Benefits of Manuka Honey in the Management of Infectious Diseases: Recent Advances and Prospects

Page: [1928 - 1941] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

The benefits of honey have been recognized since ancient times for treating numerous diseases. However, in today's modern era, the use of traditional remedies has been rapidly diminishing due to the complexities of modern lifestyles. While antibiotics are commonly used and effective in treating pathogenic infections, their inappropriate use can lead to the development of resistance among microorganisms, resulting in their widespread prevalence. Therefore, new approaches are constantly required to combat drug-resistant microorganisms, and one practical and useful approach is the use of drug combination treatments.

Manuka honey, derived from the manuka tree (Leptospermum scoparium) found exclusively in New Zealand, has garnered significant attention for its biological potential, particularly due to its antioxidant and antimicrobial properties. Moreover, when combined with antibiotics, it has demonstrated the ability to enhance their effectiveness. In this review, we delve into the chemical markers of manuka honey that are currently known, as well as detail the impact of manuka honey on the management of infectious diseases up to the present.

Graphical Abstract

[1]
Kaškonienė V.; Venskutonis, P.R. Floral markers in honey of various botanical and geographic origins: A Review. Compr. Rev. Food Sci. Food Saf., 2010, 9(6), 620-634.
[http://dx.doi.org/10.1111/j.1541-4337.2010.00130.x] [PMID: 33467823]
[2]
Shahbandeh. Production volume of natural honey worldwide from 2000 to 2019 (in 1,000 metric tons). 2019. Available from: https://www.statista.com/statistics/755215/natural-honey-production-volume-worldwide/2 [Accessed on: 14.10.2021].
[3]
Shahbandeh. Leading producers of natural honey worldwide in 2019 (in 1,000 metric tons). 2019. Available from: https://www.statista.com/statistics/812172/global-top-producers-of-honey/3 [Accessed on: 14.10. 2021].
[4]
Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health: A review. J. Am. Coll. Nutr., 2008, 27(6), 677-689.
[http://dx.doi.org/10.1080/07315724.2008.10719745] [PMID: 19155427]
[5]
Alvarez-Suarez, J.; Gasparrini, M.; Forbes-Hernández, T.; Mazzoni, L.; Giampieri, F. The composition and biological activity of honey: A focus on manuka honey. Foods, 2014, 3(3), 420-432.
[http://dx.doi.org/10.3390/foods3030420] [PMID: 28234328]
[6]
Allen, K.L.; Molan, P.C.; Reid, G.M. A survey of the antibacterial activity of some New Zealand honeys. J. Pharm. Pharmacol., 2011, 43(12), 817-822.
[http://dx.doi.org/10.1111/j.2042-7158.1991.tb03186.x] [PMID: 1687577]
[7]
Dovi, J.V.; He, L.K.; DiPietro, L.A. Accelerated wound closure in neutrophil-depleted mice. J. Leukoc. Biol., 2003, 73(4), 448-455.
[http://dx.doi.org/10.1189/jlb.0802406] [PMID: 12660219]
[8]
McLoone, P.; Oluwadun, A.; Warnock, M.; Fyfe, L. Honey: A therapeutic agent for disorders of the skin. Cent. Asian J. Glob. Health, 2016, 5(1), 241.
[http://dx.doi.org/10.5195/cajgh.2016.241] [PMID: 29138732]
[9]
Almasaudi, S.B.; Abbas, A.T.; Al-Hindi, R.R.; El-Shitany, N.A.; Abdel-dayem, U.A.; Ali, S.S.; Saleh, R.M.; Al Jaouni, S.K.; Kamal, M.A.; Harakeh, S.M. Manuka honey exerts antioxidant and anti-inflammatory activities that promote healing of acetic acid-induced gastric ulcer in rats. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/5413917] [PMID: 28250794]
[10]
Cooper, R.A.; Jenkins, L.; Henriques, A.F.M.; Duggan, R.S.; Burton, N.F. Absence of bacterial resistance to medical-grade manuka honey. Eur. J. Clin. Microbiol. Infect. Dis., 2010, 29(10), 1237-1241.
[http://dx.doi.org/10.1007/s10096-010-0992-1] [PMID: 20549529]
[11]
Weston, R.J.; Brocklebank, L.K. The oligosaccharide composition of some New Zealand honeys. Food Chem., 1999, 64(1), 33-37.
[http://dx.doi.org/10.1016/S0308-8146(98)00099-5]
[12]
Alqarni, A.S.; Owayss, A.A.; Mahmoud, A.A.; Hannan, M.A. Mineral content and physical properties of local and imported honeys in Saudi Arabia. J. Saudi Chem. Soc., 2014, 18(5), 618-625.
[http://dx.doi.org/10.1016/j.jscs.2012.11.009]
[13]
Yao, L.; Datta, N.; Tomás-Barberán, F.A.; Ferreres, F.; Martos, I.; Singanusong, R. Flavonoids, phenolic acids and abscisic acid in Australian and New Zealand Leptospermum honeys. Food Chem., 2003, 81(2), 159-168.
[http://dx.doi.org/10.1016/S0308-8146(02)00388-6]
[14]
Deadman, B.J. The Flavonoid Profile of New Zealand Manuka Honey (Thesis, Master of Science (MSc)., The University of Waikato: Hamilton, New Zealand, 2009. Available from: https://hdl.handle.net/10289/5443
[15]
Russell, K.M.; Molan, P.C.; Wilkins, A.L.; Holland, P.T. Identification of some antibacterial constituents of New Zealand manuka honey. J. Agric. Food Chem., 1990, 38(1), 10-13.
