The Effects of Curcumin on Brain-Derived Neurotrophic Factor Expression in Neurodegenerative Disorders

Page: [5937 - 5952] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Brain-Derived Neurotrophic Factor (BDNF) is a crucial molecule implicated in plastic modifications related to learning and memory. The expression of BDNF is highly regulated, which can lead to significant variability in BDNF levels in healthy subjects. Changes in BDNF expression might be associated with neuropsychiatric diseases, particularly in structures important for memory processes, including the hippocampus and parahippocampal areas. Curcumin is a natural polyphenolic compound that has great potential for the prevention and treatment of age-related disorders by regulating and activating the expression of neural protective proteins such as BDNF. This review discusses and analyzes the available scientific literature on the effects of curcumin on BDNF production and function in both in vitro and in vivo models of disease.

[1]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[2]
Sharifi-Rad, M.; Lankatillake, C.; Dias, D.A.; Docea, A.O.; Mahomoodally, M.F.; Lobine, D.; Chazot, P.L.; Kurt, B.; Boyunegmez Tumer, T.; Catarina Moreira, A.; Sharopov, F.; Martorell, M.; Martins, N.; Cho, W.C.; Calina, D.; Sharifi-Rad, J. Impact of natural compounds on neurodegenerative disorders: From preclinical to pharmacotherapeutics. J. Clin. Med., 2020, 9(4), 1061.
[http://dx.doi.org/10.3390/jcm9041061] [PMID: 32276438]
[3]
Chandra, V.; Pandav, R.; Laxminarayan, R.; Tanner, C.; Manyam, B.; Rajkumar, S. Neurological Disorders. In: Disease Control Priorities in Developing Countries; Jamison, D.T.; Breman, J.G.; Measham, A.R.; Alleyne, G.; Claeson, M.; Evans, D.B., Eds.; Oxford University Press: Washington (DC) New York, 2006.
[4]
Cole, G.; Yang, F.; Lim, G.; Cummings, J.; Masterman, D.; Frautschy, S. A rationale for curcuminoids for the prevention or treatment of Alzheimer’s disease. Curr. Med. Chem. Immunol. Endocr. Metab. Agents, 2003, 3(1), 15-25.
[http://dx.doi.org/10.2174/1568013033358761]
[5]
Radbakhsh, S.; Barreto, G.E.; Bland, A.R.; Sahebkar, A. Curcumin: A small molecule with big functionality against amyloid aggregation in neurodegenerative diseases and type 2 diabetes. Biofactors, 2021, 47(4), 570-586.
[http://dx.doi.org/10.1002/biof.1735] [PMID: 33893674]
[6]
Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci., 2019, 13, 363.
[http://dx.doi.org/10.3389/fncel.2019.00363] [PMID: 31440144]
[7]
Priyadarsini, K. The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[8]
Hatamipour, M.; Johnston, T.P.; Sahebkar, A. One molecule, many targets and numerous effects: The pleiotropy of curcumin lies in its chemical structure. Curr. Pharm. Des., 2018, 24(19), 2129-2136.
[http://dx.doi.org/10.2174/1381612824666180522111036] [PMID: 29788873]
[9]
Gupta, S.C.; Prasad, S.; Kim, J.H.; Patchva, S.; Webb, L.J.; Priyadarsini, I.K.; Aggarwal, B.B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep., 2011, 28(12), 1937-1955.
[http://dx.doi.org/10.1039/c1np00051a] [PMID: 21979811]
[10]
Keihanian, F., Saeidinia, A., Bagheri, R. K., Johnston, T. P., & Sahebkar, A. Curcumin, hemostasis, thrombosis, and coagulation. J. Cell. Physiol., 2018, 233(6), 4497–4511
[http://dx.doi.org/10.1002/jcp.26249]
[11]
Sabouni, N.; Marzouni, H.Z.; Palizban, S.; Meidaninikjeh, S.; Kesharwani, P.; Jamialahmadi, T.; Sahebkar, A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J. Drug Target., 2023, 31(3), 243-260.
[http://dx.doi.org/10.1080/1061186X.2022.2141755] [PMID: 36305097]
[12]
Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878.
[http://dx.doi.org/10.1002/ptr.6991] [PMID: 33464676]
[13]
Prasad, S.; Aggarwal, B.B. Turmeric, the golden spice. Herbal Medicine: Biomolecular and Clinical Aspects, 2nd Ed; , 2011.
[http://dx.doi.org/10.1201/b10787-14]
[14]
Ganji, A.; Farahani, I.; Saeedifar, A.M.; Mosayebi, G.; Ghazavi, A.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Protective effects of curcumin against lipopolysaccharide-induced toxicity. Curr. Med. Chem., 2021, 28(33), 6915-6930.
[http://dx.doi.org/10.2174/0929867328666210525124707] [PMID: 34036908]
[15]
Ghasemi, F.; Bagheri, H.; Barreto, G.E.; Read, M.I.; Sahebkar, A. Effects of curcumin on microglial cells. Neurotox. Res., 2019, 36(1), 12-26.
[http://dx.doi.org/10.1007/s12640-019-00030-0] [PMID: 30949950]
[16]
Heidari, Z.; Daei, M.; Boozari, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother. Res., 2022, 36(4), 1442-1458.
