Current Cancer Therapy Reviews

Author(s): Arkadiy Bryzgalov*

DOI: 10.2174/1573394719666230531122610

Electrical and Electromagnetic Stimulation of Living Organisms and the Theory of a Cancer Formation Center

Page: [107 - 125] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Electrical conductivity plays a pivotal role in the life of organisms. Processes, such as neural information transfer, which allows a living organism to receive information and respond to it within the shortest time possible, are the basis of electrical conductivity. However, electrical conductivity is not only responsible for transmitting information. It provides living organisms the capability to encode this information, execute control processes and launch a complex system of reflex-related, behavioral and mental processes. Electrical conductivity is responsible for the control over all the functional systems of our body. An in-depth study of the electrical activity of the body will allow us to make an important conclusion on the presence of a functional control system in malignant tumors. A deep understanding of the basics of electrical stimulation and signal conduction will give us insights into the sphere of control and synchronization system within our central processor (brain) and other functional systems that we need for the proper functioning of human body; these systems are also capable of altering the natural physiological functioning of the body.

Graphical Abstract

[1]
Pigarev IN. [The visceral theory of sleep]. Zh Vyssh Nerv Deiat Im I P Pavlova 2013; 63(1): 86-104.
[http://dx.doi.org/10.7868/S0044467713010115] [PMID: 23697225]
[2]
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for glioblastoma. Adv Sci (Weinh) 2021; 8(18): 2100978.
[http://dx.doi.org/10.1002/advs.202100978] [PMID: 34292672]
[3]
Feychting M. Deep brain stimulation and glioma. Acta Neurochirurgica 2016; 1585: 919-20.
[http://dx.doi.org/10.1007/s00701-016-2776-6]
[4]
Gonzalez CF, Remcho VT. Harnessing dielectric forces for separations of cells, fine particles and macromolecules. J Chromatogr A 2005; 1079(1-2): 59-68.
[http://dx.doi.org/10.1016/j.chroma.2005.03.070] [PMID: 16038291]
[5]
Kirson ED, Dbalý V, Tovaryš F, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci USA 2007; 104(24): 10152-7.
[http://dx.doi.org/10.1073/pnas.0702916104] [PMID: 17551011]
[6]
Kirson ED, Gurvich Z, Schneiderman R, et al. Disruption of cancer cell replication by alternating electric fields. Cancer Res 2004; 64(9): 3288-95.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0083] [PMID: 15126372]
[7]
Barak Y, Achiron A, Mandel M, Mirecki I, Aizenberg D. Reduced cancer incidence among patients with schizophrenia. Cancer 2005; 104(12): 2817-21.
[http://dx.doi.org/10.1002/cncr.21574] [PMID: 16288491]
[8]
Cohen ME, Dembling B, Schorling JB. The association between schizophrenia and cancer: a population-based mortality study. Schizophr Res 2002; 57(2-3): 139-46.
[http://dx.doi.org/10.1016/S0920-9964(01)00308-5] [PMID: 12223244]
[9]
Dalton SO, Mellemkjær L, Thomassen L, Mortensen PB, Johansen C. Risk for cancer in a cohort of patients hospitalized for schizophrenia in Denmark, 1969-1993. Schizophr Res 2005; 75(2-3): 315-24.
[http://dx.doi.org/10.1016/j.schres.2004.11.009] [PMID: 15885523]
[10]
Goldacre MJ, Kurina LM, Wotton CJ, Yeates D, Seagroatt V. Schizophrenia and cancer: An epidemiological study. Br J Psychiatry 2005; 187(4): 334-8.
[http://dx.doi.org/10.1192/bjp.187.4.334] [PMID: 16199792]
[11]
Lichtermann D, Ekelund J, Pukkala E, Tanskanen A, Lönnqvist J. Incidence of cancer among persons with schizophrenia and their relatives. Arch Gen Psychiatry 2001; 58(6): 573-8.
[http://dx.doi.org/10.1001/archpsyc.58.6.573] [PMID: 11386986]
[12]
Catts VS, Catts SV, O’Toole BI, Frost ADJ. Cancer incidence in patients with schizophrenia and their first-degree relatives-a meta-analysis. Acta Psychiatr Scand 2008; 117(5): 323-36.
[http://dx.doi.org/10.1111/j.1600-0447.2008.01163.x] [PMID: 18331573]
[13]
Crespi B. Autism and cancer risk. Autism Res 2011; 4(4): 302-10.
[http://dx.doi.org/10.1002/aur.208] [PMID: 21823244]
[14]
Furshpan EJ, Potter DD. Transmission at the giant motor synapses of the crayfish. J Physiol 1959; 145(2): 289-325.
