Progress in Research on CNPY2 in Diseases

Page: [391 - 402] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Canopy FGF signaling regulator 2 (CNPY2) is a novel angiogenic growth factor. In recent years, increasing evidence highlights that CNPY2 has important functions in health and disease. Many new blood vessels need to be formed to meet the nutrient supply in the process of tumor growth. CNPY2 can participate in the development of tumors by promoting angiogenesis. CNPY2 also enhances neurite outgrowth in neurologic diseases and promotes cell proliferation and tissue repair, thereby improving cardiac function in cardiovascular diseases. Regrettably, there are few studies on CNPY2 in various diseases. At the same time, its biological function and molecular mechanism in the process and development of disease are still unclear. This paper reviews the recent studies on CNPY2 in cervical cancer, renal cell carcinoma, prostate cancer, colorectal cancer, lung cancer, gastric cancer, hepatocellular carcinoma, cerebral ischemia-reperfusion injury, spinal cord ischemia-reperfusion injury, Parkinson’s disease, ischemic heart disease, myocardial ischemiareperfusion injury, myocardial infarction, heart failure, and non-alcoholic fatty liver disease. The biological function and molecular mechanism of CNPY2 in these diseases have been summarized in this paper. Many drugs that play protective roles in tumors, cardiovascular diseases, non-alcoholic fatty liver disease, and neurologic diseases by targeting CNPY2, have also been summarized in this paper. In addition, the paper also details the biological functions and roles of canopy FGF signaling regulator 1 (CNPY1), canopy FGF signaling regulator 3 (CNPY3), canopy FGF signaling regulator 4 (CNPY4), and canopy FGF signaling regulator 5 (CNPY5). The mechanism and function of CNPY2 should be continued to study in order to accelerate disease prevention in the future.

Graphical Abstract

[1]
Schildknegt, D.; Lodder, N.; Pandey, A.; Egmond, M.; Pena, F.; Braakman, I.; Sluijs, P.; van der Sluijs, P. Characterization of CNPY5 and its family members. Protein Sci., 2019, 28(7), 1276-1289.
[http://dx.doi.org/10.1002/pro.3635] [PMID: 31050855]
[2]
Hirate, Y.; Okamoto, H. Canopy1, a novel regulator of FGF signaling around the midbrain-hindbrain boundary in zebrafish. Curr. Biol., 2006, 16(4), 421-427.
[http://dx.doi.org/10.1016/j.cub.2006.01.055] [PMID: 16488878]
[3]
Matsui, T.; Thitamadee, S.; Murata, T.; Kakinuma, H.; Nabetani, T.; Hirabayashi, Y.; Hirate, Y.; Okamoto, H.; Bessho, Y. Canopy1, a positive feedback regulator of FGF signaling, controls progenitor cell clustering during Kupffer’s vesicle organogenesis. Proc. Natl. Acad. Sci., 2011, 108(24), 9881-9886.
[http://dx.doi.org/10.1073/pnas.1017248108] [PMID: 21628557]
[4]
Hatta, K.; Guo, J.; Ludke, A.; Dhingra, S.; Singh, K.; Huang, M.L.; Weisel, R.D.; Li, R.K. Expression of CNPY2 in mouse tissues: Quantification and localization. PLoS One, 2014, 9(11), e111370.
[http://dx.doi.org/10.1371/journal.pone.0111370] [PMID: 25393402]
[5]
Do, H.T.; Tselykh, T.V.; Mäkelä, J.; Ho, T.H.; Olkkonen, V.M.; Bornhauser, B.C.; Korhonen, L.; Zelcer, N.; Lindholm, D. Fibroblast growth factor-21 (FGF21) regulates low-density lipoprotein receptor (LDLR) levels in cells via the E3-ubiquitin ligase Mylip/Idol and the Canopy2 (Cnpy2)/Mylip-interacting saposin-like protein (Msap). J. Biol. Chem., 2012, 287(16), 12602-12611.