[http://dx.doi.org/10.1002/ptr.7350] [PMID: 34904764]
[17]
Momtazi, A. A., & Sahebkar, A. Difluorinated Curcumin: A Promising Curcumin Analogue with Improved Anti-Tumor Activity and Pharmacokinetic Profile. Curr. Pharm. Des., 2016, 22(28), 4386–4397.
[http://dx.doi.org/10.2174/1381612822666160527113501]
[18]
Mokhtari-Zaer, A.; Marefati, N.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. The protective role of curcumin in myocardial ischemia–reperfusion injury. J. Cell. Physiol., 2019, 234(1), 214-222.
[http://dx.doi.org/10.1002/jcp.26848] [PMID: 29968913]
[19]
Mohajeri, M., & Sahebkar, A. (). Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30–51
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.005]
[20]
Hashem, S.; Nisar, S.; Sageena, G.; Macha, M.A.; Yadav, S.K.; Krishnankutty, R.; Uddin, S.; Haris, M.; Bhat, A.A. Therapeutic effects of curcumol in several diseases; an overview. Nutr. Cancer, 2021, 73(2), 181-195.
[http://dx.doi.org/10.1080/01635581.2020.1749676] [PMID: 32285707]
[21]
Slika, L.; Patra, D. Traditional uses, therapeutic effects and recent advances of curcumin: A mini-review. Mini Rev. Med. Chem., 2020, 20(12), 1072-1082.
[http://dx.doi.org/10.2174/1389557520666200414161316] [PMID: 32286941]
[22]
Aggarwal, B.B.; Yuan, W.; Li, S.; Gupta, S.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol. Nutr. Food Res., 2013, 57(9), 1529-1542.
[http://dx.doi.org/10.1002/mnfr.201200838] [PMID: 23847105]
[23]
Hewlings, S.; Kalman, D. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[24]
Bagheri, H.; Ghasemi, F.; Barreto, G.E.; Rafiee, R.; Sathyapalan, T.; Sahebkar, A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors, 2020, 46(1), 5-20.
[http://dx.doi.org/10.1002/biof.1566] [PMID: 31580521]
[25]
Bavarsad, K.; Barreto, G.E.; Hadjzadeh, M.A.R.; Sahebkar, A. Protective effects of curcumin against ischemia-reperfusion injury in the nervous system. Mol. Neurobiol., 2019, 56(2), 1391-1404.
[http://dx.doi.org/10.1007/s12035-018-1169-7] [PMID: 29948942]
[26]
Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: an inflammasome silencer. Pharmacol. Res., 2020, 159, 104921.
[http://dx.doi.org/10.1016/j.phrs.2020.104921] [PMID: 32464325]
[27]
Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.005] [PMID: 29458788]
[28]
Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135.
[http://dx.doi.org/10.1016/j.autrev.2017.11.016] [PMID: 29180127]
[29]
Liczbiński, P.; Michałowicz, J.; Bukowska, B. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research. Phytother. Res., 2020, 34(8), 1992-2005.
[http://dx.doi.org/10.1002/ptr.6663] [PMID: 32141677]
[30]
Rusek, M.; Czuczwar, S.J. The Role of Curcumin in Post-Ischemic Brain. In: Cerebral Ischemia; Pluta, R. Brisbane (AU): Exon Publications, 2021.
[http://dx.doi.org/10.36255/exonpublications.cerebralischemia.2021.curcumin]
[31]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[32]
Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci., 2015, 6(6), 1164-1178.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[33]
Pruunsild, P.; Kazantseva, A.; Aid, T.; Palm, K.; Timmusk, T. Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics, 2007, 90(3), 397-406.
[http://dx.doi.org/10.1016/j.ygeno.2007.05.004] [PMID: 17629449]
[34]
Cattaneo, A.; Cattane, N.; Begni, V.; Pariante, C.M.; Riva, M.A. The human BDNF gene: Peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl Psychiatry, 2016, 6(11), e958.
[http://dx.doi.org/10.1038/tp.2016.214]
[35]
Pezet, S.; Malcangio, M.; McMahon, S.B. BDNF: a neuromodulator in nociceptive pathways? Brain Res. Brain Res. Rev., 2002, 40(1-3), 240-249.
[http://dx.doi.org/10.1016/S0165-0173(02)00206-0] [PMID: 12589922]
[36]
Bonni, A.; Brunet, A.; West, A.E.; Datta, S.R.; Takasu, M.A.; Greenberg, M.E. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science, 1999, 286(5443), 1358-1362.
[http://dx.doi.org/10.1126/science.286.5443.1358] [PMID: 10558990]
[37]
Suliman, S.; Hemmings, S.M.J.; Seedat, S. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: systematic review and meta-regression analysis. Front. Integr. Nuerosci., 2013, 7, 55.
[http://dx.doi.org/10.3389/fnint.2013.00055] [PMID: 23908608]
[38]
Lima Giacobbo, B.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.J.O.; Bromberg, E.; de Vries, E.F.J. Brain-derived neurotrophic factor in brain disorders: Focus on neuroinflammation. Mol. Neurobiol., 2019, 56(5), 3295-3312.
