Microarray-based Analysis of Differential Gene Expression Profile in Rotenone-induced Parkinson’s Disease Zebrafish Model

Page: [761 - 772] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background & Objectives: Despite much clinical and laboratory research that has been performed to explore the mechanisms of Parkinson’s disease (PD), its pathogenesis remains elusive to date. Therefore, this study aimed to identify possible regulators of neurodegeneration by performing microarray analysis of the zebrafish PD model’s brain following rotenone exposure.

Methods: A total of 36 adult zebrafish were divided into two groups: control (n = 17) and rotenonetreated (n = 19). Fish were treated with rotenone water (5 μg/L water) for 28 days and subjected to locomotor behavior analysis. Total RNA was extracted from the brain tissue after rotenone treatment. The cDNA synthesized was subjected to microarray analysis and subsequently validated by qPCR.

Results: Administration of rotenone has significantly reduced locomotor activity in zebrafish (p < 0.05), dysregulated dopamine-related gene expression (dat, th1, and th2, p < 0.001), and reduced dopamine level in the brain (p < 0.001). In the rotenone-treated group, genes involved in cytotoxic T lymphocytes (gzm3, cd8a, p < 0.001) and T cell receptor signaling (themis, lck, p < 0.001) were upregulated significantly. Additionally, gene expression involved in microgliosis regulation (tyrobp, p < 0.001), cellular response to IL-1 (ccl34b4, il2rb, p < 0.05), and regulation of apoptotic process (dedd1, p < 0.001) were also upregulated significantly.

Conclusion: The mechanisms of T cell receptor signaling, microgliosis regulation, cellular response to IL-1, and apoptotic signaling pathways have potentially contributed to PD development in rotenonetreated zebrafish.

Graphical Abstract

[1]
Dorsey ER, Elbaz A, Nichols E, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2018; 17(11): 939-53.
[http://dx.doi.org/10.1016/S1474-4422(18)30295-3] [PMID: 30287051]
[2]
Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis 2018; 8(s1): S3-8.
[http://dx.doi.org/10.3233/JPD-181474] [PMID: 30584159]
[3]
Vieira de Moraes Filho A, Chaves SN, Martins WR, et al. Progressive resistance training improves bradykinesia, motor symptoms and functional performance in patients with Parkinson’s disease. Clin Interv Aging 2020; 15: 87-95.
[http://dx.doi.org/10.2147/CIA.S231359] [PMID: 32158202]
[4]
Azmin S, Khairul Anuar AM, Tan HJ, et al. Nonmotor symptoms in a malaysian Parkinson’s disease population. Parkinsons Dis 2014; 2014: 1-7.
[http://dx.doi.org/10.1155/2014/472157] [PMID: 24800102]
[5]
Altaher AM, Chu SY, Sathiyasenan ST, Harun H, Mustaffa Kamal R. Communication challenges for people with Parkinson disease. Top Geriatr Rehabil 2020; 36(3): 152-9.
[http://dx.doi.org/10.1097/TGR.0000000000000274]
[6]
Mor DE, Tsika E, Mazzulli JR, et al. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci 2017; 20(11): 1560-8.
[http://dx.doi.org/10.1038/nn.4641] [PMID: 28920936]
[7]
Rahul , Siddique Y. Neurodegenerative disorders and the current state, pathophysiology, and management of Parkinson’s disease. CNS Neurol Disord Drug Targets 2022; 21(7): 574-95.
[http://dx.doi.org/10.2174/1871527320666210903101841] [PMID: 34477534]
[8]
Nies YH, Mohamad Najib NH, Lim WL, Kamaruzzaman MA, Yahaya MF, Teoh SL. MicroRNA dysregulation in Parkinson’s disease: A narrative review. Front Neurosci 2021; 15: 660379.
[http://dx.doi.org/10.3389/fnins.2021.660379] [PMID: 33994934]
[9]
Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 2016; 139 (Suppl. 1): 216-31.
[http://dx.doi.org/10.1111/jnc.13731] [PMID: 27546335]
[10]
Chen C, Turnbull DM, Reeve AK. Mitochondrial dysfunction in Parkinson’s disease-Cause or consequence? Biology (Basel) 2019; 8(2): 38.
