, H. Lapatinib-incorporated lipoprotein-like nanoparticles: Preparation and a proposed breast cancer-targeting mechanism. Acta Pharmacol. Sin., 2014, 35(6), 846-852.
[http://dx.doi.org/10.1038/aps.2014.26] [PMID: 24902791]
[156]
Shokooh Saremi, S.; Nikpoor, A.R.; Sadri, K.; Mehrabian, A.; Karimi, M.; Mansouri, A.; Jafari, M.R.; Badiee, A. Development of a stable and high loaded liposomal formulation of lapatinib with enhanced therapeutic effects for breast cancer in combination with Caelyx®: in vitro and in vivo evaluations. Colloids Surf. B Biointerfaces, 2021, 207, 112012.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112012] [PMID: 34352656]
[157]
Zajdel, A.; Wilczok, A.; Jelonek, K. Musiał-Kulik, M.; Foryś, A.; Li, S.; Kasperczyk, J. Cytotoxic effect of paclitaxel and lapatinib Co-delivered in polylactide-co-Poly(ethylene glycol) micelles on HER-2-negative breast cancer cells. Pharmaceutics, 2019, 11(4), 169.
[http://dx.doi.org/10.3390/pharmaceutics11040169] [PMID: 30959904]
[158]
Wan, X.; Zheng, X.; Pang, X.; Zhang, Z.; Zhang, Q. Incorporation of lapatinib into human serum albumin nanoparticles with enhanced anti-tumor effects in HER2-positive breast cancer. Colloids Surf. B Biointerfaces, 2015, 136, 817-827.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.018] [PMID: 26539808]
[159]
Agrawal, S.; Dwivedi, M.; Ahmad, H.; Chadchan, S.B.; Arya, A.; Sikandar, R.; Kaushik, S.; Mitra, K.; Jha, R.K.; Dwivedi, A.K. CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer. Nanomedicine, 2018, 14(2), 327-337.
[http://dx.doi.org/10.1016/j.nano.2017.10.010] [PMID: 29129754]
[160]
Aleanizy, F.S.; Alqahtani, F.Y.; Setó, S.; Khalil, N.; Aleshaiwi, L.; Alghamdi, M.; Alquadeib, B.; Alkahtani, H.; Aldarwesh, A.; Alqahtani, Q.H.; Abdelhady, H.G.; Alsarra, I. Trastuzumab targeted neratinib loaded poly-amidoamine dendrimer nanocapsules for breast cancer therapy. Int. J. Nanomedicine, 2020, 15, 5433-5443.
[http://dx.doi.org/10.2147/IJN.S256898] [PMID: 32801698]
[161]
Komarova, T.V.; Kosorukov, V.S.; Frolova, O.Y.; Petrunia, I.V.; Skrypnik, K.A.; Gleba, Y.Y.; Dorokhov, Y.L. Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One, 2011, 6(3), e17541.
[http://dx.doi.org/10.1371/journal.pone.0017541] [PMID: 21390232]
[162]
Truffi, M.; Colombo, M.; Sorrentino, L.; Pandolfi, L.; Mazzucchelli, S.; Pappalardo, F.; Pacini, C.; Allevi, R.; Bonizzi, A.; Corsi, F.; Prosperi, D. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci. Rep., 2018, 8(1), 6563.
[http://dx.doi.org/10.1038/s41598-018-24968-x] [PMID: 29700387]
[163]
Gao, H.; Cao, S.; Chen, C.; Cao, S.; Yang, Z.; Pang, Z.; Xi, Z.; Pan, S.; Zhang, Q.; Jiang, X. Incorporation of lapatinib into lipoprotein-like nanoparticles with enhanced water solubility and anti-tumor effect in breast cancer. Nanomedicine, 2013, 8(9), 1429-1442.
[http://dx.doi.org/10.2217/nnm.12.180] [PMID: 23451915]
[164]
Hu, H.; Lin, Z.; He, B.; Dai, W.; Wang, X.; Wang, J.; Zhang, X.; Zhang, H.; Zhang, Q. A novel localized codelivery system with lapatinib microparticles and paclitaxel nanoparticles in a peritumorally injectable in situ hydrogel. J. Control. Release, 2015, 220(Pt A), 189-200.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.018] [PMID: 26474677]
[165]
Huo, Z.J.; Wang, S.J.; Wang, Z.Q.; Zuo, W.S.; Liu, P.; Pang, B.; Liu, K. Novel nanosystem to enhance the antitumor activity of lapatinib in breast cancer treatment: Therapeutic efficacy evaluation. Cancer Sci., 2015, 106(10), 1429-1437.
