Parametric Analysis of Indium Gallium Arsenide Wafer-based Thin Body (5 nm) Double-gate MOSFETs for Hybrid RF Applications

Page: [335 - 349] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Introduction: The electrical behavior of a high-performance Indium Gallium Arsenide (In- GaAs) wafer-based n-type Double-Gate (DG) MOSFET with a gate length (LG1= LG2) of 2 nm was analyzed. The relationship of channel length, gate length, top and bottom gate oxide layer thickness, a gate oxide material, and the rectangular wafer with upgraded structural characteristics and the parameters, such as switch current ratio (ION/IOFF) and transconductance (Gm) was analyzed for hybrid RF applications.

Methods: This work was carried out at 300 K utilizing a Non-Equilibrium Green Function (NEGF) mechanism for the proposed DG MOSFET architecture with La2O3 (EOT=1 nm) as gate dielectric oxide and source-drain device length (LSD) of 45 nm. It resulted in a maximum drain current (IDmax) of 4.52 mA, where the drain-source voltage (VDS) varied between 0 V and 0.5 V at the fixed gate to source voltage (VGS) = 0.5 V. The ON current(ION), leakage current (IOFF), and (ION/IOFF) switching current ratios of 1.56 mA, 8.49×10-6 μA, and 18.3×107 μA were obtained when the gate to source voltage (VGS) varied between 0 and 0.5 V at fixed drain-source voltage (VDS)=0.5V.

Results: The simulated result showed the values of maximum current density (Jmax), one and twodimensional electron density (N1D and N2D), electron mobility (μn), transconductance (Gm), and Subthreshold Slope (SS) are 52.4 μA/m2, 3.6×107 cm-1, 11.36×1012 cm-2, 1417 cm2V-1S-1, 3140 μS/μm, and 178 mV/dec, respectively.

The Fermi-Dirac statistics were employed to limit the charge distribution of holes and electrons at a semiconductor-insulator interface. The flat-band voltage (VFB) of - 0.45 V for the fixed threshold voltage greatly impacted the breakdown voltage. The results were obtained by applying carriers to the channels with the (001) axis perpendicular to the gate oxide. The sub-band energy profile and electron density were well implemented and derived using the Non-Equilibrium Green’s Function (NEGF) formalism. Further, a few advantages of the proposed heterostructure-based DG MOSFET structure over the other structures were observed.

Conclusion: This proposed patent design, with a reduction in the leakage current characteristics, is mainly suitable for advanced Silicon-based solid-state CMOS devices, Microelectronics, Nanotechnologies, and future-generation device applications.