[http://dx.doi.org/10.1074/jbc.M112.341248] [PMID: 22378787]
[6]
Ghait, M.; Husain, R.A.; Duduskar, S.N.; Haack, T.B.; Rooney, M.; Göhrig, B.; Bauer, M.; Rubio, I.; Deshmukh, S.D. The TLR‐chaperone CNPY3 is a critical regulator of NLRP3‐inflammasome activation. Eur. J. Immunol., 2022, 52(6), 907-923.
[http://dx.doi.org/10.1002/eji.202149612] [PMID: 35334124]
[7]
Xiao, L.; Li, X.X.; Chung, H.K.; Kalakonda, S.; Cai, J.Z.; Cao, S.; Chen, N.; Liu, Y.; Rao, J.N.; Wang, H.Y.; Gorospe, M.; Wang, J.Y. RNA-binding protein HuR regulates paneth cell function by altering membrane localization of TLR2 via post-transcriptional control of CNPY3. Gastroenterology, 2019, 157(3), 731-743.
[http://dx.doi.org/10.1053/j.gastro.2019.05.010] [PMID: 31103627]
[8]
Mutoh, H.; Kato, M.; Akita, T.; Shibata, T.; Wakamoto, H.; Ikeda, H.; Kitaura, H.; Aoto, K.; Nakashima, M.; Wang, T.; Ohba, C.; Miyatake, S.; Miyake, N.; Kakita, A.; Miyake, K.; Fukuda, A.; Matsumoto, N.; Saitsu, H. Biallelic variants in CNPY3, encoding an endoplasmic reticulum chaperone, cause early-onset epileptic encephalopathy. Am. J. Hum. Genet., 2018, 102(2), 321-329.
[http://dx.doi.org/10.1016/j.ajhg.2018.01.004] [PMID: 29394991]
[9]
Morales, C.; Li, Z. Drosophila canopy b is a cochaperone of glycoprotein 93. J. Biol. Chem., 2017, 292(16), 6657-6666.
[http://dx.doi.org/10.1074/jbc.M116.755538] [PMID: 28275054]
[10]
Liu, B.; Yang, Y.; Qiu, Z.; Staron, M.; Hong, F.; Li, Y.; Wu, S.; Li, Y.; Hao, B.; Bona, R.; Han, D.; Li, Z. Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat. Commun., 2010, 1(1), 79.
[http://dx.doi.org/10.1038/ncomms1070] [PMID: 20865800]
[11]
Lo, M.; Sharir, A.; Paul, M.D.; Torosyan, H.; Agnew, C.; Li, A.; Neben, C.; Marangoni, P.; Xu, L.; Raleigh, D.R.; Jura, N.; Klein, O.D. CNPY4 inhibits the Hedgehog pathway by modulating membrane sterol lipids. Nat. Commun., 2022, 13(1), 2407.
[http://dx.doi.org/10.1038/s41467-022-30186-x] [PMID: 35504891]
[12]
Li, J.W.; Huang, Q.R.; Mo, L.G. CNPY4 is a potential promising prognostic-related biomarker and correlated with immune infiltrates in gliomas. Medicine, 2022, 101(33), e30044.
[http://dx.doi.org/10.1097/MD.0000000000030044] [PMID: 35984129]
[13]
Sowa, S.T.; Moilanen, A.; Biterova, E.; Saaranen, M.J.; Lehtiö, L.; Ruddock, L.W. High-resolution crystal structure of human pERp1, A saposin-like protein involved in IgA, IgM and integrin maturation in the endoplasmic reticulum. J. Mol. Biol., 2021, 433(5), 166826.
[http://dx.doi.org/10.1016/j.jmb.2021.166826] [PMID: 33453188]
[14]
van Anken, E.; Pena, F.; Hafkemeijer, N.; Christis, C.; Romijn, E.P.; Grauschopf, U.; Oorschot, V.M.J.; Pertel, T.; Engels, S.; Ora, A.; Lástun, V.; Glockshuber, R.; Klumperman, J.; Heck, A.J.R.; Luban, J.; Braakman, I. Efficient IgM assembly and secretion require the plasma cell induced endoplasmic reticulum protein pERp1. Proc. Natl. Acad. Sci. USA, 2009, 106(40), 17019-17024.
