Green Synthesis of Molecules for the Treatment of Neglected Diseases

Page: [1004 - 1041] Pages: 38

  • * (Excluding Mailing and Handling)

Abstract

Neglected tropical diseases (NTDs) affect mainly poor and marginalized populations of tropical and subtropical areas in 150 countries. Many of the chemical processes involved in the synthesis of active pharmaceutical ingredients (APIs) are highly polluting and inefficient, both in terms of materials and energy-consuming. In this review, we present the green protocols developed in the last 10 years to access new small molecules with potential applications in the treatment of leishmania, tuberculosis, malaria, and Chagas disease. The use of alternative and efficient energy sources, like microwaves and ultrasound, as well as reactions using green solvents and solvent-free protocols, are discussed in this review.

Graphical Abstract

[1]
Ending the neglect to attain the sustainable development goals: a rationale for continued investment in tackling neglected tropical diseases 2021-2030. Available from: https://www.who.int/publications/i/item/9789240052932
[2]
Kuper, H. Neglected tropical diseases and disability-what is the link? Trans. R. Soc. Trop. Med. Hyg., 2019, 113(12), 839-844.
[http://dx.doi.org/10.1093/trstmh/trz001] [PMID: 30892653]
[3]
Bailey, F.; Eaton, J.; Jidda, M.; van Brakel, W.H.; Addiss, D.G.; Molyneux, D.H. Neglected tropical diseases and mental health: progress, partnerships, and integration. Trends Parasitol., 2019, 35(1), 23-31.
[http://dx.doi.org/10.1016/j.pt.2018.11.001] [PMID: 30578149]
[4]
Ochola, E.A.; Karanja, D.M.S.; Elliot, S.J. The impact of neglected tropical diseases (NTDs) on health and wellbeing in sub-Saharan Africa (SSA): A case study of Kenya. PLoS Negl. Trop. Dis., 2021, 15(2), e0009131.
[http://dx.doi.org/10.1371/journal.pntd.0009131] [PMID: 33571200]
[5]
Ochola, E.A.; Elliott, S.J.; Karanja, D.M.S. The impact of neglected tropical diseases (NTDs) on women’s health and wellbeing in Sub-Saharan Africa (SSA): A case study of Kenya. Int. J. Environ. Res. Public Health, 2021, 18(4), 2180.
[http://dx.doi.org/10.3390/ijerph18042180] [PMID: 33672237]
[6]
Caprioli, T.; Martindale, S.; Mengiste, A.; Assefa, D. Quantifying the socio-economic impact of leg lymphoedema on patient caregivers in a lymphatic filariasis and podoconiosis co-endemic district of Ethiopia. PLoS Negl. Trop. Dis., 2020, 14, e0008058.
[http://dx.doi.org/10.1371/journal.pntd.0008058] [PMID: 32126081]
[7]
Kirigia, J.M.; Mburugu, G.N. The monetary value of human lives lost due to neglected tropical diseases in Africa. Infect. Dis. Poverty, 2017, 6(1), 165.
[http://dx.doi.org/10.1186/s40249-017-0379-y] [PMID: 29249201]
[8]
[9]
Ensure healthy lives and promote well-being for all at all ages. 2022. Available from: https://sdgs.un.org/goals/goal3
[10]
Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 2021-2030. 2021. Available from: https://www.who.int/publications/i/item/9789240010352
[11]
Jacobson, J.; Bush, S. Neglected tropical diseases, neglected communities, and conflict: How do we leave no one behind? Trends Parasitol., 2018, 34(3), 175-177.
[http://dx.doi.org/10.1016/j.pt.2017.10.013] [PMID: 29162404]
[12]
Casulli, A. New global targets for NTDs in the WHO roadmap 2021–2030. PLoS Negl. Trop. Dis., 2021, 15(5), e0009373.
[http://dx.doi.org/10.1371/journal.pntd.0009373] [PMID: 33983940]
[13]
Sangenito, L.S.; da Silva Santos, V.; d’Avila-Levy, C.M.; Branquinha, M.H.; Souza dos Santos, A.L.; de Oliveira, S.S.C. Leishmaniasis and Chagas disease-Neglected tropical diseases: Treatment update. Curr. Top. Med. Chem., 2019, 19(3), 174-177.