[http://dx.doi.org/10.3390/biology8020038] [PMID: 31083583]
[11]
Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review). Int J Mol Med 2018; 41(4): 1817-25.
[http://dx.doi.org/10.3892/ijmm.2018.3406] [PMID: 29393357]
[12]
Jayaram S, Krishnamurthy PT. Role of microgliosis, oxidative stress and associated neuroinflammation in the pathogenesis of Parkinson’s disease: The therapeutic role of Nrf2 activators. Neurochem Int 2021; 145: 105014.
[http://dx.doi.org/10.1016/j.neuint.2021.105014] [PMID: 33689805]
[13]
Kouli A, Camacho M, Allinson K, Williams-Gray CH. Neuroinflammation and protein pathology in Parkinson’s disease dementia. Acta Neuropathol Commun 2020; 8(1): 211.
[http://dx.doi.org/10.1186/s40478-020-01083-5] [PMID: 33272323]
[14]
Grozdanov V, Bousset L, Hoffmeister M, et al. Increased immune activation by pathologic α‐synuclein in Parkinson’s disease. Ann Neurol 2019; 86(4): 593-606.
[http://dx.doi.org/10.1002/ana.25557] [PMID: 31343083]
[15]
Muda MS, Kamari A, Bakar SA, et al. Chitosan-graphene oxide nanocomposites as water-solubilising agents for rotenone pesticide. J Mol Liq 2020; 318: 114066.
[http://dx.doi.org/10.1016/j.molliq.2020.114066]
[16]
Khotimah H, Sumitro SB, Aris Widodo M. Zebrafish Parkinson’s model: Rotenone decrease motility, dopamine, and increase α-synuclein aggregation and apoptosis of zebrafish brain. Int J Pharm Tech Res 2015; 8: 614-21.
[17]
Razali K, Othman N, Mohd Nasir MH, et al. The promise of the zebrafish model for Parkinson’s disease: Today’s science and tomorrow’s treatment. Front Genet 2021; 12: 655550.
[http://dx.doi.org/10.3389/fgene.2021.655550] [PMID: 33936174]
[18]
Najib NHM, Nies YH, Abd Halim SAS, et al. Modeling Parkinson’s disease in zebrafish. CNS Neurol Disord Drug Targets 2020; 19(5): 386-99.
[http://dx.doi.org/10.2174/1871527319666200708124117] [PMID: 32640968]
[19]
Miyazaki I, Asanuma M. The Rotenone models reproducing central and peripheral features of Parkinson’s disease. NeuroSci 2020; 1(1): 1-14.
[http://dx.doi.org/10.3390/neurosci1010001]
[20]
Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: A review. JAMA 2020; 323(6): 548-60.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[21]
LeWitt PA. Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics. Mov Disord 2015; 30(1): 64-72.
[http://dx.doi.org/10.1002/mds.26082] [PMID: 25449210]
[22]
Teoh SL, Sapri SRB, Yusof MRBM, Yahaya MF, Das S. Construction of an affordable open-design recirculating zebrafish housing system. J Am Assoc Lab Anim Sci 2020; 59(5): 512-8.
[http://dx.doi.org/10.30802/AALAS-JAALAS-19-000167] [PMID: 32600503]
[23]
Teoh SL. Neuroprotective effect of metallothionein. Monash University Malaysia: Monash University Malaysia, School of Medicine and Health Sciences, Brain Research Institute 2016. PhD Thesis
[24]
Yurtsever I, Ustundag UV, Unal I, Ates PS, Emekli-Alturfan E. Rifampicin decreases neuroinflammation to maintain mitochondrial function and calcium homeostasis in rotenone-treated zebrafish. Drug Chem Toxicol 2020; 45(4): 1544-51.
[http://dx.doi.org/10.1080/01480545.2020.1846549] [PMID: 33187454]
[25]
Ünal İ, Üstündağ ÜV, Ateş PS, et al. Rotenone impairs oxidant/antioxidant balance both in brain and intestines in zebrafish. Int J Neurosci 2019; 129(4): 363-8.
[http://dx.doi.org/10.1080/00207454.2018.1538141] [PMID: 30334640]
[26]
Khotimah H, Sumitro SB, Ali M, Aris Widodo M. Standardized Centella asiatica increased brain-derived neurotrophic factor and decreased apoptosis of dopaminergic neuron in rotenone-induced zebrafish. GSTF J Psychol 2015; 2: 22-7.
