Recent Applications of Deconvolution Microscopy in Medicine

Article ID: e020623217605 Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Deconvolution microscopy is a computational image-processing technique used in conjunction with fluorescence microscopy to increase the resolution and contrast of three-dimensional images. Fluorescence microscopy is a widely used technique in biology and medicine that involves labeling specific molecules or structures within a sample with fluorescent dyes and then electronically photographing the sample through a microscope. However, the resolution of conventional fluorescence microscopy is limited by diffraction within the microscope’s optical path, which causes blurring of the image and reduces the ability to resolve structures in close proximity with one another. Deconvolution microscopy overcomes this limitation by means of computer-based image processing whereby mathematical algorithms are used to eliminate the blurring caused by the microscope’s optics and thus obtain a higher-resolution image that reveals the fine details of the sample with greater accuracy. Deconvolution microscopy, which can be applied to a range of image acquisition modalities, including widefield, confocal, and super-resolution microscopy, has become an essential tool for studying the structure and function of biological systems at the cellular and molecular levels. In this perspective, the latest deconvolution techniques have been introduced and image-processing methods for medical purposes have been presented.

[1]
McNally JG, Karpova T, Cooper J, Conchello JA. Three-dimensional imaging by deconvolution microscopy. Methods 1999; 19(3): 373-85.
[http://dx.doi.org/10.1006/meth.1999.0873] [PMID: 10579932]
[2]
Sibarita JB. Deconvolution microscopy. Adv Biochem Eng Biotechnol 2005; 95: 201-43.
[http://dx.doi.org/10.1007/b102215] [PMID: 16080270]
[3]
Richardson WH. Bayesian-based iterative method of image restoration. J Opt Soc Am 1972; 62(1): 55-9.
[http://dx.doi.org/10.1364/JOSA.62.000055]
[4]
Agard DA, Hiraoka Y, Shaw P, Sedat JW. Fluorescence microscopy in three dimensions. Methods Cell Biol 1989; 30: 353-77.
[http://dx.doi.org/10.1016/S0091-679X(08)60986-3] [PMID: 2494418]
[5]
Swedlow JR. Quantitative fluorescence microscopy and image deconvolution. Methods Cell Biol 2013; 114: 407-26.
[http://dx.doi.org/10.1016/B978-0-12-407761-4.00017-8] [PMID: 23931516]
[6]
Gokhin DS, Fowler VM. Software-based measurement of thin filament lengths: An open-source GUI for Distributed Deconvolution analysis of fluorescence images. J Microsc 2017; 265(1): 11-20.
[http://dx.doi.org/10.1111/jmi.12456] [PMID: 27644080]
[7]
Katoh K. Software-based three-dimensional deconvolution microscopy of cytoskeletal proteins in cultured fibroblast using open-source software and open hardware. J Imaging 2019; 5(12): 88.
[http://dx.doi.org/10.3390/jimaging5120088] [PMID: 34460602]
[8]
Kubalová I, Němečková A, Weisshart K, Hřibová E, Schubert V. Comparing super-resolution microscopy techniques to analyze chromosomes. Int J Mol Sci 2021; 22(4): 1903.
[http://dx.doi.org/10.3390/ijms22041903] [PMID: 33672992]
[9]
Prigent S, Nguyen HN, Leconte L, et al. SPITFIR(e): A supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos. Sci Rep 2023; 13(1): 1489.
[http://dx.doi.org/10.1038/s41598-022-26178-y] [PMID: 36707688]
[10]
Liao H, Sheridan T, Cosar E, et al. Deconvolution microscopy: A platform for rapid on‐site evaluation of fine needle aspiration specimens that enables recovery of the sample. Cytopathology 2022; 33(3): 312-20.
[http://dx.doi.org/10.1111/cyt.13106] [PMID: 35102620]
[11]
Guo M, Li Y, Su Y, et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat Biotechnol 2020; 38(11): 1337-46.
[http://dx.doi.org/10.1038/s41587-020-0560-x] [PMID: 32601431]
[12]
Kim B. DVDeconv: An open-source MATLAB toolbox for depth-variant asymmetric deconvolution of fluorescence micrographs. Cells 2021; 10(2): 397.
[http://dx.doi.org/10.3390/cells10020397] [PMID: 33671933]
[13]
Becker K, Saghafi S, Pende M, et al. Deconvolution of light sheet microscopy recordings. Sci Rep 2019; 9(1): 17625.