[1]
Passlack M. High mobility III-V MOSFETs for RF and Digital applications IEEE International Electron Devices Meeting (IEDM 2007).Washington DC, USA. 2007; p. 621-624.
[http://dx.doi.org/10.1109/IEDM.2007.4419016]
[2]
Schwarz M, Holtij T, Kloes A, Iñíguez B. 2D analytical calculation of the electric field in lightly doped Schottky barrier double-gate MOSFETs and estimation of the tunneling/thermionic current. Solid-State Electron 2011; 63(1): 119-29.
[http://dx.doi.org/10.1016/j.sse.2011.05.013]
[3]
Fossum JG, Ge L, Chiang M-H, et al. A process/physics-based compact model for nonclassical CMOS device and circuit design. Solid-State Electron 2004; 48(6): 919-26.
[http://dx.doi.org/10.1016/j.sse.2003.12.030]
[4]
Hyung-Kyu L, Fossum JG. Threshold voltage of thin-film Silicon-on-insulator (SOI) MOSFET’s. IEEE Trans Electron Dev 1983; 30(10): 1244-51.
[http://dx.doi.org/10.1109/T-ED.1983.21282]
[5]
Sarkar A, Jana R. The influence of gate underlap on analog and RF performance of III–V heterostructure double gate MOSFET. Superlattices Microstruct 2014; 73: 256-67.
[http://dx.doi.org/10.1016/j.spmi.2014.05.038]
[6]
Rahman A, Lundstrom MS. A compact scattering model for the nanoscale double-gate MOSFET. IEEE Trans Electron Devices. IEEE Trans Electron Dev 2015; 62(7): 2367-71.
[http://dx.doi.org/10.1109/TED.2015.2437276]
[7]
Ye Y, Gummalla S, Wang C-C, Chakrabarti C, Cao Y. Random variability modeling and its impact on scaled CMOS circuits. J Comput Electron 2010; 9(3-4): 108-13.
[http://dx.doi.org/10.1007/s10825-010-0336-5]
[8]
Frank DJ, Dennard RH, Nowak E, Solomon PM, Taur Y, Wong HP. Device scaling limits of Si MOSFETs and their application dependencies. Proc IEEE 2001; 89(3): 259-88.
[http://dx.doi.org/10.1109/5.915374]
[9]
Djeffal F, Ghoggali Z, Dibi Z, Lakhdar N. Analytical analysis of nanoscale multiple gate MOSFETs including effects of hot-carrier induced interface charges. Microelectron Reliab 2009; 49(4): 377-81.
[http://dx.doi.org/10.1016/j.microrel.2008.12.011]
[10]
Kaya S, Ma W. Optimization of RF Linearity in DG-MOSFETs. IEEE Electron Device Lett 2004; 25(5): 308-10.
[http://dx.doi.org/10.1109/LED.2004.826539]
[11]
Ge L, Fossum JG. Analytical modeling of quantization and volume inversion in thin Si-film DG MOSFETs. IEEE Trans Electron Dev 2002; 49(2): 287-94.
[http://dx.doi.org/10.1109/16.981219]
[12]
Jung HK, Dimitrijev S. The impact of tunnelling on the subthreshold swing in sub-20 nm asymmetric double gate MOSFETs. Int J Elect Comput Eng (IJECE) 2016; 6(6): 2730-4.
[http://dx.doi.org/10.11591/ijece.v6i6]
[13]
Horst F, Parokhnejad A, Iniguez B, et al. Area Equivalent WKB compact modeling approach for tunnelling probability in hetero-junction TFETs including ambipolar behavior. Microelectron Int 2018; 9(2): 45-50.
[http://dx.doi.org/10.23919/MIXDES.2018.8436770]
[14]
Jason JD, Ben P, Wang X. Force modulation and electrochemical gating of conductance in a cytochrome. J Phys: Condens Matte 2008; 20(2008): 374123.
[http://dx.doi.org/10.1088/0953-8984/20/37/374123]
[15]
Salmani-Jelodar M, Ilatikhameneh H, Kim S, Ng K, Sarangapani P, Klimeck G. Optimum high-ƙ oxide for the best performance of ultra-scaled double-gate MOSFETs. IEEE Trans Nanotechnol 2016; 15(6): 904-10.
[http://dx.doi.org/10.1109/TNANO.2016.2583411]
[16]
Moorthy VM, Srivastava VM. Device modelling and optimization of nanomaterial-based planar heterojunction solar cell (by varying the device dimensions and material parameters). Nanomaterials 2022; 12(17): 3031.
[http://dx.doi.org/10.3390/nano12173031] [PMID: 36080068]
[17]
Gowthaman N, Srivastava VM. Mathematical modeling of drain current estimation in a CSDG MOSFET, based on La2O3 oxide layer with fabrication—a nanomaterial approach. Nanomaterials 2022; 12(19): 3374.
[http://dx.doi.org/10.3390/nano12193374] [PMID: 36234508]
[18]
Datta S. Nanoscale device modeling: The Green’s function method. Superlattices Microstruct 2000; 28(4): 253-78.
[http://dx.doi.org/10.1006/spmi.2000.0920]
[19]
Gowthaman N, Srivastava VM. Analysis of nanometer-scale n-type double-gate (DG) MOSFETs using high-ƙ dielectrics for highspeed applications.44th International Spring Seminar on Electronics Technology (ISSE). 2021; p. 1-5.
[20]
Vyas R. Comparative analysis of diverse carrier transports in multigate MOSFETs under different channel length regimes. ICTACT Journal On Microelectronics 2021; 7(3)
[21]
Ridley BK. Reconciliation of the Conwell-Weisskopf and Brooks-Herring formulae for charged-impurity scattering in semiconductors: Third-body interference. J Phys C Solid State Phys 1977; 10(10): 1589-93.
[http://dx.doi.org/10.1088/0022-3719/10/10/003]
[22]
Zhibin Ren , Venugopal R, Goasguen S, Datta S, Lundstrom MS. nanoMOS 2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans Electron Dev 2003; 50(9): 1914-25.