[http://dx.doi.org/10.1007/s12035-018-1283-6] [PMID: 30117106]
[39]
Ventriglia, M.; Zanardini, R.; Bonomini, C.; Zanetti, O.; Volpe, D.; Pasqualetti, P.; Gennarelli, M.; Bocchio-Chiavetto, L. Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed Res. Int., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/901082] [PMID: 24024214]
[40]
Yu, Y.; Wu, S.; Li, J.; Wang, R.; Xie, X.; Yu, X.; Pan, J.; Xu, Y.; Zheng, L. The effect of curcumin on the brain-gut axis in rat model of irritable bowel syndrome: involvement of 5-HT-dependent signaling. Metab. Brain Dis., 2015, 30(1), 47-55.
[http://dx.doi.org/10.1007/s11011-014-9554-z] [PMID: 24807589]
[41]
Osali, A. Aerobic exercise and nano-curcumin supplementation improve inflammation in elderly females with metabolic syndrome. Diabetol. Metab. Syndr., 2020, 12(1), 26.
[http://dx.doi.org/10.1186/s13098-020-00532-4] [PMID: 32256716]
[42]
Franco-Robles, E.; Campos-Cervantes, A.; Murillo-Ortiz, B.O.; Segovia, J.; López-Briones, S.; Vergara, P.; Pérez-Vázquez, V.; Solís-Ortiz, M.S.; Ramírez-Emiliano, J. Effects of curcumin on brain-derived neurotrophic factor levels and oxidative damage in obesity and diabetes. Appl. Physiol. Nutr. Metab., 2014, 39(2), 211-218.
[http://dx.doi.org/10.1139/apnm-2013-0133] [PMID: 24476477]
[43]
Kurauchi, Y.; Hisatsune, A.; Isohama, Y.; Mishima, S.; Katsuki, H. Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. Br. J. Pharmacol., 2012, 166(3), 1151-1168.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01833.x] [PMID: 22224485]
[44]
Moriya, J.; Chen, R.; Yamakawa, J.; Sasaki, K.; Ishigaki, Y.; Takahashi, T. Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biol. Pharm. Bull., 2011, 34(3), 354-359.
[http://dx.doi.org/10.1248/bpb.34.354] [PMID: 21372384]
[45]
Zhang, F.; Lu, Y.F.; Wu, Q.; Liu, J.; Shi, J.S. Resveratrol promotes neurotrophic factor release from astroglia. Exp. Biol. Med. (Maywood), 2012, 237(8), 943-948.
[http://dx.doi.org/10.1258/ebm.2012.012044] [PMID: 22875340]
[46]
Hoppe, J.B.; Coradini, K.; Frozza, R.L.; Oliveira, C.M.; Meneghetti, A.B.; Bernardi, A.; Pires, E.S.; Beck, R.C.R.; Salbego, C.G. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: Involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol. Learn. Mem., 2013, 106, 134-144.
[http://dx.doi.org/10.1016/j.nlm.2013.08.001] [PMID: 23954730]
[47]
Spencer, P.S.; Lein, P.J. Neurotoxicity. Encyclopedia of toxicology, 3rd ed; Wexler, P., Ed.; Academic Press: Oxford, 2014, pp. 489-500.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00169-X]
[48]
Sarraf, P.; Parohan, M.; Javanbakht, M.H.; Ranji-Burachaloo, S.; Djalali, M. Short-term curcumin supplementation enhances serum brain-derived neurotrophic factor in adult men and women: a systematic review and dose-response meta-analysis of randomized controlled trials. Nutr. Res., 2019, 69, 1-8.
[http://dx.doi.org/10.1016/j.nutres.2019.05.001] [PMID: 31279955]
[49]
Joseph, M.S.; Ying, Z.; Zhuang, Y.; Zhong, H.; Wu, A.; Bhatia, H.S.; Cruz, R.; Tillakaratne, N.J.K.; Roy, R.R.; Edgerton, V.R.; Gomez-Pinilla, F. Effects of diet and/or exercise in enhancing spinal cord sensorimotor learning. PLoS One, 2012, 7(7), e41288.
[http://dx.doi.org/10.1371/journal.pone.0041288] [PMID: 22911773]
[50]
Guerzoni, L.P.B.; Nicolas, V.; Angelova, A. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm. Res., 2017, 34(2), 492-505.
[http://dx.doi.org/10.1007/s11095-016-2080-4] [PMID: 27995523]
[51]
Singh, N.; Sharma, B. On the mechanisms of heavy metal-induced neurotoxicity: Amelioration by plant products. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2021, 91(4), 743-751.
[http://dx.doi.org/10.1007/s40011-021-01272-9]
[52]
Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: a review. Interdiscip. Toxicol., 2015, 8(2), 55-64.
[http://dx.doi.org/10.1515/intox-2015-0009] [PMID: 27486361]
[53]
Dabidi Roshan, V.; Hosseinzadeh, S.; Mahjoub, S.; Hosseinzadeh, M.; Myers, J. Endurance exercise training and diferuloyl methane supplement: changes in neurotrophic factor and oxidative stress induced by lead in rat brain. Biol. Sport, 2013, 30(1), 41-46.
