Analysis of Tolfenamic Acid using a Simple, Rapid, and Stability-indicating Validated HPLC Method

Page: [52 - 70] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Background: Tolfenamic acid (TA) belongs to the fenamates class of nonsteroidal anti-inflammatory drugs. Insufficient information is available regarding the availability of a reliable and validated stability-indicating method for the assay of TA.

Objective: A relatively simple, rapid, accurate, precise, economical, robust, and stabilityindicating RP-HPLC method has been developed to determine TA in pure and tablet dosage forms.

Methods: The method was validated according to the ICH guideline, and parameters like linearity, range, selectivity, accuracy, precision, robustness, specificity, and solution stability were determined. TLC and FTIR spectrometry were used to ascertain the purity of TA. The specificity was determined with known impurities and after performing forced degradation, while the robustness was established by Plackett-Burman's experimental design. The mobile phase used for the analysis was acetonitrile and water (90:10, v/v) at pH 2.5. The detection of the active drug was made at 280 nm using a C18 column (tR = 4.3 min.). The method's applicability was also checked for the yellow polymorphic form of TA.

Results: The results indicated that the method is highly accurate (99.39-100.80%), precise (<1.5% RSD), robust (<2% RSD), and statistically comparable to the British Pharmacopoeia method with better sensitivity and specificity.

Conclusion: It was observed that the stress degradation studies do not affect the method's accuracy and specificity. Hence the proposed method can be used to assay TA and its tablet dosage form.

Graphical Abstract

[1]
Rozou, S.; Michaleas, S.; Antoniadou-Vyza, E. Supramolecular interactions between tolfenamic acid and various cyclodextrins: Effects of complexation on physicochemical and spectroscopic data. Pharm. Pharmacol. Commun., 1999, 5(2), 79-84.
[http://dx.doi.org/10.1211/146080899128734497]
[2]
Kovala-Demertzi, D.; Hadjipavlou-Litina, D.; Primikiri, A.; Staninska, M.; Kotoglou, C.; Demertzis, M.A. Anti-inflammatory, antiproliferative, and radical-scavenging activities of tolfenamic acid and its metal complexes. Chem. Biodivers., 2009, 6(6), 948-960.
[http://dx.doi.org/10.1002/cbdv.200800120] [PMID: 19551737]
[3]
British Pharmacopoeia. In: Monograph on tolfenamic acid; Her Majesty’s Stationary Office: London, UK, 2023.
[4]
Sweetman, S. Martindale The Complete Drug Reference; Pharmaceutical Press: London, UK, 2013, pp. 1689-1699.
[5]
Pan, L.; Gardner, C.L.; Pagliai, F.A.; Gonzalez, C.F.; Lorca, G.L. Identification of the tolfenamic acid binding pocket in PrbP from Liberibacter asiaticus. Front. Microbiol., 2017, 8, 1591.
[http://dx.doi.org/10.3389/fmicb.2017.01591] [PMID: 28878750]
[6]
British National Formulary (BNF) 84; BMJ Group and Royal Pharmaceutical Society, Pharmaceutical Press: London, UK, 2022, pp. 530-531.
[7]
Basha, R.; Ingersoll, S.B.; Sankpal, U.T.; Ahmad, S.; Baker, C.H.; Edwards, J.R.; Holloway, R.W.; Kaja, S.; Abdelrahim, M. Tolfenamic acid inhibits ovarian cancer cell growth and decreases the expression of c-Met and survivin through suppressing specificity protein transcription factors. Gynecol. Oncol., 2011, 122(1), 163-170.
[http://dx.doi.org/10.1016/j.ygyno.2011.03.014] [PMID: 21496890]
[8]
Liggett, J.L.; Zhang, X.; Eling, T.E.; Baek, S.J. Anti-tumor activity of non-steroidal anti-inflammatory drugs: Cyclooxygenase-independent targets. Cancer Lett., 2014, 346(2), 217-224.
[http://dx.doi.org/10.1016/j.canlet.2014.01.021] [PMID: 24486220]
[9]
Feldman, D.; Leahy, E.; Lee, S.H. Chemopreventive properties of tolfenamic acid: A mechanistic review. Curr. Med. Chem., 2018, 25(14), 1598-1608.
[http://dx.doi.org/10.2174/0929867324666170414155107] [PMID: 28413959]
[10]
Adwan, L.I.; Basha, R.; Abdelrahim, M.; Subaiea, G.M.; Zawia, N.H. Tolfenamic acid interrupts the de novo synthesis of the β-amyloid precursor protein and lowers amyloid beta via a transcriptional pathway. Curr. Alzheimer Res., 2011, 8(4), 385-392.