[http://dx.doi.org/10.1021/jf00091a002]
[16]
Henriques, A.; Jackson, S.; Cooper, R.; Burton, N. Free radical production and quenching in honeys with wound healing potential. J. Antimicrob. Chemother., 2006, 58(4), 773-777.
[http://dx.doi.org/10.1093/jac/dkl336] [PMID: 16963460]
[17]
Mavric, E.; Wittmann, S.; Barth, G.; Henle, T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol. Nutr. Food Res., 2008, 52(4), 483-489.
[http://dx.doi.org/10.1002/mnfr.200700282] [PMID: 18210383]
[18]
Adams, C.J.; Manley-Harris, M.; Molan, P.C. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr. Res., 2009, 344(8), 1050-1053.
[http://dx.doi.org/10.1016/j.carres.2009.03.020] [PMID: 19368902]
[19]
Molan, P. Why honey is effective as a medicine. Bee World, 2001, 82(1), 22-40.
[http://dx.doi.org/10.1080/0005772X.2001.11099498]
[20]
Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic acids and flavonoids profiles of commercial honey from different floral sources and geographic sources. Int. J. Food Prop., 2019, 22(1), 290-308.
[http://dx.doi.org/10.1080/10942912.2019.1579835]
[21]
Oelschlaegel, S.; Gruner, M.; Wang, P.N.; Boettcher, A.; Koelling-Speer, I.; Speer, K. Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal. J. Agric. Food Chem., 2012, 60(29), 7229-7237.
[http://dx.doi.org/10.1021/jf300888q] [PMID: 22676798]
[22]
Cianciosi, D.; Forbes-Hernández, T.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; Quiles, J.; Giampieri, F.; Battino, M. Phenolic compounds in honey and their associated health benefits: A review. Molecules, 2018, 23(9), 2322.
[http://dx.doi.org/10.3390/molecules23092322] [PMID: 30208664]
[23]
Beitlich, N.; Lübken, T.; Kaiser, M.; Ispiryan, L.; Speer, K. Fluorescent pteridine derivatives as new markers for the characterisation of monofloral genuine New Zealand manuka (Leptospermum scoparium) honey. J. Agric. Food Chem., 2016, 64(46), 8886-8891.
[http://dx.doi.org/10.1021/acs.jafc.6b03984] [PMID: 27806565]
[24]
Pham, T.N.; Nguyen, T.V.; Le, D.T.; Diep, L.M.N.; Nguyen, K.N.; To, T.H.N.; Le, T.H.; Nguyen, Q.V. Phenolic profiles, antioxidant, antibacterial activities and nutritional value of vietnamese honey from different botanical and geographical sources. AgriEngineering, 2022, 4(4), 1116-1138.
[http://dx.doi.org/10.3390/agriengineering4040069]
[25]
El-Senduny, F.F.; Hegazi, N.M.; Abd Elghani, G.E.; Farag, M.A. Manuka honey, a unique mono-floral honey. A comprehensive review of its bioactives, metabolism, action mechanisms, and therapeutic merits. Food Biosci., 2021, 42, 101038.
[http://dx.doi.org/10.1016/j.fbio.2021.101038]
[26]
Senanayake, M.A. Chemical Investigation of New Zealand Unifloral Honeys. Ph.D. Thesis; The University of Waikato: Hamilton, New Zealand, 2006. Available from: https://hdl.handle.net/10289/2665
[27]
Stephens, J.M.; Schlothauer, R.C.; Morris, B.D.; Yang, D.; Fearnley, L.; Greenwood, D.R.; Loomes, K.M. Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chem., 2010, 120(1), 78-86.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.074]
[28]
Tan, S.T.; Holland, P.T.; Wilkins, A.L.; Molan, P.C. Extractives from New Zealand honeys. 1. White clover, manuka and kanuka unifloral honeys. J. Agric. Food Chem., 1988, 36(3), 453-460.
[http://dx.doi.org/10.1021/jf00081a012]
[29]
Kato, Y.; Umeda, N.; Maeda, A.; Matsumoto, D.; Kitamoto, N.; Kikuzaki, H. Identification of a novel glycoside, leptosin, as a chemical marker of manuka honey. J. Agric. Food Chem., 2012, 60(13), 3418-3423.
[http://dx.doi.org/10.1021/jf300068w] [PMID: 22409307]
[30]
Kato, Y.; Fujinaka, R.; Ishisaka, A.; Nitta, Y.; Kitamoto, N.; Takimoto, Y. Plausible authentication of manuka honey and related products by measuring leptosperin with methyl syringate. J. Agric. Food Chem., 2014, 62(27), 6400-6407.
[http://dx.doi.org/10.1021/jf501475h] [PMID: 24941263]
[31]
Lin, B.; Daniels, B.J.; Middleditch, M.J.; Furkert, D.P.; Brimble, M.A.; Bong, J.; Stephens, J.M.; Loomes, K.M. Utility of the Leptospermum scoparium compound lepteridine as a chemical marker for Manuka honey authenticity. ACS Omega, 2020, 5(15), 8858-8866.