[http://dx.doi.org/10.5604/20831862.1029820] [PMID: 24744464]
[54]
Hosseinzadeh, S.; Roshan, V.D.; Mahjoub, S. Continuous exercise training and curcumin attenuate changes in brain-derived neurotrophic factor and oxidative stress induced by lead acetate in the hippocampus of male rats. Pharm. Biol., 2013, 51(2), 240-245.
[http://dx.doi.org/10.3109/13880209.2012.717230] [PMID: 23134146]
[55]
Namgyal, D.; Ali, S.; Mehta, R.; Sarwat, M. The neuroprotective effect of curcumin against Cd-induced neurotoxicity and hippocampal neurogenesis promotion through CREB-BDNF signaling pathway. Toxicology, 2020, 442, 152542.
[http://dx.doi.org/10.1016/j.tox.2020.152542] [PMID: 32735850]
[56]
Wei, W.; Dong, Q.; Jiang, W.; Wang, Y.; Chen, Y.; Han, T.; Sun, C. Dichloroacetic acid-induced dysfunction in rat hippocampus and the protective effect of curcumin. Metab. Brain Dis., 2021, 36(4), 545-556.
[http://dx.doi.org/10.1007/s11011-020-00657-5] [PMID: 33411217]
[57]
Sheldon, A.L.; Robinson, M.B. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem. Int., 2007, 51(6-7), 333-355.
[http://dx.doi.org/10.1016/j.neuint.2007.03.012] [PMID: 17517448]
[58]
Kawamoto, E.M.; Scavone, C.; Mattson, M.P.; Camandola, S. Curcumin requires tumor necrosis factor α signaling to alleviate cognitive impairment elicited by lipopolysaccharide. Neurosignals, 2013, 21(1-2), 75-88.
[http://dx.doi.org/10.1159/000336074] [PMID: 22572473]
[59]
Santana-Martínez, R.A.; Silva-Islas, C.A.; Fernández-Orihuela, Y.Y.; Barrera-Oviedo, D.; Pedraza-Chaverri, J.; Hernández-Pando, R. The therapeutic effect of curcumin in quinolinic acid-induced neurotoxicity in rats is associated with BDNF, ERK1/2, Nrf2, and antioxidant enzymes. Antioxidants, 2019, 8(9)
[60]
Papoušek, R.; Pataj, Z.; Nováková, P.; Lemr, K.; Barták, P. Determination of acrylamide and acrolein in smoke from tobacco and e-cigarettes. Chromatographia, 2014, 77(17-18), 1145-1151.
[http://dx.doi.org/10.1007/s10337-014-2729-2]
[61]
Yan, D.; Yao, J.; Liu, Y.; Zhang, X.; Wang, Y.; Chen, X.; Liu, L.; Shi, N.; Yan, H. Tau hyperphosphorylation and P-CREB reduction are involved in acrylamide-induced spatial memory impairment: Suppression by curcumin. Brain Behav. Immun., 2018, 71, 66-80.
[http://dx.doi.org/10.1016/j.bbi.2018.04.014] [PMID: 29704550]
[62]
Shi, L.Y.; Zhang, L.; Li, H.; Liu, T.L.; Lai, J.C.; Wu, Z.B. Protective effects of curcumin on acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Pharmacol Rep, 2018, 70(5), 1040-46.
[http://dx.doi.org/10.1016/j.pharep.2018.05.006]
[63]
Motaghinejad, M.; Motevalian, M.; Fatima, S.; Faraji, F.; Mozaffari, S. The neuroprotective effect of curcumin against nicotine-induced neurotoxicity is mediated by CREB–BDNF signaling pathway. Neurochem. Res., 2017, 42(10), 2921-2932.
[http://dx.doi.org/10.1007/s11064-017-2323-8] [PMID: 28608236]
[64]
Cippitelli, A.; Damadzic, R.; Frankola, K.; Goldstein, A.; Thorsell, A.; Singley, E.; Eskay, R.L.; Heilig, M. Alcohol-induced neurodegeneration, suppression of transforming growth factor-beta, and cognitive impairment in rats: prevention by group II metabotropic glutamate receptor activation. Biol. Psychiatry, 2010, 67(9), 823-830.
[http://dx.doi.org/10.1016/j.biopsych.2009.12.018] [PMID: 20132926]
[65]
Motaghinejad, M.; Motevalian, M.; Fatima, S.; Hashemi, H.; Gholami, M. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed. Pharmacother., 2017, 87, 721-740.
[http://dx.doi.org/10.1016/j.biopha.2016.12.020] [PMID: 28095363]
[66]
Feizolahi, F.; Azarbayjani, M.A.; Nasehi, M.; Peeri, M.; Zarrindast, M.R. The combination of swimming and curcumin consumption may improve spatial memory recovery after binge ethanol drinking. Physiol. Behav., 2019, 207, 139-150.
[http://dx.doi.org/10.1016/j.physbeh.2019.03.018] [PMID: 31071339]
[67]
Gholami, M.; Hozuri, F.; Abdolkarimi, S.; Mahmoudi, M.; Motaghinejad, M.; Safari, S.; Sadr, S. Pharmacological and molecular evidence of neuroprotective curcumin effects against biochemical and behavioral sequels caused by methamphetamine: Possible function of CREB-BDNF signaling pathway. Basic Clin. Neurosci., 2021, 12(3), 325-338.