[http://dx.doi.org/10.5176/2345-7872_2.1_25]
[27]
Rutten S, Vriend C, van der Werf YD, Berendse HW, Weintraub D, van den Heuvel OA. The bidirectional longitudinal relationship between insomnia, depression and anxiety in patients with early-stage, medication-naïve Parkinson’s disease. Parkinsonism Relat Disord 2017; 39: 31-6.
[http://dx.doi.org/10.1016/j.parkreldis.2017.01.015] [PMID: 28365203]
[28]
Wang Y, Liu W, Yang J, et al. Parkinson’s disease-like motor and non-motor symptoms in rotenone-treated zebrafish. Neurotoxicology 2017; 58: 103-9.
[http://dx.doi.org/10.1016/j.neuro.2016.11.006] [PMID: 27866991]
[29]
Santo GD, de Veras BO, Rico E, et al. Hexane extract from SpoSndias mombin L. (Anacardiaceae) prevents behavioral and oxidative status changes on model of Parkinson’s disease in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241: 108953.
[http://dx.doi.org/10.1016/j.cbpc.2020.108953] [PMID: 33310063]
[30]
Mohamad Najib NH, Yahaya MF, Das S, Teoh SL. The effects of metallothionein in paraquat-induced Parkinson disease model of zebrafish. Int J Neurosci 2021; 1-12.
[http://dx.doi.org/10.1080/00207454.2021.1990916] [PMID: 34623211]
[31]
Kalyn M, Hua K, Mohd Noor S, Wong CED, Ekker M. Comprehensive analysis of neurotoxin-induced ablation of dopaminergic neurons in zebrafish larvae. Biomedicines 2019; 8(1): 1.
[http://dx.doi.org/10.3390/biomedicines8010001] [PMID: 31905670]
[32]
Susanto O, Stewart SE, Voskoboinik I, et al. Mouse granzyme A induces a novel death with writhing morphology that is mechanistically distinct from granzyme B-induced apoptosis. Cell Death Differ 2013; 20(9): 1183-93.
[http://dx.doi.org/10.1038/cdd.2013.59] [PMID: 23744295]
[33]
Karikari AA, McFleder RL, Ribechini E, et al. Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson’s disease mice. Brain Behav Immun 2022; 101: 194-210.
[http://dx.doi.org/10.1016/j.bbi.2022.01.007] [PMID: 35032575]
[34]
Haque A, Samantaray S, Knaryan VH, et al. Calpain mediated expansion of CD4+ cytotoxic T cells in rodent models of Parkinson’s disease. Exp Neurol 2020; 330: 113315.
[http://dx.doi.org/10.1016/j.expneurol.2020.113315] [PMID: 32302678]
[35]
Galiano-Landeira J, Torra A, Vila M, Bové J. CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson’s disease. Brain 2020; 143(12): 3717-33.
[http://dx.doi.org/10.1093/brain/awaa269] [PMID: 33118032]
[36]
Tansey MG, Romero-Ramos M. Immune system responses in Parkinson’s disease: Early and dynamic. Eur J Neurosci 2018; 49(3): ejn.14290.
[http://dx.doi.org/10.1111/ejn.14290] [PMID: 30474172]
[37]
van Leeuwen JEM, Samelson LE. T cell antigen-receptor signal transduction. Curr Opin Immunol 1999; 11(3): 242-8.
[http://dx.doi.org/10.1016/S0952-7915(99)80040-5] [PMID: 10375551]
[38]
Ghosh MC, Mondal AC, Basu S, et al. Dopamine inhibits cytokine release and expression of tyrosine kinases, Lck and Fyn in activated T cells. Int Immunopharmacol 2003; 3(7): 1019-26.
[http://dx.doi.org/10.1016/S1567-5769(03)00100-0] [PMID: 12810359]
[39]
Allen PM. Themis imposes new law and order on positive selection. Nat Immunol 2009; 10(8): 805-6.
[http://dx.doi.org/10.1038/ni0809-805] [PMID: 19621038]
[40]
Trynka G, Wijmenga C, van Heel DA. A genetic perspective on coeliac disease. Trends Mol Med 2010; 16(11): 537-50.