[http://dx.doi.org/10.1021/acsomega.0c00486] [PMID: 32337448]
[32]
Bong, J.; Prijic, G.; Braggins, T.J.; Schlothauer, R.C.; Stephens, J.M.; Loomes, K.M. Leptosperin is a distinct and detectable fluorophore in Leptospermum honeys. Food Chem., 2017, 214, 102-109.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.018] [PMID: 27507454]
[33]
Lin, B.; Loomes, K.M.; Prijic, G.; Schlothauer, R.; Stephens, J.M. Lepteridine as a unique fluorescent marker for the authentication of manuka honey. Food Chem., 2017, 225, 175-180.
[http://dx.doi.org/10.1016/j.foodchem.2016.12.099] [PMID: 28193412]
[34]
Criteria for identifying manuka honey. A summary of the manuka honey science programme. Available from: https://www.mpi.govt.nz/document-vault/17314
[35]
Bong, J.; Loomes, K.M.; Lin, B.; Stephens, J.M. New approach: Chemical and fluorescence profiling of NZ honeys. Food Chem., 2018, 267, 355-367.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.065] [PMID: 29934178]
[36]
Adams, C.J.; Boult, C.H.; Deadman, B.J.; Farr, J.M.; Grainger, M.N.C.; Manley-Harris, M.; Snow, M.J. Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydr. Res., 2008, 343(4), 651-659.
[http://dx.doi.org/10.1016/j.carres.2007.12.011] [PMID: 18194804]
[37]
Wilkins, A.L.; Lu, Y.; Molan, P.C. Extractable organic substances from New Zealand unifloral manuka (Leptospermum scoparium) honeys. J. Apic. Res., 1993, 32(1), 3-9.
[http://dx.doi.org/10.1080/00218839.1993.11101281]
[38]
Beitlich, N.; Koelling-Speer, I.; Oelschlaegel, S.; Speer, K. Differentiation of manuka honey from kanuka honey and from jelly bush honey using HS-SPME-GC/MS and UHPLC-PDA-MS/MS. J. Agric. Food Chem., 2014, 62(27), 6435-6444.
[http://dx.doi.org/10.1021/jf501818f] [PMID: 24941132]
[39]
Daniels, B.J.; Prijic, G.; Meidinger, S.; Loomes, K.M.; Stephens, J.M.; Schlothauer, R.C.; Furkert, D.P.; Brimble, M.A. Isolation, structural elucidation and synthesis of lepteridine from manuka (Leptospermum scoparium) honey. J. Agric. Food Chem., 2016, 64(24), 5079-5084.
[http://dx.doi.org/10.1021/acs.jafc.6b01596] [PMID: 27210444]
[40]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[41]
Arias, C.A.; Murray, B.E. Antibiotic-resistant bugs in the 21st century-a clinical super-challenge. N. Engl. J. Med., 2009, 360(5), 439-443.
[http://dx.doi.org/10.1056/NEJMp0804651] [PMID: 19179312]
[42]
Liu, B.; Pop, M. ARDB-Antibiotic resistance genes database. Nucleic Acids Res., 2009, 37(Database), D443-D447.
[http://dx.doi.org/10.1093/nar/gkn656] [PMID: 18832362]
[43]
Theuretzbacher, U. Accelerating resistance, inadequate antibacterial drug pipelines and international responses. Int. J. Antimicrob. Agents, 2012, 39(4), 295-299.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.12.006] [PMID: 22341298]
[44]
AL-Waili, N.; Al-Ghamdi, A.; Ansari, M.J.; Al-Attal, Y.; Salom, K. Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures. Int. J. Med. Sci., 2012, 9(9), 793-800.
[http://dx.doi.org/10.7150/ijms.4722] [PMID: 23136543]
[45]
Roberts, A.; Brown, H.L.; Jenkins, R. On the antibacterial effects of manuka honey: Mechanistic insights. Res. Rep. Biol., 2015, 6, 215-224.
[46]
Kwakman, P.H.S.; Zaat, S.A.J. Antibacterial components of honey. IUBMB Life, 2012, 64(1), 48-55.
[http://dx.doi.org/10.1002/iub.578] [PMID: 22095907]
[47]
Kwakman, P.H.S.; Velde, A.A.; Boer, L.; Speijer, D.; Christina Vandenbroucke-Grauls, M.J.; Zaat, S.A.J. How honey kills bacteria. FASEB J., 2010, 24(7), 2576-2582.
[http://dx.doi.org/10.1096/fj.09-150789] [PMID: 20228250]
[48]
Al-Waili, N.S.; Salom, K.; Butler, G.; Al Ghamdi, A.A. Honey and microbial infections: A review supporting the use of honey for microbial control. J. Med. Food, 2011, 14(10), 1079-1096.
[http://dx.doi.org/10.1089/jmf.2010.0161] [PMID: 21859350]
[49]
Israili, Z.H. Antimicrobial properties of honey. Am. J. Ther., 2014, 21(4), 304-323.
[http://dx.doi.org/10.1097/MJT.0b013e318293b09b] [PMID: 23782759]
[50]
Olaitan, P.B.; Adeleke, O.E.; Ola, I.O. Honey: A reservoir for microorganisms and an inhibitory agent for microbes. Afr. Health Sci., 2007, 7(3), 159-165.
[PMID: 18052870]
[51]
Lusby, P.E.; Coombes, A.; Wilkinson, J.M. Honey. J. Wound Ostomy Continence Nurs., 2002, 29(6), 295-300.