[http://dx.doi.org/10.1109/TED.2003.816524]
[23]
Tijjani GSMG, Babaji G, Gana SM. Variation effect of silicon film thickness on electrical properties of NANO MOSFET. Int J New Comput Archit Appl 2019; 8(4): 198-205.
[http://dx.doi.org/10.17781/P002545]
[24]
Hisayo SM, Sadayuki Y. Effects of Si channel orientation on MOSFET characteristics.2008 26th International Conference on Microelectronics, Nis, Serbia and Montenegro. 2008; p. 137-144.
[http://dx.doi.org/10.1109/ICMEL.2008.4559243]
[25]
Prasher R, Dass D, Vaid R. Performance of a double gate nanoscale MOSFET (DG-MOSFET) based on novel channel materials. J Nano- Electron 2013; 5(1): 01017.
[26]
Rout SP, Dutta P. Impact of high mobility III‐V compound material of a short channel thin‐film SiGe double gate junctionless MOSFET as a source. Eng Rep 2020; 2(1): 1-13.
[http://dx.doi.org/10.1002/eng2.12086]
[27]
Wagadre A, Mane S. Design & performance analysis of dg-mosfet for reduction of short channel effect over bulk MOSFET at 20nm. Int J Eng Res Appl 2014; 4(7): 30-4.
[28]
Gámiz F, Roldán JB, López-Villanueva JA, Cartujo-Cassinello P, Jiménez-Molinos F. Monte Carlo simulation of electron mobility in silicon-on-insulator structures. Solid-State Electron 2002; 46(11): 1715-21.
[http://dx.doi.org/10.1016/S0038-1101(02)00149-1]
[29]
Xuan Y, Wu YQ, Ye PD. High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm. IEEE Electron Device Lett 2008; 29(4): 294-6.
[http://dx.doi.org/10.1109/LED.2008.917817]
[30]
Pal HS, Low T, Lundstrom MS. NEGF analysis of InGaAs Schottky barrier double gate MOSFETs.2008 IEEE International Electron Devices Meeting. 2008; p. 1-4.
[http://dx.doi.org/10.1109/IEDM.2008.4796843]
[31]
Mugnaini G, Iannaccone G. Physics-based compact model of nanoscale MOSFETs—Part II: Effects of degeneracy on transport. IEEE Trans Electron Dev 2005; 52(8): 1802-6.
[http://dx.doi.org/10.1109/TED.2005.851831]
[32]
Chen Q, Harrell EM, Meindl JD. A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs. IEEE Trans Electron Dev 2003; 50(7): 1631-7.
[http://dx.doi.org/10.1109/TED.2003.813906]
[33]
Yokoyama M. Extremely-thin-body InGaAs-On-Insulator MOSFETs on Si fabricated by direct wafer bonding.Proc of 2010 International Electron Devices Meeting. 2010; pp. 3-1.
[http://dx.doi.org/10.1109/IEDM.2010.5703286]
[34]
Hosseini R. Analysis and simulation of a junctionless double gate MOSFET for high-speed applications. J Korean Phys Soc 2015; 67(9): 1615-8.
[http://dx.doi.org/10.3938/jkps.67.1615]
[35]
Mondol K, Hasan MM, Arafath Y, Alam K. Quantization effects on the inversion mode of a double gate MOS. Results Phys 2016; 6: 339-41.
[http://dx.doi.org/10.1016/j.rinp.2016.06.002]
[36]
Rathinam R, Pon A, Carmel S, Bhattacharyya A. Analysis of black phosphorus double gate MOSFET using hybrid method for analogue/RF application. IET Circuits Dev Syst 2020; 14(8): 1167-72.
[http://dx.doi.org/10.1049/iet-cds.2020.0092]
[37]
Kaharudin KE, Napiah ZAFM, Salehuddin F, Zain ASM, Ameer F. Performance analysis of ultrathin junctionless double gate vertical MOSFETs. Bull Electr Eng Inform 2019; 8(4): 1268-78.
[http://dx.doi.org/10.11591/eei.v8i4.1615]
[38]
Thriveni G, Ghosh K. Theoretical analysis and optimization of high-k dielectric layers for designing high-performance and low-power-dissipation nanoscale double-gate MOSFETs. J Comput Electron 2019; 18(3): 924-40.
[http://dx.doi.org/10.1007/s10825-019-01353-z]
[39]
Arefinia Z. Nonequilibrium Green’s function treatment of a new nanoscale dual-material double-gate MOSFET. Physica E Low Dimens Syst Nanostruct 2011; 43(5): 1105-10.
[http://dx.doi.org/10.1016/j.physe.2011.01.010]
[40]
Verma N, Gupta M, Gupta RS, Jogi J. Quantum modeling of nanoscale symmetric double-gate InAlAs/InGaAs/InP HEMT. Semicond Sci Technol 2013; 13(4): 342-54.
[http://dx.doi.org/10.5573/JSTS.2013.13.4.342]
[41]
Kumar A, Tripathi MM, Chaujar R. Comprehensive analysis of sub-20 nm black phosphorus based junctionless-recessed channel MOSFET for analog/RF applications. Superlattices Microstruct 2018; 116: 171-80.
[http://dx.doi.org/10.1016/j.spmi.2018.02.018]
[42]
Gowthaman N, Srivastava VM. Mathematical modeling of electron density arrangement in CSDG MOSFET: A nano-material approach. J Mater Sci 2022; 57(18): 8381-92.
[http://dx.doi.org/10.1007/s10853-021-06717-0]
[43]
Gowthaman N, Srivastava VM. Parametric analysis of CSDG MOSFET with La2O3 gate oxide: Based on electrical field estimation. IEEE Access 2021; 9: 159421-31.
[http://dx.doi.org/10.1109/ACCESS.2021.3131980]
[44]
Paramasivam P, Gowthaman N, Srivastava VM. Design and analysis of InP/InAs/AlGaAs based cylindrical surrounding double-gate (CSDG) MOSFETs with La2O3 for 5-nm technology. IEEE Access 2021; 9: 159566-76.
[http://dx.doi.org/10.1109/ACCESS.2021.3131094]