[http://dx.doi.org/10.1113/jphysiol.1959.sp006143] [PMID: 13642302]
[15]
Bennett MLV. Electrical transmission: A functional analysis and comparison with chemical transmissionCellular biology of neurons, Handbook o altimore. Williams and Wilkins 1977.
[http://dx.doi.org/10.1002/cphy.cp010111]
[16]
Furukawa T, Furshpan EJ. Two inhibitory mechanisms in the Mauthner neurons of goldfish. J Neurophysiol 1963; 26(1): 140-76.
[http://dx.doi.org/10.1152/jn.1963.26.1.140] [PMID: 13945908]
[17]
Brazier MAB. A History of the Electrical Activity of the Brain The First Half Century. London: Pitman med. Publ. 1961; p. 119.
[18]
Ramey ER. Electrical Studies on the Unanesthetized Brain. New York: Paul B. Hoebcr 1960; p. 423.
[19]
Sheer DE. Electrical Stimulation of the Brain. Austin: Univ. Texas Press 1961; p. 641.
[20]
Jose MD, Delgado MR. Physical control of the mind toward a psychocivilized society New York, Evanston, and London: Harper & Row, Publishers. 1969.
[21]
Delgado JMR, Mir D. Infatigability of pupillary constriction evoked by hypothalamic stimulation in monkeys. Neurology 1966; 16(9): 939-50.
[http://dx.doi.org/10.1212/WNL.16.9.939]
[22]
Reynolds DV. Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science (1979) 1969; 164(3878): 444-5.
[http://dx.doi.org/10.1126/science.164.3878.444]
[23]
Cannon WB. The emergency function of the adrenal medulla in pain and the major emotions. Am J Physiol 1914; 33(2): 356-72.
[http://dx.doi.org/10.1152/ajplegacy.1914.33.2.356]
[24]
Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab 1946; 6(2): 117-230.
[http://dx.doi.org/10.1210/jcem-6-2-117] [PMID: 21025115]
[25]
Cox T. Stress. London, Macmillan Education: Basingstoke 1978.
[26]
Morgan JI, Cohen DR, Hempstead JL, Curran T. Mapping patterns of cfos expression in the central nervous system after seizure. Science 1987; 237(4811): 192-7.
[http://dx.doi.org/10.1126/science.3037702] [PMID: 3037702]
[27]
Hunt SP, Pini A, Evan G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 1987; 328(6131): 632-4.
[http://dx.doi.org/10.1038/328632a0] [PMID: 3112583]
[28]
Bullitt E. Induction of c-fos-like protein within the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res 1989; 493(2): 391-7.
[http://dx.doi.org/10.1016/0006-8993(89)91177-3] [PMID: 2504439]
[29]
Bullitt E. Expression ofC-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 1990; 296(4): 517-30.
[http://dx.doi.org/10.1002/cne.902960402] [PMID: 2113539]
[30]
Menétrey D, Gannon A, Levine JD, Basbaum AI. Expression of c- fos protein in interneurons and projection neurons of the rat spinal cord in response to noxious somatic, articular, and visceral stimulation. J Comp Neurol 1989; 285(2): 177-95.
[http://dx.doi.org/10.1002/cne.902850203] [PMID: 2503547]
[31]
Dragunow M, Robertson HA. Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 1987; 329(6138): 441-2.
[http://dx.doi.org/10.1038/329441a0] [PMID: 3116433]
[32]
Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO. Induction of c-fos mRNA by kindled seizures: Complex relationship with neuronal burst firing. J Neurosci 1993; 13(2): 744-51.
[http://dx.doi.org/10.1523/JNEUROSCI.13-02-00744.1993] [PMID: 8381172]
[33]
Le Gal La Salle G, Naquet R. Audiogenic seizures evoked in DBA/2 mice inducec-fos oncogene expression into subcortical auditory nu-clei. Brain Res 1990; 518(1-2): 308-12.
[http://dx.doi.org/10.1016/0006-8993(90)90988-N] [PMID: 2117990]
[34]
Sharp FR, Sagar SM, Swanson RA. Metabolic mapping with cellular resolution: C-fos vs. 2-deoxyglucose. Crit Rev Neurobiol 1993; 7(3-4): 205-28.
[PMID: 8221912]
[35]
Maleeva NE, Ivolgina GL, Anokhin KV, Limborskaia SA. Analysis of the expression of the c-fos proto-oncogene in the rat cerebral cortex during learning. Genetika 1989; 25(6): 1119-21.
[PMID: 2509287]
[36]
Smith MA, Banerjee S, Gold PW, Glowa J. Induction of c-fos mRNA in rat brain by conditioned and unconditioned stressors. Brain Res 1992; 578(1-2): 135-41.