[http://dx.doi.org/10.1097/00152192-200211000-00008] [PMID: 12439453]
[52]
Wang, R.; Starkey, M.; Hazan, R.; Rahme, L.G. Honey’s ability to counter bacterial infections arises from both bactericidal compounds and qs inhibition. Front. Microbiol., 2012, 3, 144.
[http://dx.doi.org/10.3389/fmicb.2012.00144] [PMID: 22514552]
[53]
Lu, J.; Carter, D.A.; Turnbull, L.; Rosendale, D.; Hedderley, D.; Stephens, J.; Gannabathula, S.; Steinhorn, G.; Schlothauer, R.C.; Whitchurch, C.B.; Harry, E.J. The effect of New Zealand kanuka, manuka and clover honeys on bacterial growth dynamics and cellular morphology varies according to the species. PLoS One, 2013, 8(2), e55898.
[http://dx.doi.org/10.1371/journal.pone.0055898] [PMID: 23418472]
[54]
Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Molecular mechanism-based therapeutic properties of honey. Biomed. Pharmacother., 2020, 130, 110590.
[http://dx.doi.org/10.1016/j.biopha.2020.110590] [PMID: 32768885]
[55]
Alvarez-Suarez, J.M.; Giampieri, F.; Cordero, M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Afrin, S.; Beltrán-Ayala, P.; González-Paramás, A.M.; Santos-Buelga, C.; Varela-Lopez, A.; Quiles, J.L.; Battino, M. Activation of AMPK/Nrf2 signalling by Manuka honey protects human dermal fibroblasts against oxidative damage by improving antioxidant response and mitochondrial function promoting wound healing. J. Funct. Foods, 2016, 25, 38-49.
[http://dx.doi.org/10.1016/j.jff.2016.05.008]
[56]
Salminen, A.; Hyttinen, J.M.T.; Kaarniranta, K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: Impact on healthspan and lifespan. J. Mol. Med., 2011, 89(7), 667-676.
[http://dx.doi.org/10.1007/s00109-011-0748-0] [PMID: 21431325]
[57]
Hossain, K.S.; Hossain, M.G.; Moni, A.; Rahman, M.M.; Rahman, U.H.; Alam, M.; Kundu, S.; Rahman, M.M.; Hannan, M.A.; Uddin, M.J. Prospects of honey in fighting against COVID-19: Pharmacological insights and therapeutic promises. Heliyon, 2020, 6(12), e05798.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05798] [PMID: 33363261]
[58]
Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed., 2011, 1(2), 154-160.
[http://dx.doi.org/10.1016/S2221-1691(11)60016-6] [PMID: 23569748]
[59]
Lusby, P.E.; Coombes, A.L.; Wilkinson, J.M. Bactericidal activity of different honeys against pathogenic bacteria. Arch. Med. Res., 2005, 36(5), 464-467.
[http://dx.doi.org/10.1016/j.arcmed.2005.03.038] [PMID: 16099322]
[60]
Visavadia, B.G.; Honeysett, J.; Danford, M.H. Manuka honey dressing: An effective treatment for chronic wound infections. Br. J. Maxillofac. Surg., 2006, 44, 38-41.
[PMID: 17113690]
[61]
Fischbach, M.A. Combination therapies for combating antimicrobial resistance. Curr. Opin. Microbiol., 2011, 14(5), 519-523.
[http://dx.doi.org/10.1016/j.mib.2011.08.003] [PMID: 21900036]
[62]
Rahal, J.J. Novel antibiotic combinations against infections with almost completely resistant Pseudomonas aeruginosa and Acinetobacter species. Clin. Infect. Dis., 2006, 43(Suppl. 2), S95-S99.
[http://dx.doi.org/10.1086/504486] [PMID: 16894522]
[63]
Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev., 2012, 25(3), 450-470.
[http://dx.doi.org/10.1128/CMR.05041-11] [PMID: 22763634]
[64]
Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine, 2009, 16(2-3), 97-110.
[http://dx.doi.org/10.1016/j.phymed.2008.12.018] [PMID: 19211237]
[65]
Leibovici, L.; Paul, M.; Andreassen, S. Balancing the benefits and costs of antibiotic drugs: The TREAT model. Clin. Microbiol. Infect., 2010, 16(12), 1736-1739.
[http://dx.doi.org/10.1111/j.1469-0691.2010.03330.x] [PMID: 20673259]
[66]
Tiwari, T.P.; Bharti, S.K.; Kaur, H.D.; Dikshit, R.P.; Hoondal, G.S. Synergistic antimicrobial activity of tea & antibiotics. Indian J. Med. Res., 2005, 122(1), 80-84.
[PMID: 16106094]
[67]
Lee, J.W.; Ji, Y.J.; Lee, S.O.; Lee, I.S. Effect of Saliva miltiorrhiza bunge on antimicrobial activity and resistant gene regulation against methicillin-resistant Staphylococcus aureus (MRSA). J. Microbiol., 2007, 45(4), 350-357.
[PMID: 17846590]
[68]
Jenkins, R.; Cooper, R. Improving antibiotic activity against wound pathogens with manuka honey in vitro. PLoS One, 2012, 7(9), e45600.
[http://dx.doi.org/10.1371/journal.pone.0045600] [PMID: 23049822]
[69]
Karayil, S.; Deshpande, S.D.; Koppikar, G.V. Effect of honey on multidrug resistant organisms and its synergistic action with three common antibiotics. J. Postgrad. Med., 1998, 44(4), 93-96.