[http://dx.doi.org/10.2174/156802661903190328155136] [PMID: 30950334]
[14]
Roatt, B.M.; de Oliveira Cardoso, J.M.; De Brito, R.C.F.; Coura-Vital, W.; de Oliveira Aguiar-Soares, R.D.; Reis, A.B. Recent advances and new strategies on leishmaniasis treatment. Appl. Microbiol. Biotechnol., 2020, 104(21), 8965-8977.
[http://dx.doi.org/10.1007/s00253-020-10856-w] [PMID: 32875362]
[15]
Azim, M.; Khan, S.A.; Ullah, S.; Ullah, S.; Anjum, S.I. Therapeutic advances in the topical treatment of cutaneous leishmaniasis: A review. PLoS Negl. Trop. Dis., 2021, 15(3), e0009099.
[http://dx.doi.org/10.1371/journal.pntd.0009099] [PMID: 33657097]
[16]
Matos, A.P.S.; Viçosa, A.L.; Ré, M.I.; Ricci-Júnior, E.; Holandino, C. A review of current treatments strategies based on paromomycin for leishmaniasis. J. Drug Deliv. Sci. Technol., 2020, 57, 101664.
[http://dx.doi.org/10.1016/j.jddst.2020.101664]
[17]
Weng, H.B.; Chen, H.X.; Wang, M.W. Innovation in neglected tropical disease drug discovery and development. Infect. Dis. Poverty, 2018, 7(1), 67.
[http://dx.doi.org/10.1186/s40249-018-0444-1] [PMID: 29950174]
[18]
Engels, D.; Zhou, X.N. Neglected tropical diseases: An effective global response to local poverty-related disease priorities. Infect. Dis. Poverty, 2020, 9(1), 10.
[http://dx.doi.org/10.1186/s40249-020-0630-9] [PMID: 31987053]
[19]
Malecela, M.N. Reflections on the decade of the neglected tropical diseases. Int. Health, 2019, 11(5), 338-340.
[http://dx.doi.org/10.1093/inthealth/ihz048] [PMID: 31529110]
[20]
Tidman, R.; Abela-Ridder, B.; de Castañeda, R.R. The impact of climate change on neglected tropical diseases: A systematic review. Trans. R. Soc. Trop. Med. Hyg., 2021, 115(2), 147-168.
[http://dx.doi.org/10.1093/trstmh/traa192] [PMID: 33508094]
[21]
Booth, M. Chapter Three – Climate change and the neglected tropical diseases. Adv. Parasitol., 2018, 100, 39-126.
[http://dx.doi.org/10.1016/bs.apar.2018.02.001] [PMID: 29753342]
[22]
Sheldon, R.A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem.& Eng., 2018, 6(1), 32-48.
[http://dx.doi.org/10.1021/acssuschemeng.7b03505]
[23]
Clarke, C.J.; Tu, W.C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and sustainable solvents in chemical process. Chem. Rev., 2018, 118(2), 747-800.
[http://dx.doi.org/10.1021/acs.chemrev.7b00571] [PMID: 29300087]
[24]
DeVierno Kreuder, A.; House-Knight, T.; Whitford, J.; Ponnusamy, E.; Miller, P.; Jesse, N.; Rodenborn, R.; Sayag, S.; Gebel, M.; Aped, I.; Sharfstein, I.; Manaster, E.; Ergaz, I.; Harris, A.; Nelowet Grice, L. A method for assessing greener alternatives between chemical products following the 12 principles of green chemistry. ACS Sustain. Chem.& Eng., 2017, 5(4), 2927-2935.
[http://dx.doi.org/10.1021/acssuschemeng.6b02399]
[25]
ACS Green Chemistry Institute. Available from: https://www.acsgcipr.org/
[26]
Roschangar, F.; Zhou, Y.; Constable, D.J.C.; Colberg, J.; Dickson, D.P.; Dunn, P.J.; Eastgate, M.D.; Gallou, F.; Hayler, J.D.; Koenig, S.G.; Kopach, M.E.; Leahy, D.K.; Mergelsberg, I.; Scholz, U.; Smith, A.G.; Henry, M.; Mulder, J.; Brandenburg, J.; Dehli, J.R.; Fandrick, D.R.; Fandrick, K.R.; Gnad-Badouin, F.; Zerban, G.; Groll, K.; Anastas, P.T.; Sheldon, R.A.; Senanayake, C.H. Inspiring process innovation via an improved green manufacturing metric: iGAL. Green Chem., 2018, 20(10), 2206-2211.