[http://dx.doi.org/10.1016/0006-8993(92)90240-A] [PMID: 1511271]
[37]
Guldenaar SEF, Noctor SC, McCabe JT. Fos-like immunoreactivity in the brain of homozygous diabetes insipidus brattleboro and normal long-evans rats. J Comp Neurol 1992; 322(3): 439-48.
[http://dx.doi.org/10.1002/cne.903220310] [PMID: 1517486]
[38]
Silveira MCL, Sandner G, Graeff FG. Induction of Fos immunoreactivity in the brain by exposure to the elevated plus-maze. Behav Brain Res 1993; 56(1): 115-8.
[http://dx.doi.org/10.1016/0166-4328(93)90028-O] [PMID: 8397853]
[39]
Jasmin L, Gogas KR, Ahlgren SC, Levine JD, Basbaum AI. Walking evokes a distinctive pattern of Fos-like immunoreactivity in the caudal brainstem and spinal cord of the rat. Neuroscience 1994; 58(2): 275-86.
[http://dx.doi.org/10.1016/0306-4522(94)90034-5] [PMID: 8152539]
[40]
Daval JL, Nakajima T, Gleiter CH, Post RM, Marangos PJ. Mouse brain c-fos mRNA distribution following a single electroconvulsive shock. J Neurochem 1989; 52(6): 1954-7.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb07285.x] [PMID: 2723651]
[41]
Gubits RM, Smith TM, Fairhurst JL, Yu H. Adrenergic receptors mediate changes in c-fos mRNA levels in brain. Brain Res Mol Brain Res 1989; 6(1): 39-45.
[http://dx.doi.org/10.1016/0169-328X(89)90026-0] [PMID: 2570340]
[42]
Arnold FJL, de Lucas Bueno M, Shiers H, Hancock DC, Evan GI, Herbert J. Expression of c-fos in regions of the basal limbic forebrain following intra-cerebroventricular corticotropinreleasing factor in unstressed or stressed male rats. Neuroscience 1992; 51(2): 377-90.
[http://dx.doi.org/10.1016/0306-4522(92)90322-S] [PMID: 1465198]
[43]
Ceccatelli S, Villar MJ, Goldstein M, Hökfelt T. Expression of cFos immunoreactivity in transmitter-characterized neurons after stress. Proc Natl Acad Sci USA 1989; 86(23): 9569-73.
[http://dx.doi.org/10.1073/pnas.86.23.9569] [PMID: 2512584]
[44]
Sharp FR, Sagar SM, Hicks K, Lowenstein D, Hisanaga K. c-fos mRNA, Fos, and Fos-related antigen induction by hypertonic saline and stress. J Neurosci 1991; 11(8): 2321-31.
[http://dx.doi.org/10.1523/JNEUROSCI.11-08-02321.1991] [PMID: 1908006]
[45]
Coveñas R, de León M, Cintra A, Bjelke B, Gustafsson JÅ, Fuxe K. Coexistence of c-Fos and glucocorticoid receptor immunoreactivities in the CRF immunoreactive neurons of the paraventricular hypothalamic nucleus of the rat after acute immobilization stress. Neurosci Lett 1993; 149(2): 149-52.
[http://dx.doi.org/10.1016/0304-3940(93)90758-D] [PMID: 8474689]
[46]
Honkaniemi J. Colocalization of peptide- and tyrosine hydroxylase-like immunoreactivities with Fos-immunoreactive neurons in rat central amygdaloid nucleus after immobilization stress. Brain Res 1992; 598(1-2): 107-13.
[http://dx.doi.org/10.1016/0006-8993(92)90173-7] [PMID: 1362516]
[47]
Honkaniemi J, Kainu T, Ceccatelli S, Rechardt L, Hökfelt T, Pelto-Huikko M. Fos and jun in rat central amygdaloid nucleus and paraventricular nucleus after stress. Neuroreport 1992; 3(10): 849-52.
[http://dx.doi.org/10.1097/00001756-199210000-00007] [PMID: 1421086]
[48]
Kononen J, Honkaniemi J, Alho H, Koistinaho J, Iadarola M, Pelto-Huikko M. Fos-like immunoreactivity in the rat hypothalamic-pituitary axis after immobilization stress. Endocrinology 1992; 130(5): 3041-7.
[http://dx.doi.org/10.1210/endo.130.5.1315265] [PMID: 1315265]
[49]
Senba E, Matsunaga K, Tohyama M, Noguchi K. Stress-induced c-fos expression in the rat brain: activation mechanism of sympathetic pathway. Brain Res Bull 1993; 31(3-4): 329-44.