[PMID: 10703581]
[70]
Al-Jabri, A.A.; Al-Hosni, S.A.; Nzeako, B.C.; Al-Mahrooqi, Z.H.; Nsanze, H. Antibacterial activity of Omani honey alone and in combination with gentamicin. Saudi Med. J., 2005, 26(5), 767-771.
[PMID: 15951867]
[71]
Jenkins, R.E.; Cooper, R. Synergy between oxacillin and manuka honey sensitizes methicillin-resistant Staphylococcus aureus to oxacillin. J. Antimicrob. Chemother., 2012, 67(6), 1405-1407.
[http://dx.doi.org/10.1093/jac/dks071] [PMID: 22382468]
[72]
Müller, P.; Alber, D.G.; Turnbull, L.; Schlothauer, R.C.; Carter, D.A.; Whitchurch, C.B.; Harry, E.J. Synergism between Medihoney and Rifampicin against Methicillin-Resistant Staphylococcus aureus (MRSA). PLoS One, 2013, 8(2), e57679.
[http://dx.doi.org/10.1371/journal.pone.0057679] [PMID: 23469049]
[73]
Campeau, M.E.M.; Patel, R. Antibiofilm activity of Manuka honey in combination with antibiotics. Int. J. Bacteriol., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/795281] [PMID: 26904740]
[74]
Mukherjee, S.; Chaki, S.; Das, S.; Sen, S.; Dutta, S.K.; Dastidar, S.G. Distinct synergistic action of piperacillin and methylglyoxal against Pseudomonas aeruginosa. Indian J. Exp. Biol., 2011, 49(7), 547-551.
[PMID: 21800506]
[75]
Phillips, P.L.; Yang, Q.; Davis, S.; Sampson, E.M.; Azeke, J.I.; Hamad, A.; Schultz, G.S. Antimicrobial dressing efficacy against mature Pseudomonas aeruginosa biofilm on porcine skin explants. Int. Wound J., 2015, 12(4), 469-483.
[http://dx.doi.org/10.1111/iwj.12142] [PMID: 24028432]
[76]
Ejim, L.; Farha, M.A.; Falconer, S.B.; Wildenhain, J.; Coombes, B.K.; Tyers, M.; Brown, E.D.; Wright, G.D. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat. Chem. Biol., 2011, 7(6), 348-350.
[http://dx.doi.org/10.1038/nchembio.559] [PMID: 21516114]
[77]
Jayaraman, P.; Sakharkar, M.K.; Lim, C.S.; Tang, T.H.; Sakharkar, K.R. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int. J. Biol. Sci., 2010, 6(6), 556-568.
[http://dx.doi.org/10.7150/ijbs.6.556] [PMID: 20941374]
[78]
Liu, M.Y.; Cokcetin, N.N.; Lu, J.; Turnbull, L.; Carter, D.A.; Whitchurch, C.B.; Harry, E.J. Rifampicin-Manuka Honey combinations are superior to other antibiotic-manuka honey combinations in eradicating staphylococcus aureus biofilms. Front. Microbiol., 2018, 8, 2653.
[http://dx.doi.org/10.3389/fmicb.2017.02653] [PMID: 29375518]
[79]
Zeina, B.; Othman, O.; Al-Assad, S. Effect of honey versus thyme on Rubella virus survival in vitro. J. Altern. Complement. Med., 1996, 2(3), 345-348.
[http://dx.doi.org/10.1089/acm.1996.2.345] [PMID: 9395668]
[80]
Shahzad, A.; Cohrs, R.J. In vitro antiviral activity of honey against varicella zoster virus (VZV): A translational medicine study for potential remedy for shingles. Transl. Biomed., 2012, 3(2), 1-7.
[PMID: 22822475]
[81]
Chen, C.; Campbell, L.T.; Blair, S.E.; Carter, D.A. The effect of standard heat and filtration processing procedures on antimicrobial activity and hydrogen peroxide levels in honey. Front. Microbiol., 2012, 3, 265.
[http://dx.doi.org/10.3389/fmicb.2012.00265] [PMID: 22866051]
[82]
Khan, S.U.; Anjum, S.I.; Rahman, K.; Ansari, M.J.; Khan, W.U.; Kamal, S.; Khattak, B.; Muhammad, A.; Khan, H.U. Honey: Single food stuff comprises many drugs. Saudi J. Biol. Sci., 2018, 25(2), 320-325.
[http://dx.doi.org/10.1016/j.sjbs.2017.08.004] [PMID: 29472785]
[83]
Al-Waili, N.S. Topical honey application vs. acyclovir for the treatment of recurrent herpes simplex lesions. Med. Sci. Monit., 2004, 10(8), MT94-MT98.
[PMID: 15278008]
[84]
Watanabe, K.; Rahmasari, R.; Matsunaga, A.; Haruyama, T.; Kobayashi, N. Anti-influenza viral effects of honey in vitro: Potent high activity of manuka honey. Arch. Med. Res., 2014, 45(5), 359-365.
[http://dx.doi.org/10.1016/j.arcmed.2014.05.006] [PMID: 24880005]
[85]
Ghapanchi, J.; Moattari, A.; Tadbir, A.A.; Talatof, Z.; Shahidi, S.P.; Ebrahimi, H. The in vitro anti-viral activity of honey on type 1 herpes simplex virus. Aust. J. Basic Appl. Sci., 2011, 5, 849-852.