[http://dx.doi.org/10.1111/cas.12737] [PMID: 26177628]
[166]
Wei, Y.; Xu, S.; Wang, F.; Zou, A.; Zhang, S.; Xiong, Y.; Cao, S.; Zhang, Q.; Wang, Y.; Jiang, X. A novel combined micellar system of lapatinib and Paclitaxel with enhanced antineoplastic effect against human epidermal growth factor receptor-2 positive breast tumor in vitro. J. Pharm. Sci., 2015, 104(1), 165-177.
[http://dx.doi.org/10.1002/jps.24234] [PMID: 25421492]
[167]
Wan, X.; Zheng, X.; Pang, X.; Pang, Z.; Zhao, J.; Zhang, Z.; Jiang, T.; Xu, W.; Zhang, Q.; Jiang, X. Lapatinib-loaded human serum albumin nanoparticles for the prevention and treatment of triple-negative breast cancer metastasis to the brain. Oncotarget, 2016, 7(23), 34038-34051.
[http://dx.doi.org/10.18632/oncotarget.8697] [PMID: 27086917]
[168]
Wang, S.; Zhang, J.; Wang, Y.; Chen, M. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine, 2016, 12(2), 411-420.
[http://dx.doi.org/10.1016/j.nano.2015.09.014] [PMID: 26711968]
[169]
Eloy, J.O.; Petrilli, R.; Chesca, D.L.; Saggioro, F.P.; Lee, R.J.; Marchetti, J.M. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur. J. Pharm. Biopharm., 2017, 115, 159-167.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.020] [PMID: 28257810]
[170]
Lee, S.Y.; Cho, H.J. Mitochondria targeting and destabilizing hyaluronic acid derivative-based nanoparticles for the delivery of lapatinib to triple-negative breast cancer. Biomacromolecules, 2019, 20(2), 835-845.
[http://dx.doi.org/10.1021/acs.biomac.8b01449] [PMID: 30566834]
[171]
Niza, E.; Noblejas-López, M.M.; Bravo, I.; Nieto-Jiménez, C.; Castro-Osma, J.A.; Canales-Vázquez, J.; Lara-Sanchez, A.; Galán Moya, E.M.; Burgos, M.; Ocaña, A.; Alonso-Moreno, C. Trastuzumab-targeted biodegradable nanoparticles for enhanced delivery of dasatinib in HER2+ metastasic breast cancer. nanomaterials, 2019, 9(12), 1793.
[http://dx.doi.org/10.3390/nano9121793] [PMID: 31888247]
[172]
Tanaka, S.; Matsunami, N.; Morishima, H.; Oda, N.; Takashima, T.; Noda, S.; Kashiwagi, S.; Tauchi, Y.; Asano, Y.; Kimura, K.; Fujioka, H.; Terasawa, R.; Kawaguchi, K.; Ikari, A.; Morimoto, T.; Michishita, S.; Kobayashi, T.; Sakane, J.; Nitta, T.; Sato, N.; Hokimoto, N.; Nishida, Y.; Iwamoto, M. De-escalated neoadjuvant therapy with nanoparticle albumin-bound paclitaxel and trastuzumab for low-risk pure HER2 breast cancer. Cancer Chemother. Pharmacol., 2019, 83(6), 1099-1104.
[http://dx.doi.org/10.1007/s00280-019-03836-z] [PMID: 30963212]
[173]
Bonde, G.V.; Ajmal, G.; Yadav, S.K.; Mittal, P.; Singh, J.; Bakde, B.V.; Mishra, B. Assessing the viability of Soluplus® self-assembled nanocolloids for sustained delivery of highly hydrophobic lapatinib (anticancer agent): Optimisation and in vitro characterisation. Colloids Surf. B Biointerfaces, 2020, 185, 110611.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110611] [PMID: 31704609]
[174]
Guo, Z.; Liang, E.; Sui, J.; Ma, M.; Yang, L.; Wang, J.; Hu, J.; Sun, Y.; Fan, Y. Lapatinib-loaded acidity-triggered charge switchable polycarbonate-doxorubicin conjugate micelles for synergistic breast cancer chemotherapy. Acta Biomater., 2020, 118, 182-195.