[http://dx.doi.org/10.1016/j.molmed.2010.09.003] [PMID: 20947431]
[41]
Hsu KC, Chida S, Geraghty DE, Dupont B. The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism. Immunol Rev 2002; 190(1): 40-52.
[http://dx.doi.org/10.1034/j.1600-065X.2002.19004.x] [PMID: 12493005]
[42]
Beecham AH, Patsopoulos NA, Xifara DK, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 2013; 45(11): 1353-60.
[http://dx.doi.org/10.1038/ng.2770] [PMID: 24076602]
[43]
Trynka G, Hunt KA, Bockett NA, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 2011; 43(12): 1193-201.
[http://dx.doi.org/10.1038/ng.998] [PMID: 22057235]
[44]
Lanier LL, Bakker ABH. The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol Today 2000; 21(12): 611-4.
[http://dx.doi.org/10.1016/S0167-5699(00)01745-X] [PMID: 11114420]
[45]
Lu J, Peng Y, Huang R, et al. Elevated TYROBP expression predicts poor prognosis and high tumor immune infiltration in patients with low-grade glioma. BMC Cancer 2021; 21(1): 723.
[http://dx.doi.org/10.1186/s12885-021-08456-6] [PMID: 34162355]
[46]
Dietrich J, Cella M, Seiffert M, Bühring HJ, Colonna M. Cutting edge: signal-regulatory protein β 1 is a DAP12-associated activating receptor expressed in myeloid cells. J Immunol 2000; 164(1): 9-12.
[http://dx.doi.org/10.4049/jimmunol.164.1.9] [PMID: 10604985]
[47]
Mukherjee S, Klaus C, Pricop-Jeckstadt M, Miller JA, Struebing FL. A microglial signature directing human aging and neurodegeneration-related gene networks. Front Neurosci 2019; 13: 2.
[http://dx.doi.org/10.3389/fnins.2019.00002] [PMID: 30733664]
[48]
Haure-Mirande JV, Wang M, Audrain M, et al. Integrative approach to sporadic Alzheimer’s disease: deficiency of TYROBP in cerebral Aβ amyloidosis mouse normalizes clinical phenotype and complement subnetwork molecular pathology without reducing Aβ burden. Mol Psychiatry 2019; 24(3): 431-46.
[http://dx.doi.org/10.1038/s41380-018-0255-6] [PMID: 30283032]
[49]
Zhang B, Gaiteri C, Bodea LG, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 2013; 153(3): 707-20.
[http://dx.doi.org/10.1016/j.cell.2013.03.030] [PMID: 23622250]
[50]
Kinugawa K, Monnet Y, Béchade C, et al. DAP12 and CD11b contribute to the microglial-induced death of dopaminergic neurons in vitro but not in vivo in the MPTP mouse model of Parkinson’s disease. J Neuroinflammation 2013; 10(1): 854.
[http://dx.doi.org/10.1186/1742-2094-10-82] [PMID: 23844828]
[51]
Virgone-Carlotta A, Uhlrich J, Akram MN, et al. Mapping and kinetics of microglia/neuron cell-to-cell contacts in the 6-OHDA murine model of Parkinson’s disease. Glia 2013; 61(10): 1645-58.
[http://dx.doi.org/10.1002/glia.22546] [PMID: 23893349]
[52]
Kawabori M, Kacimi R, Kauppinen T, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci 2015; 35(8): 3384-96.
[http://dx.doi.org/10.1523/JNEUROSCI.2620-14.2015] [PMID: 25716838]
[53]
Poliani PL, Wang Y, Fontana E, et al. TREM2 sustains microglial expansion during aging and response to demyelination. J Clin Invest 2015; 125(5): 2161-70.
[http://dx.doi.org/10.1172/JCI77983] [PMID: 25893602]
[54]
Kobayashi M, Konishi H, Takai T, Kiyama H. A DAP12-Dependent signal promotes pro-inflammatory polarization in microglia following nerve injury and exacerbates degeneration of injured neurons. Glia 2015; 63(6): 1073-82.
[http://dx.doi.org/10.1002/glia.22802] [PMID: 25690660]
[55]
Harms AS, Cao S, Rowse AL, et al. MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci 2013; 33(23): 9592-600.
[http://dx.doi.org/10.1523/JNEUROSCI.5610-12.2013] [PMID: 23739956]
[56]
Kannarkat GT, Boss JM, Tansey MG. The role of innate and adaptive immunity in Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 493-514.