[http://dx.doi.org/10.1038/s41598-019-53875-y] [PMID: 31772375]
[14]
Corbetta E, Candeo A, Bassi A, Ancora D. Blind deconvolution in autocorrelation inversion for multiview light‐sheet microscopy. Microsc Res Tech 2022; 85(6): 2282-91.
[http://dx.doi.org/10.1002/jemt.24085] [PMID: 35199902]
[15]
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9(7): 671-5.
[http://dx.doi.org/10.1038/nmeth.2089] [PMID: 22930834]
[16]
Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N. Computer control of microscopes using µManager. Curr Protoc Mol Biol 2010; 14.20..
[17]
Sage D, Donati L, Soulez F, et al. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods 2017; 115: 28-41.
[http://dx.doi.org/10.1016/j.ymeth.2016.12.015] [PMID: 28057586]
[18]
Dougherty R. 11Th AAA/CEAS Aeroacoustics Conterence. Monterey, California. 2005; pp. 23 May 2005; 2005-961.
[http://dx.doi.org/10.2514/6.2005-2961]
[19]
Kirshner H, Aguet F, Sage D, Unser M. 3-D PSF fitting for fluorescence microscopy: Implementation and localization application. J Microsc 2013; 249(1): 13-25.
[http://dx.doi.org/10.1111/j.1365-2818.2012.03675.x] [PMID: 23126323]
[20]
Manley S, Gillette JM, Patterson GH, et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 2008; 5(2): 155-7.
[http://dx.doi.org/10.1038/nmeth.1176] [PMID: 18193054]
[21]
Hedde PN, Fuchs J, Oswald F, Wiedenmann J, Nienhaus GU. Online image analysis software for photoactivation localization microscopy. Nat Methods 2009; 6(10): 689-90.
[http://dx.doi.org/10.1038/nmeth1009-689] [PMID: 19789527]
[22]
Märki I, Bocchio NL, Geissbuehler S, Aguet F, Bilenca A, Lasser T. Three-dimensional nano-localization of single fluorescent emitters. Opt Express 2010; 18(19): 20263-72.
[http://dx.doi.org/10.1364/OE.18.020263] [PMID: 20940917]
[23]
Geissbuehler S, Dellagiacoma C, Lasser T. Comparison between SOFI and STORM. Biomed Opt Express 2011; 2(3): 408-20.
[http://dx.doi.org/10.1364/BOE.2.000408] [PMID: 21412447]
[24]
Lane RG. Methods for maximum-likelihood deconvolution. J Opt Soc Am A Opt Image Sci Vis 1996; 13(10): 1992-8.
[http://dx.doi.org/10.1364/JOSAA.13.001992]
[25]
Lam EY, Goodman JW. Iterative statistical approach to blind image deconvolution. J Opt Soc Am A Opt Image Sci Vis 2000; 17(7): 1177-84.
[http://dx.doi.org/10.1364/JOSAA.17.001177] [PMID: 10883969]
[26]
Liliac IM, Ungureanu BS, Mărgăritescu C, et al. E-cadherin modulation and inter-cellular trafficking in tubular gastric adenocarcinoma: A high-resolution microscopy pilot study. Biomedicines 2022; 10(2): 349.
[http://dx.doi.org/10.3390/biomedicines10020349] [PMID: 35203558]
[27]
Lee TY, Lu WJ, Changou CA, et al. Platelet autophagic machinery involved in thrombosis through a novel linkage of AMPK-MTOR to sphingolipid metabolism. Autophagy 2021; 17(12): 4141-58.
[http://dx.doi.org/10.1080/15548627.2021.1904495] [PMID: 33749503]
[28]
Xypakis, E.; Gosti, G.; Giordani, T.; Santagati, R.; Ruocco, G.; Leonetti, M. Deep learning for blind structured illumination microscopy. Sci Rep 2022; 12(1): 8623.
[http://dx.doi.org/10.1038/s41598-022-12571-0]
[29]
de Monvel BJ, Le Calvez S, Ulfendahl M. Image restoration for confocal microscopy: Improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ. Biophys J 2001; 80(5): 2455-70.
[http://dx.doi.org/10.1016/S0006-3495(01)76214-5] [PMID: 11325744]
[30]
He T, Sun Y, Qi J, Hu J, Huang H. Image deconvolution for confocal laser scanning microscopy using constrained total variation with a gradient field. Appl Opt 2019; 58(14): 3754-66.
[http://dx.doi.org/10.1364/AO.58.003754] [PMID: 31158185]