[86]
Hashemipour, M.A.; Tavakolineghad, Z.; Arabzadeh, S.A.; Iranmanesh, Z.; Nassab, S.A. Antiviral activities of honey, royal jelly, and acyclovir against HSV-1. Wounds, 2014, 26(2), 47-54.
[PMID: 25860226]
[87]
Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Functional properties of honey, propolis, and royal jelly. J. Food Sci., 2008, 73(9), R117-R124.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00966.x] [PMID: 19021816]
[88]
Miguel, M.G.; Antunes, M.D.; Faleiro, M.L. Honey as a complementary medicine. Integr. Med. Insights, 2017, 12.
[http://dx.doi.org/10.1177/1178633717702869] [PMID: 28469409]
[89]
Charyasriwong, S.; Watanabe, K.; Rahmasari, R.; Matsunaga, A.; Haruyama, T.; Kobayashi, N. In vitro evaluation of synergistic inhibitory effects of neuraminidase inhibitors and methylglyoxal against influenza virus infection. Arch. Med. Res., 2015, 46(1), 8-16.
[http://dx.doi.org/10.1016/j.arcmed.2014.12.002] [PMID: 25523147]
[90]
Sulaiman, S.A.; Hasan, H.; Deris, Z.Z.; Wahad, M.S.A.; Yusof, R.C.; Naing, N.N.; Othman, N. The benefit of Tualang honey in reducing acute respiratory symptoms among malaysian hajj pilgrims: A preliminary study. J. Api Prod. Api Medic. Sci., 2011, 3(1), 38-44.
[http://dx.doi.org/10.3896/IBRA.4.03.1.07]
[91]
Li, X.; Ma, X. Acute respiratory failure in COVID-19: Is it “typical” ARDS? Crit. Care, 2020, 24(1), 198.
[http://dx.doi.org/10.1186/s13054-020-02911-9] [PMID: 32375845]
[92]
Hashem, H.E. IN silico approach of some selected honey constituents as SARS-CoV-2 main protease (COVID-19) inhibitors. Eurasian J. Medic. Oncol., 2020, 4(3), 196-200.
[http://dx.doi.org/10.14744/ejmo.2020.36102]
[93]
Al-Motawa, M.S.; Abbas, H.; Wijten, P.; de la Fuente, A.; Xue, M.; Rabbani, N.; Thornalley, P.J. Vulnerabilities of the SARS-CoV-2 virus to proteotoxicity—opportunity for repurposed chemotherapy of COVID-19 infection. Front. Pharmacol., 2020, 11, 585408.
[http://dx.doi.org/10.3389/fphar.2020.585408] [PMID: 33162891]
[94]
Al-Hatamleh, M.A.I.; Hatmal, M.M.; Sattar, K.; Ahmad, S.; Mustafa, M.Z.; Bittencourt, M.D.C.; Mohamud, R. Antiviral and immunomodulatory effects of phytochemicals from honey against COVID-19: Potential mechanisms of action and future directions. Molecules, 2020, 25(21), 5017.
[http://dx.doi.org/10.3390/molecules25215017] [PMID: 33138197]
[95]
Efficacy of Natural Honey Treatment in Patients With Novel Coronavirus. Available from: https://clinicaltrials.gov/ct2/show/NCT04323345
[96]
Abi-Said, D.; Anaissie, E.; Uzun, O.; Raad, I.; Pinzcowski, H.; Vartivarian, S. The epidemiology of hematogenous candidiasis caused by different Candida species. Clin. Infect. Dis., 1997, 24(6), 1122-1128.
[http://dx.doi.org/10.1086/513663] [PMID: 9195068]
[97]
Pfaller, M.A.; Diekema, D.J. Role of sentinel surveillance of candidemia: trends in species distribution and antifungal susceptibility. J. Clin. Microbiol., 2002, 40(10), 3551-3557.
[http://dx.doi.org/10.1128/JCM.40.10.3551-3557.2002] [PMID: 12354845]
[98]
Kwakman, P.H.S.; Van den Akker, J.P.C.; Güçlü, A.; Aslami, H.; Binnekade, J.M.; de Boer, L.; Boszhard, L.; Paulus, F.; Middelhoek, P.; te Velde, A.A.; Vandenbroucke-Grauls, C.M.J.E.; Schultz, M.J.; Zaat, S.A.J. Medical-grade honey kills antibiotic-resistant bacteria in vitro and eradicates skin colonization. Clin. Infect. Dis., 2008, 46(11), 1677-1682.
[http://dx.doi.org/10.1086/587892] [PMID: 18433338]
[99]
Hassanain, A.T.; Alyaa, A.K.; Karim, A.J. Antimicrobial effect of Malaysian honey on some human pathogens: An in vitro study. Intern. Med. J., 2010, 9, 15-18.
[100]
Willix, D.J.; Molan, P.C.; Harfoot, C.G. A comparison of the sensitivity of wound-infecting species of bacteria to the antibacterial activity of Manuka honey and other honey. J. Appl. Bacteriol., 1992, 73(5), 388-394.
[http://dx.doi.org/10.1111/j.1365-2672.1992.tb04993.x] [PMID: 1447054]
[101]
Brady, N.F.; Molan, P.C.; Harfoot, C.G. The sensitivity of dermatophytes to the antimicrobial activity of Manuka honey and other honey. Pharm. Sci., 1997, 2, 1-3.