[http://dx.doi.org/10.1073/pnas.0903036106] [PMID: 19805154]
[15]
Shimizu, Y.; Meunier, L.; Hendershot, L.M. pERp1 is significantly up-regulated during plasma cell differentiation and contributes to the oxidative folding of immunoglobulin. Proc. Natl. Acad. Sci. USA, 2009, 106(40), 17013-17018.
[http://dx.doi.org/10.1073/pnas.0811591106] [PMID: 19805157]
[16]
Xiong, E.; Li, Y.; Min, Q.; Cui, C.; Liu, J.; Hong, R.; Lai, N.; Wang, Y.; Sun, J.; Matsumoto, R.; Takahashi, D.; Hase, K.; Shinkura, R.; Tsubata, T.; Wang, J.Y. MZB1 promotes the secretion of J-chain–containing dimeric IgA and is critical for the suppression of gut inflammation. Proc. Natl. Acad. Sci., 2019, 116(27), 13480-13489.
[http://dx.doi.org/10.1073/pnas.1904204116] [PMID: 31127044]
[17]
Kapoor, T.; Corrado, M.; Pearce, E.L.; Pearce, E.J.; Grosschedl, R. MZB1 enables efficient interferon α secretion in stimulated plasmacytoid dendritic cells. Sci. Rep., 2020, 10(1), 21626.
[http://dx.doi.org/10.1038/s41598-020-78293-3] [PMID: 33318509]
[18]
Andreani, V.; Ramamoorthy, S.; Pandey, A.; Lupar, E.; Nutt, S.L.; Lämmermann, T.; Grosschedl, R. Cochaperone Mzb1 is a key effector of Blimp1 in plasma cell differentiation and β1-integrin function. Proc. Natl. Acad. Sci. , 2018, 115(41), E9630-E9639.
[http://dx.doi.org/10.1073/pnas.1809739115] [PMID: 30257949]
[19]
Rosenbaum, M.; Andreani, V.; Kapoor, T.; Herp, S.; Flach, H.; Duchniewicz, M.; Grosschedl, R. MZB1 is a GRP94 cochaperone that enables proper immunoglobulin heavy chain biosynthesis upon ER stress. Genes Dev., 2014, 28(11), 1165-1178.
[http://dx.doi.org/10.1101/gad.240762.114] [PMID: 24888588]
[20]
Zhang, L.; Wang, Y.; Ju, J.; Shabanova, A.; Li, Y.; Fang, R.; Sun, J.; Guo, Y.; Jin, T.; Liu, Y.; Li, T.; Shan, H.; Liang, H.; Yang, B. Mzb1 protects against myocardial infarction injury in mice via modulating mitochondrial function and alleviating inflammation. Acta Pharmacol. Sin., 2021, 42(5), 691-700.
[http://dx.doi.org/10.1038/s41401-020-0489-0] [PMID: 32759964]
[21]
Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.T.; Lordick, F. Gastric cancer. Lancet, 2020, 396(10251), 635-648.
[http://dx.doi.org/10.1016/S0140-6736(20)31288-5] [PMID: 32861308]
[22]
Thrift, A.P.; El-Serag, H.B. Burden of Gastric Cancer. Clin. Gastroenterol. Hepatol., 2020, 18(3), 534-542.
[http://dx.doi.org/10.1016/j.cgh.2019.07.045] [PMID: 31362118]
[23]
Waldum, H.; Fossmark, R. Gastritis, gastric polyps and gastric cancer. Int. J. Mol. Sci., 2021, 22(12), 6548.
[http://dx.doi.org/10.3390/ijms22126548] [PMID: 34207192]
[24]
Liu, R.; Yang, X. LncRNA LINC00342 promotes gastric cancer progression by targeting the miR-545-5p/CNPY2 axis. BMC Cancer, 2021, 21(1), 1163.