[http://dx.doi.org/10.1016/0361-9230(93)90225-Z] [PMID: 8490732]
[50]
Hoffman GE, Smith MS, Verbalis JG. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 1993; 14(3): 173-213.
[http://dx.doi.org/10.1006/frne.1993.1006] [PMID: 8349003]
[51]
Lebedev VP, Katznelson YaS, Korniushina NM. Quasiresonance characteristics of opioid antinociceptive structures of the brain. Ill IBRO World Congr on Neurosci Abstr. 194
[52]
Aǐrapetov LN, Zaǐchik AM, Trukhmanov MS, Lebedev VP, Sorokoumov VA. Changes in the beta-endorphin levels in the brain and cerebrospinal fluid during transcranial electroanalgesia. Fiziologicheskii zhurnal SSSR imeni I M Sechenova 1985; 71(1): 56-64.
[53]
Lebedev VP, Savchenko AB, Petriaevskaia NV. The opiate mechanism of transcranial electroanalgesia in rats and mice. Fiziol Zh SSSR Im I M Sechenova 1988; 74(9): 1249-56.
[PMID: 2850943]
[54]
Hirakawa M, Kawata M. Distribution pattern of c-Fos expression induced by sciatic nerve sectioning in the rat central nervous system. J Hirnforsch 1993; 34(3): 431-44.
[PMID: 8270792]
[55]
McKitrick DJ, Calaresu FR. Expression of Fos in rat central nervous system elicited by afferent stimulation of the femoral nerve. Brain Res 1993; 632(1-2): 127-35.
[http://dx.doi.org/10.1016/0006-8993(93)91147-K] [PMID: 8149221]
[56]
Pertovaara A, Bravo R, Herdegen T. Induction and suppression of immediate-early genes in the rat brain by a selective alpha-2-adrenoceptor agonist and antagonist following noxious peripheral stimulation. Neuroscience 1993; 54(1): 117-26.
[http://dx.doi.org/10.1016/0306-4522(93)90387-U] [PMID: 8100045]
[57]
Smith DW, Day TA. c-Fos expression in hypothalamic neurosecretory and brainstem catecholamine cells following noxious somatic stimuli. Neuroscience 1994; 58(4): 765-75.
[http://dx.doi.org/10.1016/0306-4522(94)90453-7] [PMID: 8190253]
[58]
Herdegen T, Sandkühler J, Gass P, Kiessling M, Bravo R, Zimmermann M. JUN, FOS, KROX, and CREB transcription factor proteins in the rat cortex: Basal expression and induction by spreading depression and epileptic seizures. J Comp Neurol 1993; 333(2): 271-88.
[http://dx.doi.org/10.1002/cne.903330212] [PMID: 8345107]
[59]
Schreiber SS, Tocco G, Shors TJ, Thompson RF. Activation of immediate early genes after acute stress. Neuroreport 1991; 2(1): 17-20.
[http://dx.doi.org/10.1097/00001756-199101000-00004] [PMID: 1768844]
[60]
Schleicher A, Zilles K, Kretschmann HJ. Automatic registration and evaluation of a gray standard index in histological sections. Verh Anat Ges 1978; (72): 413-5.
[PMID: 371189]
[61]
Vogt BA, Peters A. Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29. J Comp Neurol 1981; 195(4): 603-25.
[http://dx.doi.org/10.1002/cne.901950406] [PMID: 7462444]
[62]
Vogt BA, Rosene DL, Peters A. Synaptic termination of thalamic and callosal afferents in cingulate cortex of the rat. J Comp Neurol 1981; 201(2): 265-83.
[http://dx.doi.org/10.1002/cne.902010210] [PMID: 7287929]
[63]
Akoev GN, Il’inskiì OB, Kolosova LI, Titov MI, Trofimova OG. The effect of the opioid peptide dalargin on the regeneration of the rat sciatic nerve. Fiziol Zh SSSR Im I M Sechenova 1989; 75(1): 33-7.
[PMID: 2924969]
[64]
Grinenko AIa, Krupitskiĭ EM, Lebedev VP, Katsnel’son IaS, Karandashova GF. Use of transcranial electrical stimulation for managing the alcohol abstinence syndrome. Fiziol Cheloveka 1988; 14(2): 212-8.
[PMID: 2970412]
[65]
Lebedev VP, Savchenko AB, Fan AB, Zhilev SIu. Transcranial electroanalgesia in rats: an optimal regimen of electrical stimuli. Fiziol Zh SSSR Im I M Sechenova 1988; 74(8): 1094-101.