[http://dx.doi.org/10.2174/156720511795745285] [PMID: 21557719]
[11]
Subaiea, G.M.; Alansi, B.H.; Serra, D.A.; Alwan, M.; Zawia, N.H. The ability of tolfenamic acid to penetrate the brain: A model for testing the brain disposition of candidate Alzheimer’s drugs using multiple platforms. Curr. Alzheimer Res., 2011, 8(8), 860-867.
[http://dx.doi.org/10.2174/156720511798192691] [PMID: 21605061]
[12]
Adwan, L.; Subaiea, G.M.; Zawia, N.H. Tolfenamic acid downregulates BACE1 and protects against lead-induced upregulation of Alzheimer’s disease related biomarkers. Neuropharmacology, 2014, 79, 596-602.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.009] [PMID: 24462621]
[13]
Moffat, A.C.; Osselton, M.D.; Widdop, B. Clarke’s Analysis of Drugs and Poisons, 4th; Pharmaceutical Press: London, UK, 2011, pp. 1646-1647.
[14]
Ahmed, S.; Mustaan, N.; Sheraz, M.A.; Nabi, S.A.A.; Ahmad, I. Validation of a UV spectrometric method for the assay of tolfenamic acid in organic solvents. J. Pharm., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/216249] [PMID: 26783497]
[15]
Ahmed, S.; Sheraz, M.A.; Ahmad, I. Tolfenamic Acid.Profiles of Drug Substances, Excipients, and Related Methodology; Brittain, H.G., Ed.; Academic Press: Elsevier: Cambridge, USA, 2018, Vol. 43, pp. 255-319.
[16]
Abdelwahab, N.S.; Ali, N.W.; Zaki, M.M.; Abdelkawy, M. Validated chromatographic methods for simultaneous determination of tolfenamic acid and its major impurities. J. Chromatogr. Sci., 2015, 53(4), 484-491.
[http://dx.doi.org/10.1093/chromsci/bmu071] [PMID: 25016532]
[17]
Rozou, S.; Antoniadou-Vyza, E. An improved HPLC method overcoming Beer’s law deviations arising from supramolecular interactions in tolfenamic acid and cyclodextrins complexes. J. Pharm. Biomed. Anal., 1998, 18(4-5), 899-905.
[http://dx.doi.org/10.1016/S0731-7085(98)00227-1] [PMID: 9919995]
[18]
Van Eerdenbrugh, B.; Baird, J.A.; Taylor, L.S. Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation--classification and comparison with crystallization tendency from undercooled melts. J. Pharm. Sci., 2010, 99(9), 3826-3838.
[http://dx.doi.org/10.1002/jps.22214] [PMID: 20533435]
[19]
Gallo, P.; Fabbrocino, S.; Dowling, G.; Salini, M.; Fiori, M.; Perretta, G.; Serpe, L. Confirmatory analysis of non-steroidal anti-inflammatory drugs in bovine milk by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A, 2010, 1217(17), 2832-2839.
[http://dx.doi.org/10.1016/j.chroma.2010.02.047] [PMID: 20227702]
[20]
Gallo, P.; Fabbrocino, S.; Vinci, F.; Fiori, M.; Danese, V.; Nasi, A.; Serpe, L. Multi-residue determination of non-steroidal anti-inflammatory drug residues in animal serum and plasma by HPLC and photo-diode array detection. J. Chromatogr. Sci., 2006, 44(10), 585-590.
[http://dx.doi.org/10.1093/chromsci/44.10.585] [PMID: 17254366]
[21]
de Melo da Silva, L.; Pereira Cavalcante, R.; Fabbro Cunha, R.; Gozzi, F.; Falcao Dantas, R.; de Oliveira, S.C.; Machulek, A. Tolfenamic acid degradation by direct photolysis and the UV-ABC/H2O2 process: Factorial design, kinetics, identification of intermediates, and toxicity evaluation. Sci. Total Environ., 2016, 573, 518-531.
[http://dx.doi.org/10.1016/j.scitotenv.2016.08.139] [PMID: 27575359]
[22]
Nielsen-Kudsk, F. HPLC-determination of some antiinflammatory, weak analgesic and uricosuric drugs in human blood plasma and its application to pharmacokinetics. Acta Pharmacol. Toxicol., 1980, 47(4), 267-273.