[http://dx.doi.org/10.1186/s12885-021-08829-x] [PMID: 34715819]
[25]
Fang, F.; Hong, X. The expression of CNPY2 in gastric cancer and its relationship with the microvessel density of invasion and metastasis. Chin Med Innov, 2018, 15(23), 35-38.
[26]
Biller, L.H.; Schrag, D. Diagnosis and treatment of metastatic colorectal cancer. JAMA, 2021, 325(7), 669-685.
[http://dx.doi.org/10.1001/jama.2021.0106] [PMID: 33591350]
[27]
Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174.
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[28]
Peng, J.; Ou, Q.; Guo, J.; Pan, Z.; Zhang, R.; Wu, X.; Zhao, Y.; Deng, Y.; Li, C.; Wang, F.; Li, L.; Chen, G.; Lu, Z.; Ding, P.; Wan, D.; Fang, Y. Expression of a novel CNPY2 isoform in colorectal cancer and its association with oncologic prognosis. Aging, 2017, 9(11), 2334-2351.
[http://dx.doi.org/10.18632/aging.101324] [PMID: 29135454]
[29]
Peng, J.; Ou, Q.; Pan, Z.; Zhang, R.; Zhao, Y.; Deng, Y.; Lu, Z.; Zhang, L.; Li, C.; Zhou, Y.; Guo, J.; Wan, D.; Fang, Y. Serum CNPY2 isoform 2 represents a novel biomarker for early detection of colorectal cancer. Aging, 2018, 10(8), 1921-1931.
[http://dx.doi.org/10.18632/aging.101512] [PMID: 30070972]
[30]
Yan, P.; Gong, H.; Zhai, X.; Feng, Y.; Wu, J.; He, S.; Guo, J.; Wang, X.; Guo, R.; Xie, J.; Li, R.K. Decreasing CNPY2 expression diminishes colorectal tumor growth and development through activation of p53 pathway. Am. J. Pathol., 2016, 186(4), 1015-1024.
[http://dx.doi.org/10.1016/j.ajpath.2015.11.012] [PMID: 26835537]
[31]
Harada, K.; Rogers, J.E.; Iwatsuki, M.; Yamashita, K.; Baba, H.; Ajani, J.A. Recent advances in treating oesophageal cancer. F1000 Res., 2020, 9, 1189.
[http://dx.doi.org/10.12688/f1000research.22926.1] [PMID: 33042518]
[32]
He, J.Z.; Wu, Z.Y.; Wang, S.H.; Ji, X.; Yang, C.X.; Xu, X.E.; Liao, L.D.; Wu, J.Y.; Li, E.M.; Zhang, K.; Xu, L.Y. A decision tree–based combination of ezrin-interacting proteins to estimate the prognostic risk of patients with esophageal squamous cell carcinoma. Hum. Pathol., 2017, 66, 115-125.
[http://dx.doi.org/10.1016/j.humpath.2017.06.003] [PMID: 28603065]
[33]
Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet, 2019, 393(10167), 169-182.
[http://dx.doi.org/10.1016/S0140-6736(18)32470-X] [PMID: 30638582]
[34]
Ferrall, L.; Lin, K.Y.; Roden, R.B.S.; Hung, C.F.; Wu, T.C. Cervical cancer immunotherapy: Facts and hopes. Clin. Cancer Res., 2021, 27(18), 4953-4973.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2833] [PMID: 33888488]
[35]
de Freitas, A.C.; Gurgel, A.P.A.D.; Chagas, B.S.; Coimbra, E.C.; do Amaral, C.M.M. Susceptibility to cervical cancer: An overview. Gynecol. Oncol., 2012, 126(2), 304-311.
[http://dx.doi.org/10.1016/j.ygyno.2012.03.047] [PMID: 22484226]
[36]
Akram, M. Mini-review on glycolysis and cancer. J. Cancer Educ., 2013, 28(3), 454-457.