[PMID: 3197851]
[66]
Berenberg RA, Forman DS, Wood DK, DeSilva A, Demaree J. Recovery of peripheral nerve function after axotomy: Effect of triiodothyronine. Exp Neurol 1977; 57(2): 349-63.
[http://dx.doi.org/10.1016/0014-4886(77)90071-1] [PMID: 908378]
[67]
Chumasov EI, Akoev GN, Kolosova LI, Trofimova OG. Restoration of the innervation of the extremity of the rat after joining the ends of the damaged nerve with a microsurgical suture. Arkh Anat Gistol Embriol 1988; 94(2): 6-13.
[PMID: 3285817]
[68]
Brown MC, Hugh Perry V, Ruth Lunn E, Gordon S, Heumann R. Macrophage dependence of peripheral sensory nerve regeneration: Possible involvement of nerve growth factor. Neuron 1991; 6(3): 359-70.
[http://dx.doi.org/10.1016/0896-6273(91)90245-U] [PMID: 1848079]
[69]
Mravian SR. Physiologic and molecular mechanisms of action of endogenous opioid peptides. Patol Fiziol Eksp Ter 1993; (3): 58-60.
[PMID: 8058416]
[70]
Hájek I, Buritová J, Kríz N. Opioid receptors in the rat spinal cord after longlasting deafferentation. Physiol Res 1992; 41(4): 285-91.
[PMID: 1337471]
[71]
Zagon IS, McLaughlin PJ. Identification of opioid peptides regulating proliferation of neurons and glia in the developing nervous system. Brain Res 1991; 542(2): 318-23.
[http://dx.doi.org/10.1016/0006-8993(91)91585-O] [PMID: 2029640]
[72]
Joris JL, Dubner R, Hargreaves KM. Opioid analgesia at peripheral sites: a target for opioids released during stress and inflammation? Anesth Analg 1987; 66(12): 1277-81.
[http://dx.doi.org/10.1213/00000539-198712000-00013] [PMID: 2891323]
[73]
Akmaev IG. Current concepts of the interactions of regulating systems: Nervous, endocrine and immune. Usp Fiziol Nauk 1996; 27(1): 3-20.
[PMID: 8714820]
[74]
Vasil’eva EV, Sukhikh GT, Vinogradov VA, Sura VV. Endogenous opiate neuropeptides and the immune system. Ter Arkh 1984; 56(10): 120-5.
[PMID: 6098041]
[75]
Gol’dberg ED, Zakharova OIu, Dygaĭ AM. Modulating effect of opioid peptides on hemopoiesis in stress. Biull Eksp Biol Med 1988; 106(7): 23-6.
[PMID: 3401570]
[76]
Uteshev BS, Korostelev SA. The interaction of the neuroendocrine and immune systems and the role of the opioid peptides in regulating immune homeostasis. Farmakol Toksikol 1990; 53(1): 10-6.
[PMID: 2184049]
[77]
Madden KS, Felten DL. Experimental basis for neural-immune interactions. Physiol Rev 1995; 75(1): 77-106.
[http://dx.doi.org/10.1152/physrev.1995.75.1.77] [PMID: 7831399]
[78]
Senba E, Yanaihara C, Yanaihara N, Tohyama M. Proenkephalin opioid peptide product in the sensory ganglia of the rat: a developmental immunohistochemical study. Brain Res Dev Brain Res 1989; 48(2): 263-71.
[http://dx.doi.org/10.1016/0165-3806(89)90081-3] [PMID: 2776297]
[79]
Stein C, Millan MJ, Yassouridis A, Herz A. Antinociceptive effects of μ- and κ-agonists in inflammation are enhanced by a peripheral opioid receptor-specific mechanism. Eur J Pharmacol 1988; 155(3): 255-64.
[http://dx.doi.org/10.1016/0014-2999(88)90511-0] [PMID: 2853065]
[80]
Anikin AIu, Kozlova MV, Blitchenko IuA, Sukhikh GT, Molnar EM. Opioid peptides increase the survival of human fetal nerve tissue after cryopreservation in a culture. Biull Eksp Biol Med 1994; 117(4): 408-11.
[PMID: 9296674]
[81]
Il’inskiĭ OB, Kozlova MV, Kondrikova ES, Kalenchuk VU, Titov MI. Features of the action of opioid peptides and naloxone on the tissues of the central and peripheral nervous system during cultivation. Neirofiziologiia 1986; 18(2): 227-33.
[PMID: 3713916]
[82]
Hauser KF, McLaughlin PJ, Zagon IS. Endogenous opioids regulate dendritic growth and spine formation in developing rat brain. Brain Res 1987; 416(1): 157-61.