[http://dx.doi.org/10.3233/JPD-130250] [PMID: 24275605]
[57]
Ransohoff RM, Perry VH. Microglial physiology: Unique stimuli, specialized responses. Annu Rev Immunol 2009; 27(1): 119-45.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132528] [PMID: 19302036]
[58]
Réaux-Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol 2013; 104: 67-92.
[http://dx.doi.org/10.1016/j.pneurobio.2013.02.001] [PMID: 23454481]
[59]
Liu JQ, Chu SF, Zhou X, Zhang DY, Chen NH. Role of chemokines in Parkinson’s disease. Brain Res Bull 2019; 152: 11-8.
[http://dx.doi.org/10.1016/j.brainresbull.2019.05.020] [PMID: 31136787]
[60]
Lin JX, Leonard WJ. Signaling from the IL-2 receptor to the nucleus. Cytokine Growth Factor Rev 1997; 8(4): 313-32.
[http://dx.doi.org/10.1016/S1359-6101(97)00021-X] [PMID: 9620644]
[61]
O’Shea JJ, Ma A, Lipsky P. Cytokines and autoimmunity. Nat Rev Immunol 2002; 2(1): 37-45.
[http://dx.doi.org/10.1038/nri702] [PMID: 11905836]
[62]
Fleischer A, Duhamel M, Lopez-Fernandez LA, et al. Cascade of transcriptional induction and repression during IL-2 deprivation-induced apoptosis. Immunol Lett 2007; 112(1): 9-29.
[http://dx.doi.org/10.1016/j.imlet.2007.06.004] [PMID: 17651815]
[63]
Park S, Yoon Y, Kang S, Eds. Impact of IL2 and IL2RB genetic polymorphisms in kidney transplantation Transplantation proceedings. Elsevier 2011.
[64]
Saparov A, Wagner FH, Zheng R, et al. Interleukin-2 expression by a subpopulation of primary T cells is linked to enhanced memory/effector function. Immunity 1999; 11(3): 271-80.
[http://dx.doi.org/10.1016/S1074-7613(00)80102-8] [PMID: 10514005]
[65]
Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 2006; 441(7095): 890-3.
[http://dx.doi.org/10.1038/nature04790] [PMID: 16778891]
[66]
Jiang G, Hu Y, Liu L, Cai J, Peng C, Li Q. Gastrodin protects against MPP+-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells. Neurochem Int 2014; 75: 79-88.
[http://dx.doi.org/10.1016/j.neuint.2014.06.003] [PMID: 24932697]
[67]
Tong H, Zhang X, Meng X, Lu L, Mai D, Qu S. Simvastatin inhibits activation of NADPH oxidase/p38 MAPK pathway and enhances expression of antioxidant protein in Parkinson disease models. Front Mol Neurosci 2018; 11: 165.
[http://dx.doi.org/10.3389/fnmol.2018.00165] [PMID: 29872377]
[68]
Choi WS, Eom DS, Han BS, et al. Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and -9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem 2004; 279(19): 20451-60.
[http://dx.doi.org/10.1074/jbc.M311164200] [PMID: 14993216]
[69]
Gao F, Chen D, Hu Q, Wang G. Rotenone directly induces BV2 cell activation via the p38 MAPK pathway. PLoS One 2013; 8(8): e72046.
[http://dx.doi.org/10.1371/journal.pone.0072046] [PMID: 23977201]
[70]
Oh CK, Han BS, Choi WS, Youdim MBH, Oh YJ. Translocation and oligomerization of Bax is regulated independently by activation of p38 MAPK and caspase-2 during MN9D dopaminergic neurodegeneration. Apoptosis 2011; 16(11): 1087-100.
[http://dx.doi.org/10.1007/s10495-011-0627-8] [PMID: 21739275]
[71]
Hwang CJ, Kim YE, Son DJ, et al. Parkin deficiency exacerbate ethanol-induced dopaminergic neurodegeneration by P38 pathway dependent inhibition of autophagy and mitochondrial function. Redox Biol 2017; 11: 456-68.