[http://dx.doi.org/10.1111/j.1600-0773.1980.tb03653.x] [PMID: 6970498]
[23]
Pentikäinen, P.J.; Neuvonen, P.J.; Backman, C. Human pharmacokinetics of tolfenamic acid, a new anti-inflammatory agent. Eur. J. Clin. Pharmacol., 1981, 19(5), 359-365.
[http://dx.doi.org/10.1007/BF00544587] [PMID: 7238564]
[24]
Niopas, I.; Georgarakis, M. Pharmacokinetics of tolfenamic acid in pediatric patients after single oral dose. Eur. J. Drug. Meta. Pharmacol., 1995, 20, 293-296.
[25]
McKellar, Q.A.; Lees, P.; Gettinby, G. Pharmacodynamics of tolfenamic acid in dogs. Evaluation of dose response relationships. Eur. J. Pharmacol., 1994, 253(3), 191-200.
[http://dx.doi.org/10.1016/0014-2999(94)90191-0] [PMID: 8200415]
[26]
Landoni, M.F.; Cunningham, F.M.; Lees, P. Pharmacokinetics and pharmacodynamics of tolfenamic acid in calves. Res. Vet. Sci., 1996, 61(1), 26-32.
[http://dx.doi.org/10.1016/S0034-5288(96)90106-X] [PMID: 8819190]
[27]
Lefebvre, H.P.; Laroute, V.; Alvinerie, M.; Schneider, M.; Vinclair, P.; Braun, J.P.; Toutain, P.L. The effect of experimental renal failure on tolfenamic acid disposition in the dog. Biopharm. Drug Dispos., 1997, 18(1), 79-91.
[http://dx.doi.org/10.1002/(SICI)1099-081X(199701)18:1<79:AID-BDD34>3.0.CO;2-F] [PMID: 9008271]
[28]
Kang, Y.P.; Yu, J.; Huh, Y.; Oh, J.H.; Kwon, C.H.; Lee, S.J.; Ee, J.W.; Kim, G.T.; Lee, J.G.; Lee, J.; Park, J.H.; Kim, Y.S.; Kwon, S.W. Development of high performance liquid chromatography-ultraviolet detection method for screening mebendazole, clorsulon, diaveridine, and tolfenamic acid in animal-based food samples. Drug Test. Anal., 2014, 6(3), 246-256.
[http://dx.doi.org/10.1002/dta.1467] [PMID: 23576386]
[29]
Mikami, E.; Goto, T.; Ohno, T.; Matsumoto, H.; Inagaki, K.; Ishihara, H.; Nishida, M. Simultaneous analysis of anthranilic acid derivatives in pharmaceuticals and human urine by high-performance liquid chromatography with isocratic elution. J. Chromatogr., Biomed. Appl., 2000, 744(1), 81-89.
[http://dx.doi.org/10.1016/S0378-4347(00)00233-4] [PMID: 10985569]
[30]
Rozou, S.; Michaleas, S.; Antoniadou-Vyza, E. Study of structural features and thermodynamic parameters, determining the chromatographic behaviour of drug-cyclodextrin complexes. J. Chromatogr. A, 2005, 1087(1-2), 86-94.
[http://dx.doi.org/10.1016/j.chroma.2005.02.039] [PMID: 16130701]
[31]
Ra, J.S.; Oh, S.Y.; Lee, B.C.; Kim, S.D. The effect of suspended particles coated by humic acid on the toxicity of pharmaceuticals, estrogens, and phenolic compounds. Environ. Int., 2008, 34(2), 184-192.
[http://dx.doi.org/10.1016/j.envint.2007.08.001] [PMID: 17765969]
[32]
Guan, J.; Zhang, C.; Wang, Y.; Guo, Y.; Huang, P.; Zhao, L. Simultaneous determination of 12 pharmaceuticals in water samples by ultrasound-assisted dispersive liquid-liquid microextraction coupled with ultra-high performance liquid chromatography with tandem mass spectrometry. Anal. Bioanal. Chem., 2016, 408(28), 8099-8109.
[http://dx.doi.org/10.1007/s00216-016-9913-1] [PMID: 27614980]
[33]
Ma, L.; Li, J.; Xu, L. Aqueous chlorination of fenamic acids: Kinetic study, transformation products identification and toxicity prediction. Chemosphere, 2017, 175, 114-122.
[http://dx.doi.org/10.1016/j.chemosphere.2017.02.045] [PMID: 28211324]
[34]
Mahghoub, S. Validated RP-HPLC method for quantitative determination of tolfenamic acid and benzyl alcohol in veterinary pharmaceutical preparation. Aus. Chromatogr., 2017, 4, 1046.