[http://dx.doi.org/10.1016/0006-8993(87)91509-5] [PMID: 3040177]
[83]
Maneckjee R, Minna JD. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines. Proc Natl Acad Sci USA 1990; 87(9): 3294-8.
[http://dx.doi.org/10.1073/pnas.87.9.3294] [PMID: 2159143]
[84]
McLaughlin PJ, Zagon IS. Modulation of human neuroblastoma transplanted into nude mice by endogenous opioid systems. Life Sci 1987; 41(12): 1465-72.
[http://dx.doi.org/10.1016/0024-3205(87)90711-9] [PMID: 3041143]
[85]
Zagon IS, McLaughlin PJ. Modulation of murine neuroblastoma in nude mice by opioid antagonists. J Natl Cancer Inst 1987; 78(1): 141-7.
[http://dx.doi.org/10.1093/jnci/78.1.141] [PMID: 3025501]
[86]
Zagon IS, McLaughlin PJ, Goodman SR, Rhodes RE. Opioid receptors and endogenous opioids in diverse human and animal cancers. J Natl Cancer Inst 1987; 79(5): 1059-65.
[PMID: 2824913]
[87]
Zagon IS. Endogenous opioid systems and neural cancer: Transmission and scanning electron microscopic studies of murine neuroblas-toma in tissue culture. Brain Res Bull 1988; 21(5): 777-84.
[http://dx.doi.org/10.1016/0361-9230(88)90046-9] [PMID: 3219609]
[88]
Lee YS, Wurster RD. Differential effects of methionine enkephalin on the growth of brain tumor cells. J Neurooncol 1994; 19(1): 11-5.
[http://dx.doi.org/10.1007/BF01051044] [PMID: 7815100]
[89]
Zagon IS, McLaughlin PJ. Endogenous opioid systems regulate growth of neural tumor cells in culture. Brain Res 1989; 490(1): 14-25.
[http://dx.doi.org/10.1016/0006-8993(89)90425-3] [PMID: 2758319]
[90]
Zagon IS, McLaughlin PJ. Opioid antagonist (naltrexone) stimulation of cell proliferation in human and animal neuroblastoma and human fibrosarcoma cells in culture. Neuroscience 1990; 37(1): 223-6.
[http://dx.doi.org/10.1016/0306-4522(90)90207-K] [PMID: 2243594]
[91]
Hytrek SD, McLaughlin PJ, Lang CM, Zagon IS. Inhibition of human colon cancer by intermittent opioid receptor blockade with naltrexone. Cancer Lett 1996; 101(2): 159-64.
[http://dx.doi.org/10.1016/0304-3835(96)04119-5] [PMID: 8620464]
[92]
Zagon IS, McLaughlin PJ. Opioid antagonist modulation of murine neuroblastoma: A profile of cell proliferation and opioid peptides and receptors. Brain Res 1989; 480(1-2): 16-28.
[http://dx.doi.org/10.1016/0006-8993(89)91562-X] [PMID: 2540873]
[93]
Murgo AJ. Inhibition of B16-BL6 melanoma growth in mice by methionine-enkephalin. J Natl Cancer Inst 1985; 75(2): 341-4.
[PMID: 3860686]
[94]
Mehrishi JN, Mills IH. Opiate receptors on lymphocytes and platelets in man. Clin Immunol Immunopathol 1983; 27(2): 240-9.
[http://dx.doi.org/10.1016/0090-1229(83)90074-0] [PMID: 6307570]
[95]
Mathews PM, Froelich CJ, Sibbitt WL Jr, Bankhurst AD. Enhancement of natural cytotoxicity by beta-endorphin. J Immunol 1983; 130(4): 1658-62.
[http://dx.doi.org/10.4049/jimmunol.130.4.1658] [PMID: 6300232]
[96]
Mandler RN, Biddison WE, Mandler R, Serrate SA. beta-Endorphin augments the cytolytic activity and interferon production of natural killer cells. J Immunol 1986; 136(3): 934-9.
[http://dx.doi.org/10.4049/jimmunol.136.3.934] [PMID: 2934481]
[97]
Ye S, Applegren RR, Davis JM, Tak Cheung H. Modulation of lymphocyte motility by β-endorphin and met-enkephalin. Immunopharmacology 1989; 17(2): 81-9.
[http://dx.doi.org/10.1016/0162-3109(89)90053-2] [PMID: 2785980]
[98]
Carr DJJ, Klimpel GR. Enhancement of the generation of cytotoxic T cells by endogenous opiates. J Neuroimmunol 1986; 12(1): 75-87.
[http://dx.doi.org/10.1016/0165-5728(86)90099-8] [PMID: 2940263]
[99]
Roth KA, Barchas JD. Small cell carcinoma cell lines contain opioid peptides and receptors. Cancer 1986; 57(4): 769-73.