[http://dx.doi.org/10.1039/C8GC00616D]
[27]
Kappe, C.O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov., 2006, 5(1), 51-63.
[http://dx.doi.org/10.1038/nrd1926] [PMID: 16374514]
[28]
Loupy, A. Microwaves in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002.
[http://dx.doi.org/10.1002/3527601775]
[29]
Kappe, C.O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley-VCH: Weinheim, Germany, 2005.
[http://dx.doi.org/10.1002/3527606556]
[30]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[31]
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27(41), 4945-4948.
[http://dx.doi.org/10.1016/S0040-4039(00)85103-5]
[32]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12(5), 743-754.
[http://dx.doi.org/10.1039/b921171c]
[33]
Mohan, S.B.; Ravi Kumar, B.V.V.; Dinda, S.C.; Naik, D.; Prabu Seenivasan, S.; Kumar, V.; Rana, D.N.; Brahmkshatriya, P.S. Microwave-assisted synthesis, molecular docking and antitubercular activity of 1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Bioorg. Med. Chem. Lett., 2012, 22(24), 7539-7542.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.032] [PMID: 23122523]
[34]
Muscia, G.C.; Buldain, G.Y.; Asís, S.E. Design, synthesis and evaluation of acridine and fused-quinoline derivatives as potential anti-tuberculosis agents. Eur. J. Med. Chem., 2014, 73, 243-249.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.013] [PMID: 24412719]
[35]
Insuasty, B.; Ramírez, J.; Becerra, D.; Echeverry, C.; Quiroga, J.; Abonia, R.; Robledo, S.M.; Vélez, I.D.; Upegui, Y.; Muñoz, J.A.; Ospina, V.; Nogueras, M.; Cobo, J. An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur. J. Med. Chem., 2015, 93, 401-413.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.040] [PMID: 25725376]
[36]
Bandyopadhyay, D.; Samano, S.; Villalobos-Rocha, J.C.; Sanchez-Torres, L.E.; Nogueda-Torres, B.; Rivera, G.; Banik, B.K. A practical green synthesis and biological evaluation of benzimidazoles against two neglected tropical diseases. Chagas and Leishmaniasis. Curr. Med. Chem., 2018, 24(41), 4714-4725.
[http://dx.doi.org/10.2174/0929867325666171201101807] [PMID: 23317160]
[37]
Khattab, S.N.; Haiba, N.S.; Asal, A.M.; Bekhit, A.A.; Guemei, A.A.; Amer, A.; El-Faham, A. Study of antileishmanial activity of 2-aminobenzoyl amino acid hydrazides and their quinazoline derivatives. Bioorg. Med. Chem. Lett., 2017, 27(4), 918-921.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.003] [PMID: 28087274]
[38]
Coa, J.C.; García, E.; Carda, M.; Agut, R.; Vélez, I.D.; Muñoz, J.A.; Yepes, L.M.; Robledo, S.M.; Cardona, W.I. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med. Chem. Res., 2017, 26(7), 1405-1414.
[http://dx.doi.org/10.1007/s00044-017-1846-5]
[39]
da Rosa, R.; de Moraes, M.H.; Zimmermann, L.A.; Schenkel, E.P.; Steindel, M.; Bernardes, L.S.C. Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis. Eur. J. Med. Chem., 2017, 128, 25-35.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.029] [PMID: 28152426]
[40]
Vergara, S.; Carda, M.; Agut, R.; Yepes, L.M.; Vélez, I.D.; Robledo, S.M.; Galeano, W.C. Synthesis, antiprotozoal activity and cytotoxicity in U-937 macrophages of triclosan–hydrazone hybrids. Med. Chem. Res., 2017, 26(12), 3262-3273.
[http://dx.doi.org/10.1007/s00044-017-2019-2]
[41]
Upadhyay, A.; Kushwaha, P.; Gupta, S.; Dodda, R.P.; Ramalingam, K.; Kant, R.; Goyal, N.; Sashidhara, K.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur. J. Med. Chem., 2018, 154, 172-181.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.014] [PMID: 29793211]
[42]
García, E.; Coa, J.C.; Otero, E.; Carda, M.; Vélez, I.D.; Robledo, S.M.; Cardona, W.I. Synthesis and antiprotozoal activity of furanchalcone–quinoline, furanchalcone–chromone and furanchalcone–imidazole hybrids. Med. Chem. Res., 2018, 27(2), 497-511.