[http://dx.doi.org/10.32598/bcn.2021.1176.3] [PMID: 34917292]
[68]
Wang, Q.; Sun, L.H.; Jia, W.; Liu, X.M.; Dang, H.X.; Mai, W.L.; Wang, N.; Steinmetz, A.; Wang, Y.Q.; Xu, C.J. Comparison of ginsenosides Rg1 and Rb1 for their effects on improving scopolamine-induced learning and memory impairment in mice. Phytother. Res., 2010, 24(12), 1748-1754.
[http://dx.doi.org/10.1002/ptr.3130] [PMID: 20564503]
[69]
Eun, C.S.; Lim, J.S.; Lee, J.; Lee, S.P.; Yang, S.A. The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice. BMC Complement. Altern. Med., 2017, 17(1), 367.
[http://dx.doi.org/10.1186/s12906-017-1880-3] [PMID: 28716085]
[70]
Gite, S.; Ross, R.P.; Kirke, D.; Guihéneuf, F.; Aussant, J.; Stengel, D.B.; Dinan, T.G.; Cryan, J.F.; Stanton, C. Nutraceuticals to promote neuronal plasticity in response to corticosterone-induced stress in human neuroblastoma cells. Nutr. Neurosci., 2019, 22(8), 551-568.
[http://dx.doi.org/10.1080/1028415X.2017.1418728] [PMID: 29378496]
[71]
Tiekou Lorinczova, H.; Fitzsimons, O.; Mursaleen, L.; Renshaw, D.; Begum, G.; Zariwala, M.G. Co-administration of iron and a bioavailable curcumin supplement increases serum BDNF levels in healthy adults. Antioxidants, 2020, 9(8), 645.
[http://dx.doi.org/10.3390/antiox9080645]
[72]
Wu, X.; Chen, H.; Huang, C.; Gu, X.; Wang, J.; Xu, D.; Yu, X.; Shuai, C.; Chen, L.; Li, S.; Xu, Y.; Gao, T.; Ye, M.; Su, W.; Liu, H.; Zhang, J.; Wang, C.; Chen, J.; Wang, Q.; Cui, W. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice. Metab. Brain Dis., 2017, 32(3), 789-798.
[http://dx.doi.org/10.1007/s11011-017-9970-y] [PMID: 28224377]
[73]
Namgyal, D.; Chandan, K.; Sultan, A.; Aftab, M.; Ali, S.; Mehta, R.; El-Serehy, H.A.; Al-Misned, F.A.; Sarwat, M. Dim light at night induced neurodegeneration and ameliorative effect of curcumin. Cells, 2020, 9(9), 2093.
[http://dx.doi.org/10.3390/cells9092093] [PMID: 32933226]
[74]
Sumanont, Y.; Murakami, Y.; Tohda, M.; Vajragupta, O.; Watanabe, H.; Matsumoto, K. Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus. Biol. Pharm. Bull., 2007, 30(9), 1732-1739.
[http://dx.doi.org/10.1248/bpb.30.1732] [PMID: 17827730]
[75]
Beltrán-Campos, V.; Silva-Vera, M.; García-Campos, M.L.; Díaz-Cintra, S. Effects of morphine on brain plasticity. Neurologia, 2015, 30(3), 176-180.
[PMID: 25444409]
[76]
Liang, D.Y.; Li, X.; Clark, J.D. Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice. J. Pain, 2013, 14(1), 36-47.
[http://dx.doi.org/10.1016/j.jpain.2012.10.005] [PMID: 23273833]
[77]
Matsushita, Y.; Ueda, H. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. Neuroreport, 2009, 20(1), 63-68.
[http://dx.doi.org/10.1097/WNR.0b013e328314decb] [PMID: 19033880]
[78]
Zhu, X.; Li, Q.; Chang, R.; Yang, D.; Song, Z.; Guo, Q.; Huang, C. Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLoS One, 2014, 9(3), e91303.
[http://dx.doi.org/10.1371/journal.pone.0091303] [PMID: 24603592]
[79]
Pieretti, S.; Ranjan, A.P.; Di Giannuario, A.; Mukerjee, A.; Marzoli, F.; Di Giovannandrea, R.; Vishwanatha, J.K. “Curcumin-loaded Poly (d, l-lactide-co-glycolide) nanovesicles induce antinociceptive effects and reduce pronociceptive cytokine and BDNF release in spinal cord after acute administration in mice”. Colloids Surf. B Biointerfaces, 2017, 158, 379-386.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.027] [PMID: 28719859]
[80]
Srivastava, P.; Dhuriya, Y.K.; Gupta, R.; Shukla, R.K.; Yadav, R.S.; Dwivedi, H.N.; Pant, A.B.; Khanna, V.K. Protective effect of curcumin by modulating BDNF/DARPP32/CREB in arsenic-induced alterations in dopaminergic signaling in rat corpus striatum. Mol. Neurobiol., 2018, 55(1), 445-461.