[http://dx.doi.org/10.1002/1097-0142(19860215)57:4<769:AID-CNCR2820570415>3.0.CO;2-J] [PMID: 3002586]
[100]
Gilman SC, Schwartz JM, Milner RJ, Bloom FE, Feldman JD. β-Endorphin enhances lymphocyte proliferative responses. Proc Natl Acad Sci USA 1982; 79(13): 4226-30.
[http://dx.doi.org/10.1073/pnas.79.13.4226] [PMID: 6287475]
[101]
Hazum E, Chang KJ, Cuatrecasas P. Specific nonopiate receptors for beta-endorphin. Science 1979; 205(4410): 1033-5.
[http://dx.doi.org/10.1126/science.224457] [PMID: 224457]
[102]
McCain HW, Lamster IB, Bozzone JM, Grbic JT. B-endorphin modulates human immune activity via non-opiate receptor mechanisms. Life Sci 1982; 31(15): 1619-24.
[http://dx.doi.org/10.1016/0024-3205(82)90054-6] [PMID: 6292642]
[103]
Benabid AL, Pollak P, Hoffmann D, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 1991; 337(8738): 403-6.
[http://dx.doi.org/10.1016/0140-6736(91)91175-T] [PMID: 1671433]
[104]
Siegfried J, Lippitz B. Bilateral chronic electrostimulation of ventroposterolateral pallidum: a new therapeutic approach for alleviating all parkinsonian symptoms. Neurosurgery 1994; 35(6): 1126-30.
[http://dx.doi.org/10.1227/00006123-199412000-00016] [PMID: 7885558]
[105]
Limousin P, Pollak P, Benazzouz A, et al. Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995; 345(8942): 91-5.
[http://dx.doi.org/10.1016/S0140-6736(95)90062-4] [PMID: 7815888]
[106]
Palaniappan AK, Ph D. Academic Achievement of Groups Formed Based on Creativity and Intelligence Past Research. 2005; p. 145-51.
[107]
Hallet M, Litvan I. Scientific position paper of the Movement Disorder Society evaluation of surgery for Parkinson’s disease. Mov Disord 2000; 15(3): 436-8.
[http://dx.doi.org/10.1002/1531-8257(200005)15:3<436:AID-MDS1003>3.0.CO;2-L] [PMID: 28470731]
[108]
Thobois S, Mertens P, Guenot M, et al. Subthalamic nucleus stimulation in Parkinson’s disease. J Neurol 2002; 249(5): 529-34.
[http://dx.doi.org/10.1007/s004150200059] [PMID: 12021940]
[109]
Volkmann J. Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol 2004; 21(1): 6-17.
[http://dx.doi.org/10.1097/00004691-200401000-00003] [PMID: 15097290]
[110]
Allert N, Volkmann J, Dotse S, Hefter H, Sturm V, Freund HJ. Effects of bilateral pallidal or subthalamic stimulation on gait in advanced Parkinson’s disease. Mov Disord 2001; 16(6): 1076-85.
[http://dx.doi.org/10.1002/mds.1222] [PMID: 11748738]
[111]
Krystkowiak P, Blatt JL, Bourriez JL, et al. Effects of subthalamic nucleus stimulation and levodopa treatment on gait abnormalities in Parkinson disease. Arch Neurol 2003; 60(1): 80-4.
[http://dx.doi.org/10.1001/archneur.60.1.80] [PMID: 12533092]
[112]
Ferrarin M, Rizzone M, Bergamasco B, et al. Effects of bilateral subthalamic stimulation on gait kinematics and kinetics in Parkinson?s disease. Exp Brain Res 2005; 160(4): 517-27.
[http://dx.doi.org/10.1007/s00221-004-2036-5] [PMID: 15502989]
[113]
Brown RG, Limousin Dowsey P, Brown P, et al. Impact of deep brain stimulation on upper limb akinesia in Parkinson’s disease. Ann Neurol 1999; 45(4): 473-88.
[http://dx.doi.org/10.1002/1531-8249(199904)45:4<473:AID-ANA9>3.0.CO;2-V] [PMID: 10211472]
[114]
Siebner HR, Ceballos-Baumann A, Standhardt H, Auer C, Conrad B, Alesch F. Changes in handwriting resulting from bilateral high-frequency stimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord 1999; 14(6): 964-71.
[http://dx.doi.org/10.1002/1531-8257(199911)14:6<964:AID-MDS1009>3.0.CO;2-C] [PMID: 10584671]
[115]
Wenzelburger R, Kopper F, Zhang BR, et al. Subthalamic nucleus stimulation for Parkinson’s disease preferentially improves akinesia of proximal arm movements compared to finger movements. Mov Disord 2003; 18(10): 1162-9.