[102]
Kwakman, P.H.; Müller, M.C.; Binnekade, J.M.; van den Akker, J.P.; de Borgie, C.A.; Schultz, M.J.; Zaat, S.A. Medical-grade honey does not reduce skin colonization at central venous catheter-insertion sites of critically ill patients: A randomized controlled trial. Crit. Care, 2012, 16(5), R214.
[http://dx.doi.org/10.1186/cc11849] [PMID: 23111148]
[103]
Johnson, D.W.; van Eps, C.; Mudge, D.W.; Wiggins, K.J.; Armstrong, K.; Hawley, C.M.; Campbell, S.B.; Isbel, N.M.; Nimmo, G.R.; Gibbs, H. Randomized, controlled trial of topical exit-site application of honey (Medihoney) versus mupirocin for the prevention of catheter-associated infections in hemodialysis patients. J. Am. Soc. Nephrol., 2005, 16(5), 1456-1462.
[http://dx.doi.org/10.1681/ASN.2004110997] [PMID: 15788475]
[104]
English, H.K.; Pack, A.R.; Molan, P.C. The effects of manuka honey on plaque and gingivitis: A pilot study. J. Int. Acad. Periodontol., 2004, 6(2), 63-67.
[PMID: 15125017]
[105]
Mekky, T.M. Effect of crude honey on stability of aflatoxins and growth of Aspergillus flavus. New Egypt. J. Microbiol., 2007, 17(1), 182-190.
[http://dx.doi.org/10.4314/nejmi.v17i1.40325]
[106]
Omafuvbe, B.O.; Akanbi, O.O. Microbiological and physio-chemical properties of some commercial Nigeria honey. Afr. J. Microbiol. Res., 2009, 3, 891-896.
[107]
Khosravi, A.R.; Shokri, H.; Katiraee, F.; Ziglari, T.; Forsi, M. Fungicidal potential of different Iranian honeys against some pathogenic Candida species. J. Apic. Res., 2008, 47, 256-260.
[http://dx.doi.org/10.3896/IBRA.1.47.4.04]
[108]
Al-Waili, N.S. Mixture of honey, beeswax and olive oil inhibits growth of Staphylococcus aureus and Candida albicans. Arch. Med. Res., 2005, 36(1), 10-13.
[http://dx.doi.org/10.1016/j.arcmed.2004.10.002] [PMID: 15777988]
[109]
Boukraâ, L.; Bouchegrane, S. Additive action of honey and starch against Candida albicans and Aspergillus niger. Rev. Iberoam. Micol., 2007, 24(4), 309-311.
[PMID: 18095766]
[110]
Estevinho, M.L.; Afonso, S.E.; Feás, X. Antifungal effect of lavender honey against Candida albicans, Candida krusei and Cryptococcus neoformans. J. Food Sci. Technol., 2011, 48(5), 640-643.
[http://dx.doi.org/10.1007/s13197-011-0243-1] [PMID: 23572800]
[111]
Anyanwu. Investigation of in vitro antifungal activity of honey. J. Med. Plants Res., 2012, 6, 3512-3516.
[112]
Obaseiki-Ebor, E.E.; Afonya, T.C.A. In vitro evaluation of the anticandidiasis activity of honey distillate (HY-1) compared with that of some antimycotic agents. J. Pharm. Pharmacol., 1984, 36(4), 283-284.
[http://dx.doi.org/10.1111/j.2042-7158.1984.tb04373.x] [PMID: 6144786]
[113]
Yabes, J.M.; White, B.K.; Murray, C.K.; Sanchez, C.J.; Mende, K.; Beckius, M.L.; Zera, W.C.; Wenke, J.C.; Akers, K.S. In Vitro activity of Manuka Honey and polyhexamethylene biguanide on filamentous fungi and toxicity to human cell lines. Med. Mycol., 2017, 55(3), 334-343.
[PMID: 27601610]
[114]
Estevinho, L.; Pereira, A.P.; Moreira, L.; Dias, L.G.; Pereira, E. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem. Toxicol., 2008, 46(12), 3774-3779.
[http://dx.doi.org/10.1016/j.fct.2008.09.062] [PMID: 18940227]
[115]
DeMera, J.H.; Angert, E.R. Comparison of the antimicrobial activity of honey produced by Tetragonisca angustula (Meliponinae) and Apis mellifera from different phytogeographic regions of Costa Rica. Apidologie, 2004, 35(4), 411-417.
[http://dx.doi.org/10.1051/apido:2004033]
[116]
Balakumar, S.; Rajan, S.; Thirunalasundari, T.; Jeeva, S. Antifungal activity of Ocimum sanctum Linn. (Lamiaceae) on clinically isolated dermatophytic fungi. Asian Pac. J. Trop. Med., 2011, 4(8), 654-657.
[http://dx.doi.org/10.1016/S1995-7645(11)60166-1] [PMID: 21914546]
[117]
Madhumitha, G.; Saral, A.M. Preliminary phytochemical analysis, antibacterial, antifungal and anticandidal activities of successive extracts of Crossandra infundibuliformis. Asian Pac. J. Trop. Med., 2011, 4(3), 192-195.
[http://dx.doi.org/10.1016/S1995-7645(11)60067-9] [PMID: 21771451]
[118]
Saad, S.; Taher, M.; Susanti, D.; Qaralleh, H.; Rahim, N.A.B.A. Antimicrobial activity of mangrove plant (Lumnitzera littorea). Asian Pac. J. Trop. Med., 2011, 4(7), 523-525.