[http://dx.doi.org/10.1007/s12035-016-0288-2] [PMID: 27966075]
[81]
Srivastava, P.; Dhuriya, Y.K.; Kumar, V.; Srivastava, A.; Gupta, R.; Shukla, R.K.; Yadav, R.S.; Dwivedi, H.N.; Pant, A.B.; Khanna, V.K. PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin. Neurotoxicology, 2018, 67, 190-205.
[http://dx.doi.org/10.1016/j.neuro.2018.04.018] [PMID: 29723552]
[82]
Failla, M.D.; Conley, Y.P.; Wagner, A.K. Brain-derived neurotrophic factor (BDNF) in traumatic brain injury–related mortality. Neurorehabil. Neural Repair, 2016, 30(1), 83-93.
[http://dx.doi.org/10.1177/1545968315586465] [PMID: 25979196]
[83]
Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp. Neurol., 2006, 197(2), 309-317.
[http://dx.doi.org/10.1016/j.expneurol.2005.09.004] [PMID: 16364299]
[84]
Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary strategy to repair plasma membrane after brain trauma: implications for plasticity and cognition. Neurorehabil. Neural Repair, 2014, 28(1), 75-84.
[http://dx.doi.org/10.1177/1545968313498650] [PMID: 23911971]
[85]
Sun, G.; Miao, Z.; Ye, Y.; Zhao, P.; Fan, L.; Bao, Z.; Tu, Y.; Li, C.; Chao, H.; Xu, X.; Ji, J. Curcumin alleviates neuroinflammation, enhances hippocampal neurogenesis, and improves spatial memory after traumatic brain injury. Brain Res. Bull., 2020, 162, 84-93.
[http://dx.doi.org/10.1016/j.brainresbull.2020.05.009] [PMID: 32502596]
[86]
Wu, A.; Ying, Z.; Schubert, D.; Gomez-Pinilla, F. Brain and spinal cord interaction: a dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma. Neurorehabil. Neural Repair, 2011, 25(4), 332-342.
[http://dx.doi.org/10.1177/1545968310397706] [PMID: 21343524]
[87]
Murakami, S.; Imbe, H.; Morikawa, Y.; Kubo, C.; Senba, E. Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci. Res., 2005, 53(2), 129-139.
[http://dx.doi.org/10.1016/j.neures.2005.06.008] [PMID: 16024125]
[88]
Xu, Y.; Ku, B.; Cui, L.; Li, X.; Barish, P.A.; Foster, T.C.; Ogle, W.O. Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res., 2007, 1162, 9-18.
[http://dx.doi.org/10.1016/j.brainres.2007.05.071] [PMID: 17617388]
[89]
Xu, Y.; Ku, B.; Tie, L.; Yao, H.; Jiang, W.; Ma, X.; Li, X. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res., 2006, 1122(1), 56-64.
[http://dx.doi.org/10.1016/j.brainres.2006.09.009] [PMID: 17022948]
[90]
Zhang, L.; Luo, J.; Zhang, M.; Yao, W.; Ma, X.; Yu, S.Y. Effects of curcumin on chronic, unpredictable, mild, stress-induced depressive-like behaviour and structural plasticity in the lateral amygdala of rats. Int. J. Neuropsychopharmacol., 2014, 17(5), 793-806.
[http://dx.doi.org/10.1017/S1461145713001661] [PMID: 24405689]
[91]
Liu, D.; Wang, Z.; Gao, Z.; Xie, K.; Zhang, Q.; Jiang, H.; Pang, Q. Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behav. Brain Res., 2014, 271, 116-121.
[http://dx.doi.org/10.1016/j.bbr.2014.05.068] [PMID: 24914461]
[92]
Wei, S.; Xu, H.; Xia, D.; Zhao, R. Curcumin attenuates the effects of transport stress on serum cortisol concentration, hippocampal NO production, and BDNF expression in the pig. Domest. Anim. Endocrinol., 2010, 39(4), 231-239.
[http://dx.doi.org/10.1016/j.domaniend.2010.06.004] [PMID: 20920780]
[93]
Dwivedi, Y. Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr. Dis. Treat., 2009, 5, 433-449.
[http://dx.doi.org/10.2147/NDT.S5700] [PMID: 19721723]
[94]
Ristevska-Dimitrovska, G.; Shishkov, R.; Gerazova, V.P.; Vujovik, V.; Stefanovski, B.; Novotni, A.; Marinov, P.; Filov, I. Different serum BDNF levels in depression: results from BDNF studies in FYR Macedonia and Bulgaria. Psychiatr. Danub., 2013, 25(2), 123-127.
[PMID: 23793275]
[95]
Molendijk, M.L.; Bus, B A A.; Spinhoven, P.; Penninx, B.W.J.H.; Kenis, G.; Prickaerts, J.; Voshaar, R.C.O.; Elzinga, B.M. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state–trait issues, clinical features and pharmacological treatment. Mol. Psychiatry, 2011, 16(11), 1088-1095.