[http://dx.doi.org/10.1002/mds.10501] [PMID: 14534921]
[116]
Dromey C, Kumar R, Lang AE, Lozano AM. An investigation of the effects of subthalamic nucleus stimulation on acoustic measures of voice. Mov Disord 2000; 15(6): 1132-8.
[http://dx.doi.org/10.1002/1531-8257(200011)15:6<1132:AID-MDS1011>3.0.CO;2-O] [PMID: 11104196]
[117]
Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 2003; 349(20): 1925-34.
[http://dx.doi.org/10.1056/NEJMoa035275] [PMID: 14614167]
[118]
Schroeder U, Kuehler A, Lange KW, et al. Subthalamic nucleus stimulation affects a frontotemporal network: A PET study. Ann Neurol 2003; 54(4): 445-50.
[http://dx.doi.org/10.1002/ana.10683] [PMID: 14520655]
[119]
Kleiner-Fisman G. Subthalamic nucleus deep brain stimulation: Summary and meta-analysis of outcomes. Movement disorders: official journal of the Movement Disorder Society 2006; 21 (Suppl. 14): S290-304.
[http://dx.doi.org/10.1002/mds.20962]
[120]
Rodriguez-Oroz MC, Obeso JA, Lang AE, et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 2005; 128(10): 2240-9.
[http://dx.doi.org/10.1093/brain/awh571] [PMID: 15975946]
[121]
Castrioto A, Lozano AM, Poon Y-Y, Lang AE, Fallis M, Moro E. Ten-year outcome of subthalamic stimulation in Parkinson disease: A blinded evaluation. Arch Neurol 2011; 68(12): 1550-6.
[http://dx.doi.org/10.1001/archneurol.2011.182] [PMID: 21825213]
[122]
Zibetti M, Merola A, Rizzi L, et al. Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Mov Disord 2011; 26(13): 2327-34.
[http://dx.doi.org/10.1002/mds.23903] [PMID: 22012750]
[123]
Rizzone MG, Fasano A, Daniele A, et al. Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: From the advanced phase towards the late stage of the disease? Parkinsonism Relat Disord 2014; 20(4): 376-81.
[http://dx.doi.org/10.1016/j.parkreldis.2014.01.012] [PMID: 24508574]
[124]
Crenna P, Carpinella I, Rabuffetti M, et al. Impact of subthalamic nucleus stimulation on the initiation of gait in Parkinson’s disease. Exp Brain Res 2006; 172(4): 519-32.
[http://dx.doi.org/10.1007/s00221-006-0360-7] [PMID: 16555105]
[125]
Crenna P, Carpinella I, Lopiano L, et al. Influence of basal ganglia on upper limb locomotor synergies. Evidence from deep brain stimulation and L-DOPA treatment in Parkinson’s disease. Brain: a journal of neurology 2008; 131(Pt 12): 3410-20.
[http://dx.doi.org/10.1093/brain/awn272]
[126]
Hershey T, Revilla FJ, Wernle A, Gibson PS, Dowling JL, Perlmutter JS. Stimulation of STN impairs aspects of cognitive control in PD. Neurology 2004; 62(7): 1110-4.
[http://dx.doi.org/10.1212/01.WNL.0000118202.19098.10] [PMID: 15079009]
[127]
Smeding HMM, Speelman JD, Koning-Haanstra M, et al. Neuropsychological effects of bilateral STN stimulation in Parkinson disease: A controlled study. Neurology 2006; 66(12): 1830-6.
[http://dx.doi.org/10.1212/01.wnl.0000234881.77830.66] [PMID: 16801645]
[128]
Alberts JL, Voelcker-Rehage C, Hallahan K, Vitek M, Bamzai R, Vitek JL. Bilateral subthalamic stimulation impairs cognitive-motor performance in Parkinson’s disease patients. Brain: a journal of neurology 2008; 131(Pt 12): 3348-60.
[http://dx.doi.org/10.1093/brain/awn238]
[129]
Birchall EL, Walker HC, Cutter G, et al. The effect of unilateral subthalamic nucleus deep brain stimulation on depression in Parkinson’s disease. Brain Stimul 2017; 10(3): 651-6.
[http://dx.doi.org/10.1016/j.brs.2016.12.014] [PMID: 28065487]
[130]
Lizarraga KJ, Jagid JR, Luca CC. Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation on gait kinematics in Parkinson’s disease: a randomized, blinded study. J Neurol 2016; 263(8): 1652-6.
[http://dx.doi.org/10.1007/s00415-016-8191-3] [PMID: 27278062]