[http://dx.doi.org/10.1016/j.actbio.2020.09.051] [PMID: 33045399]
[175]
Guo, Z.; Sui, J.; Ma, M.; Hu, J.; Sun, Y.; Yang, L.; Fan, Y.; Zhang, X. pH-Responsive charge switchable PEGylated ε-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment. J. Control. Release, 2020, 326, 350-364.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.030] [PMID: 32707209]
[176]
Mohammadian, M.; Kouchakzadeh, H.; Rahmandoust, M.; Mohammadian, T. Targeted albumin nanoparticles for the enhancement of gemcitabine toxicity on cancerous cells. J. Drug Deliv. Sci. Technol., 2020, 56, 101503.
[http://dx.doi.org/10.1016/j.jddst.2020.101503]
[177]
Peyvand, P.; Vaezi, Z.; Sedghi, M.; Dalir, N.; Ma’mani, L.; Naderi-Manesh, H. Imidazolium-based ionic liquid functionalized mesoporous silica nanoparticles as a promising nano-carrier: Response surface strategy to investigate and optimize loading and release process for Lapatinib delivery. Pharm. Dev. Technol., 2020, 25(9), 1150-1161.
[http://dx.doi.org/10.1080/10837450.2020.1803909] [PMID: 32746669]
[178]
Shu, M.; Gao, F.; Yu, C.; Zeng, M.; He, G.; Wu, Y.; Su, Y.; Hu, N.; Zhou, Z.; Yang, Z.; Xu, L. Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab. Nanotechnology, 2020, 31(33), 335102.
[http://dx.doi.org/10.1088/1361-6528/ab8a8a] [PMID: 32303014]
[179]
Sui, J.; He, M.; Yang, Y.; Ma, M.; Guo, Z.; Zhao, M.; Liang, J.; Sun, Y.; Fan, Y.; Zhang, X. Reversing P-glycoprotein-associated multidrug resistance of breast cancer by targeted acid-cleavable polysaccharide nanoparticles with lapatinib sensitization. ACS Appl. Mater. Interfaces, 2020, 12(46), 51198-51211.
[http://dx.doi.org/10.1021/acsami.0c13986] [PMID: 33147005]
[180]
Wang, J.; Lv, F.M.; Wang, D.L.; Du, J.L.; Guo, H.Y.; Chen, H.N.; Zhao, S.J.; Liu, Z.P.; Liu, Y. Synergistic antitumor effects on drug-resistant breast cancer of paclitaxel/lapatinib composite nanocrystals. Molecules, 2020, 25(3), 604.
[http://dx.doi.org/10.3390/molecules25030604] [PMID: 32019194]
[181]
Bitay, E.; Gergely, A.L.; Balint, I.; Molnar, K.; Fulop, I.; Fogarasi, E.; Szabo, Z.I. Preparation and characterization of lapatinib-loaded PVP nanofiber amorphous solid dispersion by electrospinning. Express Polym. Lett., 2021, 15(11), 1041-1050.
[http://dx.doi.org/10.3144/expresspolymlett.2021.84]
[182]
He, W.; Evans, A.C.; Hynes, W.F.; Coleman, M.A.; Robertson, C. Nanolipoprotein-mediated HER2 protein transfection induces malignant transformation in human breast acinar cultures. ACS Omega, 2021, 6(44), 29416-29423.
[http://dx.doi.org/10.1021/acsomega.1c03086] [PMID: 34778614]
[183]
Prabhu, P.P. Prathvi; Gujaran, T.V.; Mehta, C.H.; Suresh, A.; Koteshwara, K.B.; Pai, K.G.; Nayak, U.Y. Development of lapatinib nanosponges for enhancing bioavailability. J. Drug Deliv. Sci. Technol., 2021, 65, 102684.
[http://dx.doi.org/10.1016/j.jddst.2021.102684]
[184]
Nieto, C.; Centa, A.; Rodríguez-Rodríguez, J.A.; Pandiella, A.; Martín del Valle, E.M. Paclitaxel-trastuzumab mixed nanovehicle to target HER2-overexpressing tumors. nanomaterials, 2019, 9(7), 948.