[http://dx.doi.org/10.1007/s13187-013-0486-9] [PMID: 23728993]
[37]
Tian, T.; Dong, Y.; Zhu, Y.; Chen, Y.; Li, X.; Kuang, Q.; Liu, X.; Li, P.; Li, J.; Zhou, L. Hypoxia-induced CNPY2 upregulation promotes glycolysis in cervical cancer through activation of AKT pathway. Biochem. Biophys. Res. Commun., 2021, 551, 63-70.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.116] [PMID: 33721832]
[38]
Wang, W.; Lin, H.; Zhou, L.; Zhu, Q.; Gao, S.; Xie, H.; Liu, Z.; Xu, Z.; Wei, J.; Huang, X.; Zheng, S. MicroRNA-30a-3p inhibits tumor proliferation, invasiveness and metastasis and is downregulated in hepatocellular carcinoma. Eur. J. Surg. Oncol., 2014, 40(11), 1586-1594.
[http://dx.doi.org/10.1016/j.ejso.2013.11.008] [PMID: 24290372]
[39]
Wang, H.; Kanmangne, D.; Li, R.; Qian, Z.; Xia, X.; Wang, X.; Wang, T. miR 30a 3p suppresses the proliferation and migration of lung adenocarcinoma cells by downregulating CNPY2. Oncol. Rep., 2020, 43(2), 646-654.
[PMID: 31894275]
[40]
Yu, D.; Qin, Y.; Jun-qiang, L.; Shun-lin, G. CNPY2 enhances resistance to apoptosis induced by cisplatin via activation of NF-κB pathway in human non-small cell lung cancer. Biomed. Pharmacother., 2018, 103, 1658-1663.
[http://dx.doi.org/10.1016/j.biopha.2018.04.123] [PMID: 29864955]
[41]
Dou, Y.; Lei, J.Q.; Guo, S.L.; Zhao, D.; Yue, H.M.; Yu, Q. The CNPY2 enhances epithelial-mesenchymal transition via activating the AKT/GSK3β pathway in non-small cell lung cancer. Cell Biol. Int., 2018, 42(8), 959-964.
[http://dx.doi.org/10.1002/cbin.10961] [PMID: 29569784]
[42]
Lo, L.H.; Lam, C.Y.; To, J.C.; Chiu, C.H.; Keng, V.W. Sleeping Beauty insertional mutagenesis screen identifies the pro-metastatic roles of CNPY2 and ACTN2 in hepatocellular carcinoma tumor progression. Biochem. Biophys. Res. Commun., 2021, 541, 70-77.
[http://dx.doi.org/10.1016/j.bbrc.2021.01.017] [PMID: 33482578]
[43]
Kakehashi, A.; Suzuki, S.; Shiota, M.; Raymo, N.; Gi, M.; Tachibana, T.; Stefanov, V.; Wanibuchi, H. Canopy Homolog 2 as a novel molecular target in hepatocarcinogenesis. Cancers, 2021, 13(14), 3613.
[http://dx.doi.org/10.3390/cancers13143613] [PMID: 34298825]
[44]
Hong, F.; Lin, C.Y.; Yan, J.; Dong, Y.; Ouyang, Y.; Kim, D.; Zhang, X.; Liu, B.; Sun, S.; Gu, W.; Li, Z. Canopy Homolog 2 contributes to liver oncogenesis by promoting unfolded protein response–dependent destabilization of tumor protein P53. Hepatology, 2022, 76(6), 1587-1601.
[http://dx.doi.org/10.1002/hep.32318] [PMID: 34986508]
[45]
Wang, D.; Wang, Z.M.; Zhang, S.; Wu, H.J.; Tao, Y.M. Canopy homolog 2 expression predicts poor prognosis in hepatocellular carcinoma with tumor hemorrhage. Cell. Physiol. Biochem., 2018, 50(6), 2017-2028.
[http://dx.doi.org/10.1159/000495048] [PMID: 30415246]
[46]
Shafi, A.A.; Yen, A.E.; Weigel, N.L. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol. Ther., 2013, 140(3), 223-238.