[http://dx.doi.org/10.1016/S1995-7645(11)60138-7] [PMID: 21803301]
[119]
Bragadeeswaran, S.; Priyadharshini, S.; Prabhu, K.; Rani, S.R.S. Antimicrobial and hemolytic activity of fish epidermal mucus Cynoglossus arel and Arius caelatus. Asian Pac. J. Trop. Med., 2011, 4(4), 305-309.
[http://dx.doi.org/10.1016/S1995-7645(11)60091-6] [PMID: 21771475]
[120]
Adwan, G.; Abu-Shanab, B.; Adwan, K. Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug–resistant Pseudomonas aeruginosa strains. Asian Pac. J. Trop. Med., 2011, 4, 266-269.
[121]
Okoye, T.C.; Akah, P.A.; Okoli, C.O.; Ezike, A.C.; Mbaoji, F.N. Antimicrobial and antispasmodic activity of leaf extract and fractions of Stachytarpheta cayennensis. Asian Pac. J. Trop. Med., 2011, 4, 189-192.
[122]
Wahdan, H.A.L. Causes of the antimicrobial activity of honey. Infection, 1998, 26(1), 26-31.
[http://dx.doi.org/10.1007/BF02768748] [PMID: 9505176]
[123]
Feás, X.; Estevinho, M.L. A survey of the in vitro antifungal activity of heather (Erica sp.) organic honey. J. Med. Food, 2011, 14(10), 1284-1288.
[http://dx.doi.org/10.1089/jmf.2010.0211] [PMID: 21663476]
[124]
Thamboo, A.; Thamboo, A.; Philpott, C.; Javer, A.; Clark, A. Single-blind study of manuka honey in allergic fungal rhinosinusitis. J. Otolaryngol. Head Neck Surg., 2011, 40(3), 238-243.
[PMID: 21518647]
[125]
Anand, S.; Deighton, M.; Livanos, G.; Pang, E.C.K.; Mantri, N. Agastache honey has superior antifungal activity in comparison with important commercial honeys. Sci. Rep., 2019, 9(1), 18197.
[http://dx.doi.org/10.1038/s41598-019-54679-w] [PMID: 31796803]
[126]
Fernandes, L.; Oliveira, A.; Henriques, M.; Rodrigues, M.E. Honey as a strategy to fight Candida tropicalis in mixed-biofilms with Pseudomonas aeruginosa. Antibiotics, 2020, 9(2), 43.
[http://dx.doi.org/10.3390/antibiotics9020043] [PMID: 31973242]
[127]
Gilles, H.M.; Hoffman, P.S. Treatment of intestinal parasitic infections: A review of nitazoxanide. Trends Parasitol., 2002, 18(3), 95-97.
[http://dx.doi.org/10.1016/S1471-4922(01)02205-X] [PMID: 11854075]
[128]
Medhi, B.; Sinha, S.; Prakash, A.; Sehgal, R. Comparative effect of manuka honey on anaerobic parasitic protozoans with standard drug therapy under in vitro conditions: A preliminary study. Indian J. Pharmacol., 2018, 50(4), 197-203.
[http://dx.doi.org/10.4103/ijp.IJP_227_18] [PMID: 30505056]
[129]
Mohammed, S.E.A.; Kabashi, A.S.; Koko, W.S.; Azim, M.K. Antigiardial activity of glycoproteins and glycopeptides from Ziziphus honey. Nat. Prod. Res., 2015, 29(22), 2100-2102.
[http://dx.doi.org/10.1080/14786419.2014.986659] [PMID: 25587739]
[130]
Sajid, M.; Azim, M.K. Characterization of the nematicidal activity of natural honey. J. Agric. Food Chem., 2012, 60(30), 7428-7434.
[http://dx.doi.org/10.1021/jf301653n] [PMID: 22783999]
[131]
Zeina, B.; Al-assad, S. The role of topical natural honey and oral allopurinol in ulcerated cutaneous leishmaniasis. J. Altern. Complement. Med., 1995, 1, 104.
[132]
Bassam, Z.; Zohra, B.I.; Saada, A-A. The effects of honey on Leishmania parasites: An in vitro study. Trop. Doct., 1997, 27(Suppl. 1), 36-38.
[http://dx.doi.org/10.1177/00494755970270S112] [PMID: 9204723]
[133]
Amilah, W.A.W.; Alveino, S.M. In vitro study on anti-amoebic activity of tualang honey against entamoeba histolytica trophozoite. Health Environ J., 2012, 3, 92-97.
[134]
Mohammed, S.E.A.; Kabbashi, A.S.; Koko, W.S.; Ansari, M.J.; Adgaba, N.; Al-Ghamdi, A. In vitro activity of some natural honeys against Entamoeba histolytica and Giardia lamblia trophozoites. Saudi J. Biol. Sci., 2019, 26(2), 238-243.
[http://dx.doi.org/10.1016/j.sjbs.2017.06.004] [PMID: 31485160]
[135]
Bjørnson, S.; James, K.; Steele, T. Evaluation of manuka honey on the microsporidian pathogen Vairimorpha (Nosema) adaliae and its host, the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae). J. Invertebr. Pathol., 2023, 196, 107855.
[http://dx.doi.org/10.1016/j.jip.2022.107855] [PMID: 36410528]
[136]
Gismondi, A.; Di Marco, G.; Canini, A. Detection of plant microRNAs in honey. PLoS One, 2017, 12(2), e0172981.
[http://dx.doi.org/10.1371/journal.pone.0172981] [PMID: 28241034]