[http://dx.doi.org/10.1038/mp.2010.98] [PMID: 20856249]
[96]
Afzal, A.; Batool, Z.; Sadir, S.; Liaquat, L.; Shahzad, S.; Tabassum, S.; Ahmad, S.; Kamil, N.; Perveen, T.; Haider, S. Therapeutic potential of curcumin in reversing the depression and associated pseudodementia via modulating stress hormone, hippocampal neurotransmitters, and BDNF Levels in rats. Neurochem. Res., 2021, 46(12), 3273-3285.
[http://dx.doi.org/10.1007/s11064-021-03430-x] [PMID: 34409523]
[97]
Liao, D; Lv, C; Cao, L; Yao, D; Wu, Y; Long, M Curcumin attenuates chronic unpredictable mild stress-induced depressive-like behaviors via restoring changes in oxidative stress and the activation of Nrf2 signaling pathway in rats. Oxid Med Cell Longev, 2020, 2020, 9268083.
[http://dx.doi.org/10.1155/2020/9268083]
[98]
Hurley, L.L.; Akinfiresoye, L.; Nwulia, E.; Kamiya, A.; Kulkarni, A.A.; Tizabi, Y. Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF. Behav. Brain Res., 2013, 239, 27-30.
[http://dx.doi.org/10.1016/j.bbr.2012.10.049] [PMID: 23142609]
[99]
Huang, Z.; Zhong, X.M.; Li, Z.Y.; Feng, C.R.; Pan, A.J.; Mao, Q.Q. Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neurosci. Lett., 2011, 493(3), 145-148.
[http://dx.doi.org/10.1016/j.neulet.2011.02.030] [PMID: 21334417]
[100]
Zhang, L.; Xu, T.; Wang, S.; Yu, L.; Liu, D.; Zhan, R.; Yu, S.Y. Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice. Behav. Brain Res., 2012, 235(1), 67-72.
[http://dx.doi.org/10.1016/j.bbr.2012.07.019] [PMID: 22820234]
[101]
Lian, L.; Xu, Y.; Zhang, J.; Yu, Y.; Zhu, N.; Guan, X.; Huang, H.; Chen, R.; Chen, J.; Shi, G.; Pan, J. Antidepressant-like effects of a novel curcumin derivative J147: Involvement of 5-HT1A receptor. Neuropharmacology, 2018, 135, 506-513.
[http://dx.doi.org/10.1016/j.neuropharm.2018.04.003] [PMID: 29626566]
[102]
Li, J.; Chen, L.; Li, G.; Chen, X.; Hu, S.; Zheng, L.; Luria, V.; Lv, J.; Sun, Y.; Xu, Y.; Yu, Y. Sub-acute treatment of curcumin derivative J147 ameliorates depression-like behavior through 5-HT1A-mediated cAMP signaling. Front. Neurosci., 2020, 14, 701.
[http://dx.doi.org/10.3389/fnins.2020.00701] [PMID: 32733195]
[103]
Wang, R.; Li, Y.H.; Xu, Y.; Li, Y.B.; Wu, H.L.; Guo, H.; Zhang, J.Z.; Zhang, J.J.; Pan, X.Y.; Li, X.J. Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(1), 147-153.
[http://dx.doi.org/10.1016/j.pnpbp.2009.10.016] [PMID: 19879308]
[104]
Wang, R.; Li, Y.B.; Li, Y.H.; Xu, Y.; Wu, H.; Li, X.J. Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res., 2008, 1210, 84-91.
[http://dx.doi.org/10.1016/j.brainres.2008.01.104] [PMID: 18420184]
[105]
He, X.; Yang, L.; Wang, M.; Zhuang, X.; Huang, R.; Zhu, R. Targeting the endocannabinoid/CB1 receptor system for treating major depression through antidepressant activities of curcumin and dexanabinol-loaded solid lipid nanoparticles. Cell Physiol Biochem, 2017, 42(6), 2281-2294.
[106]
Yu, J.J.; Pei, L.B.; Zhang, Y.; Wen, Z.Y.; Yang, J.L. Chronic supplementation of curcumin enhances the efficacy of antidepressants in major depressive disorder. J. Clin. Psychopharmacol., 2015, 35(4), 406-410.
[http://dx.doi.org/10.1097/JCP.0000000000000352] [PMID: 26066335]
[107]
Choi, G-Y; Kim, H-B; Hwang, E-S; Lee, S; Kim, M-J; Choi, J-Y Curcumin alters neural plasticity and viability of intact hippocampal circuits and attenuates behavioral despair and COX-2 expression in chronically stressed rats. Mediators Inflamm, 2017, 2017, 6280925.
[108]
Rinwa, P.; Kumar, A.; Garg, S. Suppression of neuroinflammatory and apoptotic signaling cascade by curcumin alone and in combination with piperine in rat model of olfactory bulbectomy induced depression. PLoS One, 2013, 8(4), e61052.
[http://dx.doi.org/10.1371/journal.pone.0061052] [PMID: 23613781]
[109]
Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener., 2022, 11(1), 4.
[http://dx.doi.org/10.1186/s40035-022-00279-0] [PMID: 35090576]
[110]
Zhang, L.; Fang, Y.; Xu, Y.; Lian, Y.; Xie, N.; Wu, T.; Zhang, H.; Sun, L.; Zhang, R.; Wang, Z. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One, 2015, 10(6), e0131525.