[http://dx.doi.org/10.1016/j.pharmthera.2013.07.003] [PMID: 23859952]
[47]
Ito, S.; Ueno, A.; Ueda, T.; Nakagawa, H.; Taniguchi, H.; Kayukawa, N.; Fujihara-Iwata, A.; Hongo, F.; Okihara, K.; Ukimura, O. CNPY2 inhibits MYLIP-mediated AR protein degradation in prostate cancer cells. Oncotarget, 2018, 9(25), 17645-17655.
[http://dx.doi.org/10.18632/oncotarget.24824] [PMID: 29707137]
[48]
Wang, Y.; Zhang, Y.; Wang, P.; Fu, X.; Lin, W. Circular RNAs in renal cell carcinoma: Implications for tumorigenesis, diagnosis, and therapy. Mol. Cancer, 2020, 19(1), 149.
[http://dx.doi.org/10.1186/s12943-020-01266-7] [PMID: 33054773]
[49]
Swiatkowska, A. p53 and its isoforms in renal cell carcinoma—do they matter? Biomedicines, 2022, 10(6), 1330.
[http://dx.doi.org/10.3390/biomedicines10061330] [PMID: 35740352]
[50]
Taniguchi, H.; Ito, S.; Ueda, T.; Morioka, Y.; Kayukawa, N.; Ueno, A.; Nakagawa, H.; Fujihara, A.; Ushijima, S.; Kanazawa, M.; Hongo, F.; Ukimura, O. CNPY2 promoted the proliferation of renal cell carcinoma cells and increased the expression of TP53. Biochem. Biophys. Res. Commun., 2017, 485(2), 267-271.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.095] [PMID: 28235487]
[51]
von Knobelsdorff-Brenkenhoff, F.; Schulz-Menger, J. Cardiovascular magnetic resonance imaging in ischemic heart disease. J. Magn. Reson. Imaging, 2012, 36(1), 20-38.
[http://dx.doi.org/10.1002/jmri.23580] [PMID: 22696124]
[52]
Guo, J.; Zhang, Y.; Mihic, A.; Li, S.H.; Sun, Z.; Shao, Z.; Wu, J.; Weisel, R.D.; Li, R.K. A secreted protein (Canopy 2, CNPY2) enhances angiogenesis and promotes smooth muscle cell migration and proliferation. Cardiovasc. Res., 2015, 105(3), 383-393.
[http://dx.doi.org/10.1093/cvr/cvv010] [PMID: 25589425]
[53]
Chen, Z.; Wu, J.; Li, S.; Liu, C.; Ren, Y. Inhibition of myocardial cell apoptosis is important mechanism for ginsenoside in the limitation of myocardial ischemia/reperfusion injury. Front. Pharmacol., 2022, 13, 806216.
[http://dx.doi.org/10.3389/fphar.2022.806216] [PMID: 35300297]
[54]
Li, Y.Z.; Wu, H.; Liu, D.; Yang, J.; Yang, J.; Ding, J.W.; Zhou, G.; Zhang, J.; Zhang, D. cFLIP(L) alleviates myocardial ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress. Cardiovasc. Drugs Ther., 2021, 37(2), 225-238.
[PMID: 34767133]
[55]
Cui, Y.; Wang, Y.; Liu, G. Protective effect of Barbaloin in a rat model of myocardial ischemia reperfusion injury through the regulation of the CNPY2 PERK pathway. Int. J. Mol. Med., 2019, 43(5), 2015-2023.
[http://dx.doi.org/10.3892/ijmm.2019.4123] [PMID: 30864682]
[56]
Liu, C.; Liu, Y.; He, J.; Mu, R.; Di, Y.; Shen, N.; Liu, X.; Gao, X.; Wang, J.; Chen, T.; Fang, T.; Li, H.; Tian, F. Liraglutide increases VEGF expression via CNPY2-PERK pathway induced by hypoxia/reoxygenation injury. Front. Pharmacol., 2019, 10, 789.