[http://dx.doi.org/10.3390/nano9070948] [PMID: 31261957]
[185]
Gong, Y.; Gai, L.; Tang, J.; Fu, J.; Wang, Q.; Zeng, E.Y. Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Sci. Total Environ., 2017, 595, 743-751.
[http://dx.doi.org/10.1016/j.scitotenv.2017.03.282] [PMID: 28407591]
[186]
Park, I.H.; Sohn, J.H.; Kim, S.B.; Lee, K.S.; Chung, J.S.; Lee, S.H.; Kim, T.Y.; Jung, K.H.; Cho, E.K.; Kim, Y.S.; Song, H.S.; Seo, J.H.; Ryoo, H.M.; Lee, S.A.; Yoon, S.Y.; Kim, C.S.; Kim, Y.T.; Kim, S.Y.; Jin, M.R.; Ro, J. An open-label, randomized, parallel, phase III trial evaluating the efficacy and safety of polymeric micelle-formulated paclitaxel compared to conventional cremophor el-based paclitaxel for recurrent or metastatic HER2-negative breast cancer. Cancer Res. Treat., 2017, 49(3), 569-577.
[http://dx.doi.org/10.4143/crt.2016.289] [PMID: 27618821]
[187]
Huang, L.; Chen, S.; Yao, L.; Liu, G.; Wu, J.; Shao, Z. Phase II trial of weekly nab-paclitaxel and carboplatin treatment with or without trastuzumab as nonanthracycline neoadjuvant chemotherapy for locally advanced breast cancer. Int. J. Nanomedicine, 2015, 10, 1969-1975.
[PMID: 25792830]
[188]
Tezuka, K.; Takashima, T.; Kashiwagi, S.; Kawajiri, H.; Tokunaga, S.; Tei, S.; Nishimura, S.; Yamagata, S.; Noda, S.; Nishimori, T.; Mizuyama, Y.; Sunami, T.; Ikeda, K.; Ogawa, Y.; Onoda, N.; Ishikawa, T.; Kudoh, S.; Takada, M.; Hirakawa, K. Phase I study of nanoparticle albumin-bound paclitaxel, carboplatin and trastuzumab in women with human epidermal growth factor receptor 2-overexpressing breast cancer. Mol. Clin. Oncol., 2017, 6(4), 534-538.
[http://dx.doi.org/10.3892/mco.2017.1176] [PMID: 28413662]
[189]
Conlin, A.K.; Seidman, A.D.; Bach, A.; Lake, D.; Dickler, M.; D’Andrea, G.; Traina, T.; Danso, M.; Brufsky, A.M.; Saleh, M.; Clawson, A.; Hudis, C.A. Phase II trial of weekly nanoparticle albumin-bound paclitaxel with carboplatin and trastuzumab as first-line therapy for women with HER2-overexpressing metastatic breast cancer. Clin. Breast Cancer, 2010, 10(4), 281-287.
[http://dx.doi.org/10.3816/CBC.2010.n.036] [PMID: 20705560]
[190]
Mrózek, E.; Layman, R.; Ramaswamy, B.; Lustberg, M.; Vecchione, A.; Knopp, M.V.; Shapiro, C.L. Phase II trial of neoadjuvant weekly nanoparticle albumin-bound paclitaxel, carboplatin, and biweekly bevacizumab therapy in women with clinical stage II or III HER2-negative breast cancer. Clin. Breast Cancer, 2014, 14(4), 228-234.
[http://dx.doi.org/10.1016/j.clbc.2014.02.005] [PMID: 24703985]
[191]
Yin, Y.; Li, W.; Zha, X.; Wang, J. 105P Lower-dose apatinib combined with nanoparticle albumin-bound paclitaxel and carboplatin as a neoadjuvant regimen for triple negative breast cancer: A prospective, single-arm, phase II study. Ann. Oncol., 2020, 31, S52.
[http://dx.doi.org/10.1016/j.annonc.2020.03.044]
[192]
Chan, S.; Davidson, N.; Juozaityte, E.; Erdkamp, F.; Pluzanska, A.; Azarnia, N.; Lee, L.W. Phase III trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer. Ann. Oncol., 2004, 15(10), 1527-1534.
[http://dx.doi.org/10.1093/annonc/mdh393] [PMID: 15367414]