[http://dx.doi.org/10.1371/journal.pone.0131525] [PMID: 26114940]
[111]
Okuda, M.; Fujita, Y.; Sugimoto, H. The additive effects of low dose intake of ferulic acid, phosphatidylserine and curcumin, not alone, improve cognitive function in appswe/ps1de9 transgenic mice. Biol. Pharm. Bull., 2019, 42(10), 1694-1706.
[http://dx.doi.org/10.1248/bpb.b19-00332] [PMID: 31582657]
[112]
Li, J.; Wang, S.; Zhang, S.; Cheng, D.; Yang, X.; Wang, Y.; Yin, H.; Liu, Y.; Liu, Y.; Bai, H.; Geng, S.; Wang, Y. Curcumin slows the progression of Alzheimer’s disease by modulating mitochondrial stress responses via JMJD3-H3K27me3-BDNF axis. Am. J. Transl. Res., 2021, 13(12), 13380-13393.
[PMID: 35035682]
[113]
Tang, H.; Lu, D.; Pan, R.; Qin, X.; Xiong, H.; Dong, J. Curcumin improves spatial memory impairment induced by human immunodeficiency virus type 1 glycoprotein 120 V3 loop peptide in rats. Life Sci., 2009, 85(1-2), 1-10.
[http://dx.doi.org/10.1016/j.lfs.2009.03.013] [PMID: 19345695]
[114]
Yang, J.; Song, S.; Li, J.; Liang, T. Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson’s disease rat. Pathol. Res. Pract., 2014, 210(6), 357-362.
[http://dx.doi.org/10.1016/j.prp.2014.02.005] [PMID: 24642369]
[115]
Yu, C.; Li, C.H.; Chen, S.; Yoo, H.; Qin, X.; Park, H. Decreased BDNF release in cortical neurons of a knock-in mouse model of Huntington’s disease. Sci. Rep., 2018, 8(1), 16976.
[http://dx.doi.org/10.1038/s41598-018-34883-w] [PMID: 30451892]
[116]
Zuccato, C.; Marullo, M.; Vitali, B.; Tarditi, A.; Mariotti, C.; Valenza, M.; Lahiri, N.; Wild, E.J.; Sassone, J.; Ciammola, A.; Bachoud-Lèvi, A.C.; Tabrizi, S.J.; Di Donato, S.; Cattaneo, E. Brain-derived neurotrophic factor in patients with Huntington’s disease. PLoS One, 2011, 6(8), e22966.
[http://dx.doi.org/10.1371/journal.pone.0022966] [PMID: 21857974]
[117]
Gharaibeh, A.; Maiti, P.; Culver, R.; Heileman, S.; Srinageshwar, B.; Story, D.; Spelde, K.; Paladugu, L.; Munro, N.; Muhn, N.; Kolli, N.; Rossignol, J.; Dunbar, G.L. Solid lipid curcumin particles protect medium spiny neuronal morphology, and reduce learning and memory deficits in the YAC128 mouse model of Huntington’s disease. Int. J. Mol. Sci., 2020, 21(24), 9542.
[http://dx.doi.org/10.3390/ijms21249542] [PMID: 33333883]
[118]
Elifani, F.; Amico, E.; Pepe, G.; Capocci, L.; Castaldo, S.; Rosa, P.; Montano, E.; Pollice, A.; Madonna, M.; Filosa, S.; Calogero, A.; Maglione, V.; Crispi, S.; Di Pardo, A. Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntington’s disease. Hum. Mol. Genet., 2019, 28(23), ddz247.
[http://dx.doi.org/10.1093/hmg/ddz247] [PMID: 31630202]
[119]
Mojtabavi, H.; Shaka, Z.; Momtazmanesh, S.; Ajdari, A.; Rezaei, N. Circulating brain-derived neurotrophic factor as a potential biomarker in stroke: a systematic review and meta-analysis. J. Transl. Med., 2022, 20(1), 126.
[http://dx.doi.org/10.1186/s12967-022-03312-y] [PMID: 35287688]
[120]
Lapchak, P.A.; Boitano, P.D.; Bombien, R.; Cook, D.J.; Doyan, S.; Lara, J.M.; Schubert, D.R. CNB-001, a pleiotropic drug is efficacious in embolized agyrencephalic New Zealand white rabbits and ischemic gyrencephalic cynomolgus monkeys. Exp. Neurol., 2019, 313, 98-108.
[http://dx.doi.org/10.1016/j.expneurol.2018.11.010] [PMID: 30521790]
[121]
Green, M.J.; Matheson, S.L.; Shepherd, A.; Weickert, C.S.; Carr, V.J. Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol. Psychiatry, 2011, 16(9), 960-972.
[http://dx.doi.org/10.1038/mp.2010.88] [PMID: 20733577]
[122]
Wynn, J.K.; Green, M.F.; Hellemann, G.; Karunaratne, K.; Davis, M.C.; Marder, S.R. The effects of curcumin on brain-derived neurotrophic factor and cognition in schizophrenia: A randomized controlled study. Schizophr. Res., 2018, 195, 572-573.
[http://dx.doi.org/10.1016/j.schres.2017.09.046] [PMID: 28965778]