[35]
Turk, E.; Tekeli, I.O.; Durna Corum, D.; Corum, O.; Altinok Yipel, F.; Ilhan, A.; Emiroglu, S.B.; Uguz, H.; Uney, K. Pharmacokinetics of tolfenamic acid in goats after different administration routes. J. Vet. Pharmacol. Ther., 2021, 44(3), 367-373.
[http://dx.doi.org/10.1111/jvp.12949] [PMID: 33560540]
[36]
Turk, E.; Tekeli, I.O.; Corum, O.; Durna Corum, D.; Kirgiz, F.C.; Cetin, G.; Arslan Atessahin, D.; Uney, K. Pharmacokinetics of meloxicam, carprofen, and tolfenamic acid after intramuscular and oral administration in Japanese quails (Coturnix coturnix japonica). J. Vet. Pharmacol. Ther., 2021, 44(3), 388-396.
[http://dx.doi.org/10.1111/jvp.12972] [PMID: 33846990]
[37]
Tay, K.S.; Mansor, N.A. The fate of tolfenamic acid in conventional chlorination and UV/chlorination process. Chem. Zvesti, 2022, 76(11), 6869-6877.
[http://dx.doi.org/10.1007/s11696-022-02378-8]
[38]
Blanco-Paniagua, E.; García-Lino, A.M.; García-Mateos, D.; Álvarez, A.I.; Merino, G. Role of the Abcg2 transporter in plasma levels and tissue accumulation of the anti-inflammatory tolfenamic acid in mice. Chem. Biol. Interact., 2021, 345109537
[http://dx.doi.org/10.1016/j.cbi.2021.109537] [PMID: 34062171]
[39]
Gao, L.; Zheng, W.Y.; Yang, W.L.; Zhang, X.R. Drug-drug salt forms of vortioxetine with mefenamic acid and tolfenamic acid. J. Mol. Struct., 2022, 1268, 133725.
[http://dx.doi.org/10.1016/j.molstruc.2022.133725]
[40]
Guideline, H.T. Harmonised Tripartite Guideline. Validation of Analytical Procedures, Text and Methodology Q2(R1 International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use,; Geneva, Switzerland, 2005.
[41]
Rasmussen, H.T.; Li, W.; Redlich, D.; Jimidar, M.L. HPLC method development.Handbook of Pharmaceutical Analysis by HPLC; Ahuja, S; Dong, M.W., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2005.
[http://dx.doi.org/10.1016/S0149-6395(05)80050-9]
[42]
Andersen, K.V.; Larsen, S.; Alhede, B.; Gelting, N.; Buchardt, O. Characterization of two polymorphic forms of tolfenamic acid, N-(2-methyl-3-chlorophenyl)anthranilic acid: Their crystal structures and relative stabilities. J. Chem. Soc., Perkin Trans. 2, 1989, 2(10), 1443-1447.
[http://dx.doi.org/10.1039/p29890001443]
[43]
Mattei, A.; Li, T. Polymorph formation and nucleation mechanism of tolfenamic acid in solution: An investigation of pre-nucleation solute association. Pharm. Res., 2012, 29(2), 460-470.
[http://dx.doi.org/10.1007/s11095-011-0574-7] [PMID: 21879384]
[44]
Sheraz, M.A.; Ahmed, S.; Rehman, I. Effect of pH, polymer concentration and molecular weight on the physical state properties of tolfenamic acid. Pharm. Dev. Technol., 2015, 20(3), 352-360.
[http://dx.doi.org/10.3109/10837450.2013.871027] [PMID: 24417663]
[45]
Surov, A.O.; Szterner, P.; Zielenkiewicz, W.; Perlovich, G.L. Thermodynamic and structural study of tolfenamic acid polymorphs. J. Pharm. Biomed. Anal., 2009, 50(5), 831-840.
[http://dx.doi.org/10.1016/j.jpba.2009.06.045] [PMID: 19632801]
[46]
Surov, A.O.; Terekhova, I.V.; Bauer-Brandl, A.; Perlovich, G.L. Thermodynamic and structural aspects of some fenamate molecular crystals. Cryst. Growth Des., 2009, 9(7), 3265-3272.
[http://dx.doi.org/10.1021/cg900002q]
[47]
Hartmann, C.; Smeyers-Verbeke, J.; Penninckx, W.; Vander Heyden, Y.; Vankeerberghen, P.; Massart, D.L. Reappraisal of hypothesis testing for method validation: Detection of systematic error by comparing the means of two methods or of two laboratories. Anal. Chem., 1995, 67(24), 4491-4499.