[http://dx.doi.org/10.3389/fphar.2019.00789] [PMID: 31396081]
[57]
Yin, W.; Guo, J.; Zhang, C.; Alibhai, F.J.; Li, S.H.; Billia, P.; Wu, J.; Yau, T.M.; Weisel, R.D.; Li, R.K. Knockout of Canopy 2 activates p16INK4a pathway to impair cardiac repair. J. Mol. Cell. Cardiol., 2019, 132, 36-48.
[http://dx.doi.org/10.1016/j.yjmcc.2019.04.018] [PMID: 31047986]
[58]
Snipelisky, D.; Chaudhry, S.P.; Stewart, G.C. The many faces of heart failure. Card. Electrophysiol. Clin., 2019, 11(1), 11-20.
[http://dx.doi.org/10.1016/j.ccep.2018.11.001] [PMID: 30717842]
[59]
Frey, N.; Katus, H.A.; Olson, E.N.; Hill, J.A. Hypertrophy of the Heart. Circulation, 2004, 109(13), 1580-1589.
[http://dx.doi.org/10.1161/01.CIR.0000120390.68287.BB] [PMID: 15066961]
[60]
Guo, J.; Mihic, A.; Wu, J.; Zhang, Y.; Singh, K.; Dhingra, S.; Weisel, R.D.; Li, R.K. Canopy 2 attenuates the transition from compensatory hypertrophy to dilated heart failure in hypertrophic cardiomyopathy. Eur. Heart J., 2015, 36(37), 2530-2540.
[http://dx.doi.org/10.1093/eurheartj/ehv294] [PMID: 26160001]
[61]
Yang, W.; Liu, L.; Wei, Y.; Fang, C.; Liu, S.; Zhou, F.; Li, Y.; Zhao, G.; Guo, Z.; Luo, Y.; Li, L. Exercise suppresses NLRP3 inflammasome activation in mice with diet-induced NASH: A plausible role of adropin. Lab. Invest., 2021, 101(3), 369-380.
[http://dx.doi.org/10.1038/s41374-020-00508-y]
[62]
Li, J.; Huang, L.; Xiong, W.; Qian, Y.; Song, M. Aerobic exercise improves non-alcoholic fatty liver disease by down-regulating the protein expression of the CNPY2-PERK pathway. Biochem. Biophys. Res. Commun., 2022, 603, 35-40.
[http://dx.doi.org/10.1016/j.bbrc.2022.03.008] [PMID: 35278877]
[63]
Poustchi, F.; Amani, H.; Ahmadian, Z.; Niknezhad, S.V.; Mehrabi, S.; Santos, H.A.; Shahbazi, M.A. Combination therapy of killing diseases by injectable hydrogels: From concept to medical applications. Adv. Healthc. Mater., 2021, 10(3), 2001571.
[http://dx.doi.org/10.1002/adhm.202001571] [PMID: 33274841]
[64]
Sun, M.S.; Jin, H.; Sun, X.; Huang, S.; Zhang, F.L.; Guo, Z.N.; Yang, Y. Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy. Oxid. Med. Cell. Longev., 2018, 2018, 1-17.
[http://dx.doi.org/10.1155/2018/3804979] [PMID: 29770166]
[65]
Zhao, L.; Li, H.; Gao, Q.; Xu, J.; Zhu, Y.; Zhai, M.; Zhang, P.; Shen, N.; Di, Y.; Wang, J.; Chen, T.; Huang, M.; Sun, J.; Liu, C. Berberine attenuates cerebral ischemia-reperfusion injury induced neuronal apoptosis by down-regulating the CNPY2 signaling pathway. Front. Pharmacol., 2021, 12, 609693.
[http://dx.doi.org/10.3389/fphar.2021.609693] [PMID: 33995012]
[66]
Rong, Y.; Fan, J.; Ji, C.; Wang, Z.; Ge, X.; Wang, J.; Ye, W.; Yin, G.; Cai, W.; Liu, W. USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating Beclin 1. Cell Death Differ., 2022, 29(6), 1164-1175.