[http://dx.doi.org/10.1016/j.redox.2016.12.008] [PMID: 28086194]
[72]
Wu F, Wang Z, Gu JH, Ge JB, Liang ZQ, Qin ZH. p38MAPK/p53-Mediated Bax induction contributes to neurons degeneration in rotenone-induced cellular and rat models of Parkinson’s disease. Neurochem Int 2013; 63(3): 133-40.
[http://dx.doi.org/10.1016/j.neuint.2013.05.006] [PMID: 23714208]
[73]
Alcivar A, Hu S, Tang J, Yang X. DEDD and DEDD2 associate with caspase-8/10 and signal cell death. Oncogene 2003; 22(2): 291-7.
[http://dx.doi.org/10.1038/sj.onc.1206099] [PMID: 12527898]
[74]
Roth W, Stenner-Liewen F, Pawlowski K, Godzik A, Reed JC. Identification and characterization of DEDD2, a death effector domain-containing protein. J Biol Chem 2002; 277(9): 7501-8.
[http://dx.doi.org/10.1074/jbc.M110749200] [PMID: 11741985]
[75]
Ryu EJ, Angelastro JM, Greene LA. Analysis of gene expression changes in a cellular model of Parkinson disease. Neurobiol Dis 2005; 18(1): 54-74.
[http://dx.doi.org/10.1016/j.nbd.2004.08.016] [PMID: 15649696]
[76]
Choudhury SP, Bano S, Sen S, et al. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson’s disease. NPJ Parkinsons Dis 2022; 8(1): 66.
[http://dx.doi.org/10.1038/s41531-022-00324-9] [PMID: 35650269]
[77]
Ahmadian E, Eftekhari A, Samiei M, Maleki Dizaj S, Vinken M. The role and therapeutic potential of connexins, pannexins and their channels in Parkinson’s disease. Cell Signal 2019; 58: 111-8.
[http://dx.doi.org/10.1016/j.cellsig.2019.03.010] [PMID: 30877035]
[78]
Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 2019; 94: 112-20.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.004] [PMID: 31077796]
[79]
Lee Y, Lee S, Chang SC, Lee J. Significant roles of neuroinflammation in Parkinson’s disease: Therapeutic targets for PD prevention. Arch Pharm Res 2019; 42(5): 416-25.
[http://dx.doi.org/10.1007/s12272-019-01133-0] [PMID: 30830660]
[80]
Tansey MG, Goldberg MS. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 2010; 37(3): 510-8.
[http://dx.doi.org/10.1016/j.nbd.2009.11.004] [PMID: 19913097]
[81]
Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, Pitossi FJ. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1β in the substantia nigra. Neurobiol Dis 2006; 24(1): 183-93.
[http://dx.doi.org/10.1016/j.nbd.2006.06.013] [PMID: 16901708]
[82]
McCoy MK, Martinez TN, Ruhn KA, et al. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci 2006; 26(37): 9365-75.
[http://dx.doi.org/10.1523/JNEUROSCI.1504-06.2006] [PMID: 16971520]
[83]
Ferreira SA, Romero-Ramos M. Microglia response during Parkinson’s disease: Alpha-synuclein intervention. Front Cell Neurosci 2018; 12: 247.
[http://dx.doi.org/10.3389/fncel.2018.00247] [PMID: 30127724]
[84]
Goswami P, Joshi N, Singh S. Neurodegenerative signaling factors and mechanisms in Parkinson’s pathology. Toxicol In Vitro 2017; 43: 104-12.
[http://dx.doi.org/10.1016/j.tiv.2017.06.008] [PMID: 28627426]
[85]
Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 2015; 4(1): 19.
[http://dx.doi.org/10.1186/s40035-015-0042-0] [PMID: 26464797]
[86]
Moehle MS, West AB. M1 and M2 immune activation in Parkinson’s Disease: Foe and ally? Neuroscience 2015; 302: 59-73.
[http://dx.doi.org/10.1016/j.neuroscience.2014.11.018] [PMID: 25463515]
[87]
Rodríguez-Cruz A, Romo-Mancillas A, Mendiola-Precoma J, Escobar-Cabrera JE, García-Alcocer G, Berumen LC. “Effect of valerenic acid on neuroinflammation in a MPTP-induced mouse model of Parkinson’s disease”. IBRO Rep 2020; 8: 28-35.
[http://dx.doi.org/10.1016/j.ibror.2019.12.002] [PMID: 31909290]