[http://dx.doi.org/10.1021/ac00120a011]
[48]
Rahman, N.; Khan, S. Circular dichroism spectroscopy: An efficient approach for the quantitation of ampicillin in presence of cloxacillin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 160, 26-33.
[http://dx.doi.org/10.1016/j.saa.2016.02.009] [PMID: 26909703]
[49]
Rahman, N.; Sameen, S.; Kashif, M. Spectroscopic study on the interaction of haloperidol and 2, 4-dinitrophenylhydrazine and its application for the quantification in drug formulations. Anal. Chem. Lett., 2016, 6(6), 874-885.
[http://dx.doi.org/10.1080/22297928.2016.1265898]
[50]
Usmani, M.; Ahmed, S.; Ali Sheraz, M.; Ahmad, I. Development and validation of a pre-column derivatization HPLC method for the assay of amikacin sulfate in pure and parenteral dosage forms. Curr. Pharm. Anal., 2019, 15(5), 511-520.
[http://dx.doi.org/10.2174/1573412914666180314121213]
[51]
Gilpin, R.K.; Zhou, W. Infrared studies of the polymorphic states of the fenamates. J. Pharm. Biomed. Anal., 2005, 37(3), 509-515.
[http://dx.doi.org/10.1016/j.jpba.2004.11.009] [PMID: 15740911]
[52]
Jabeen, S.; Dines, T.J.; Leharne, S.A.; Chowdhry, B.Z. Raman and IR spectroscopic studies of fenamates - Conformational differences in polymorphs of flufenamic acid, mefenamic acid and tolfenamic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 972-985.
[http://dx.doi.org/10.1016/j.saa.2012.07.129] [PMID: 22954807]
[53]
Ahmed, S.; Sheraz, M.A.; Rehman, I.U. Studies on tolfenamic acid-chitosan intermolecular interactions: Effect of pH, polymer concentration and molecular weight. AAPS PharmSciTech, 2013, 14(2), 870-879.
[http://dx.doi.org/10.1208/s12249-013-9974-9] [PMID: 23620261]
[54]
Ahmed, S.; Sheraz, M.A.; Yorucu, C.; Rehman, I.U. Quantitative determination of tolfenamic acid and its pharmaceutical formulation using FTIR and UV spectrometry. Cent. Eur. J. Chem., 2013, 11, 1533-1541.
[55]
Andleeb, S.; Ahmed, S.; Sheraz, M.A.; Anwar, Z.; Ahmad, I. Development and validation of a spectrofluorimetric method for the analysis of tolfenamic acid in pure and tablet dosage form. Luminescence, 2020, 35(7), 1017-1027.
[http://dx.doi.org/10.1002/bio.3810] [PMID: 32419348]
[56]
Swartz, M.E.; Krull, I.S. Handbook of Analytical Validation, Boca Raton; CRC Press: USA, 2012, pp. 61-100.
[http://dx.doi.org/10.1201/b12039]
[57]
Shrivastava, A.; Saxena, P. Validation of Analytical Methods; Methodology and Statistics, CBS Publishers and Distributors: New Dehli, India, 2014.
[58]
Ahmed, S.; Khan, A.; Sheraz, M.A.; Bano, R.; Ahmad, I. Development and validation of a stability-indicating HPLC method for the assay of carvedilol in pure and tablet dosage forms. Curr. Pharm. Anal., 2018, 14(2), 139-152.
[http://dx.doi.org/10.2174/1573412913666170525122146]
[59]
Singh, R. HPLC method development and validation-an overview. J. Pharm. Edu. Res., 2013, 4, 26-33.
[60]
Lister, A.S. Validation of HPLC methods in pharmaceutical analysis. Handbook of Pharmaceutical Analysis by HPLC; Ahuja, S; Dong, M.W., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2005, pp. 191-217.
[http://dx.doi.org/10.1016/S0149-6395(05)80051-0]
[61]
Thybo, P.; Kristensen, J.; Hovgaard, L. Characterization and physical stability of tolfenamic acid-PVP K30 solid dispersions. Pharm. Dev. Technol., 2007, 12(1), 43-53.
[http://dx.doi.org/10.1080/10837450601166577] [PMID: 17484143]
[62]
Mattei, A.; Li, T. Interplay between molecular conformation and intermolecular interactions in conformational polymorphism: A molecular perspective from electronic calculations of tolfenamic acid. Int. J. Pharm., 2011, 418(2), 179-186.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.062] [PMID: 21570454]