[http://dx.doi.org/10.1038/s41418-021-00907-8] [PMID: 34839355]
[67]
Zhao, L.; Zhai, M.; Yang, X.; Guo, H.; Cao, Y.; Wang, D.; Li, P.; Liu, C. Dexmedetomidine attenuates neuronal injury after spinal cord ischaemia‐reperfusion injury by targeting the CNPY2‐endoplasmic reticulum stress signalling. J. Cell. Mol. Med., 2019, 23(12), 8173-8183.
[http://dx.doi.org/10.1111/jcmm.14688] [PMID: 31625681]
[68]
Taguchi, T.; Ikuno, M.; Yamakado, H.; Takahashi, R. Animal model for prodromal Parkinson’s Disease. Int. J. Mol. Sci., 2020, 21(6), 1961.
[http://dx.doi.org/10.3390/ijms21061961] [PMID: 32183024]
[69]
Cerri, S.; Mus, L.; Blandini, F. Parkinson’s disease in women and men: What’s the difference? J. Parkinsons Dis., 2019, 9(3), 501-515.
[http://dx.doi.org/10.3233/JPD-191683] [PMID: 31282427]
[70]
Yang, L.; Zhang, X.; Li, S.; Wang, H.; Zhang, X.; Liu, L.; Xie, A. Intranasal insulin ameliorates cognitive impairment in a rat model of Parkinson’s disease through Akt/GSK3β signaling pathway. Life Sci., 2020, 259, 118159.
[http://dx.doi.org/10.1016/j.lfs.2020.118159] [PMID: 32763288]
[71]
Xiong, S.; Liu, W.; Zhou, Y.; Mo, Y.; Liu, Y.; Chen, X.; Pan, H.; Yuan, D.; Wang, Q.; Chen, T. Enhancement of oral bioavailability and anti-Parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian J. Pharm. Sci., 2020, 15(4), 518-528.
[http://dx.doi.org/10.1016/j.ajps.2019.04.003] [PMID: 32952674]
[72]
Chen, L.; Xu, S.; Wu, T.; Shao, Y.; Luo, L.; Zhou, L.; Ou, S.; Tang, H.; Huang, W.; Guo, K.; Xu, J. Studies on APP metabolism related to age-associated mitochondrial dysfunction in APP/PS1 transgenic mice. Aging, 2019, 11(22), 10242-10251.
[http://dx.doi.org/10.18632/aging.102451] [PMID: 31744937]
[73]
Chu, M.; Liu, H.; Xiong, Z.; Ju, C.; Zhao, L.; Li, K.; Tian, S.; Gu, P. Canopy fibroblast growth factor signaling regulator 2 (CNPY2) inhibits neuron apoptosis in parkinson’s disease via the AKT/GSK3β pathway. Curr. Neurovasc. Res., 2021, 18(1), 102-112.
[http://dx.doi.org/10.2174/1567202618666210531141833] [PMID: 34060992]
[74]
Kaneko, M.; Imaizumi, K.; Saito, A.; Kanemoto, S.; Asada, R.; Matsuhisa, K.; Ohtake, Y. ER stress and disease: Toward prevention and treatment. Biol. Pharm. Bull., 2017, 40(9), 1337-1343.
[http://dx.doi.org/10.1248/bpb.b17-00342] [PMID: 28867719]
[75]
Chen, X.; Guo, X.; Ge, Q.; Zhao, Y.; Mu, H.; Zhang, J. ER stress activates the NLRP3 inflammasome: A novel mechanism of atherosclerosis. Oxid. Med. Cell. Longev., 2019, 2019, 1-18.
[http://dx.doi.org/10.1155/2019/3462530] [PMID: 31687078]
[76]
Hong, F.; Liu, B.; Wu, B.X.; Morreall, J.; Roth, B.; Davies, C.; Sun, S.; Diehl, J.A.; Li, Z. CNPY2 is a key initiator of the PERK–CHOP pathway of the unfolded protein response. Nat. Struct. Mol. Biol., 2017, 24(10), 834-839.
[http://dx.doi.org/10.1038/nsmb.3458] [PMID: 28869608]