[http://dx.doi.org/10.1007/s00044-017-2076-6]
[43]
Laurentiz, R.S.; Gomes, W.P.; Pissurno, A.P.R.; Santos, F.A.; Santos, V.C.O.; Martins, C.H.G. Synthesis and antibacterial activity of new lactone 1,4-dihydroquinoline derivatives. Med. Chem. Res., 2018, 27(4), 1074-1084.
[http://dx.doi.org/10.1007/s00044-017-2129-x]
[44]
da Rocha Pissurno, A.P.; Santos, F.A.; Candido, A.C.B.B.; Magalhães, L.G.; da Silva de Laurentiz, R. In vitro leishmanicidal activity of lactone 1,4-dihydroquinoline derivatives against Leishmania (Leishmania) amazonensis. Med. Chem. Res., 2018, 27(9), 2224-2229.
[http://dx.doi.org/10.1007/s00044-018-2231-8]
[45]
Dardonville, C.; Fernández-Fernández, C.; Gibbons, S.L.; Jagerovic, N.; Nieto, L.; Ryan, G.; Kaiser, M.; Brun, R. Antiprotozoal activity of 1-phenethyl-4-aminopiperidine derivatives. Antimicrob. Agents Chemother., 2009, 53(9), 3815-3821.
[http://dx.doi.org/10.1128/AAC.00124-09] [PMID: 19564359]
[46]
Rani, A.; Singh, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. Microwave-promoted facile access to 4-aminoquinoline-phthalimides: Synthesis and anti-plasmodial evaluation. Eur. J. Med. Chem., 2018, 143, 150-156.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.033] [PMID: 29174811]
[47]
Patil, S.R.; Bollikonda, S.; Patil, R.H.; Sangshetti, J.N.; Bobade, A.S.; Asrondkar, A.; Reddy, P.P.; Shinde, D.B. Microwave-assisted synthesis of novel 5-substituted benzylidene amino-2-butyl benzofuran-3-yl-4-methoxyphenyl methanones as antileishmanial and antioxidant agents. Bioorg. Med. Chem. Lett., 2018, 28(3), 482-487.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.013] [PMID: 29258770]
[48]
Patel, V.M.; Patel, N.B.; Chan-Bacab, M.J.; Rivera, G. Synthesis, biological evaluation and molecular dynamics studies of 1,2,4-triazole clubbed Mannich bases. Comput. Biol. Chem., 2018, 76, 264-274.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.07.020] [PMID: 30092449]
[49]
Diedrich, D.; Stenzel, K.; Hesping, E.; Antonova-Koch, Y.; Gebru, T.; Duffy, S.; Fisher, G.; Schöler, A.; Meister, S.; Kurz, T.; Avery, V.M.; Winzeler, E.A.; Held, J.; Andrews, K.T.; Hansen, F.K. One-pot, multi-component synthesis and structure-activity relationships of peptoid-based histone deacetylase (HDAC) inhibitors targeting malaria parasites. Eur. J. Med. Chem., 2018, 158, 801-813.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.018] [PMID: 30245402]
[50]
Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G.; Bathini, R.; Manga, V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J. Mol. Struct., 2018, 1157, 312-321.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.080]
[51]
Huang, G.; Solano, C.M.; Su, Y.; Ezzat, N.; Matsui, S.; Huang, L.; Chakrabarti, D.; Yuan, Y. Microwave-assisted, rapid synthesis of 2-vinylquinolines and evaluation of their antimalarial activity. Tetrahedron Lett., 2019, 60(26), 1736-1740.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.054] [PMID: 31802783]
[52]
Previdi, D.; Rodrigues, S.; Coelho, M.; Candido, A.C.; Magalhães, L.; Donate, P. Synthesis and antileishmanial activity of some functionalized peptoids. J. Braz. Chem. Soc., 2019, 30, 1334-1340.
[http://dx.doi.org/10.21577/0103-5053.20190023]
[53]
Patel, T.S.; Bhatt, J.D.; Dixit, R.B.; Chudasama, C.J.; Patel, B.D.; Dixit, B.C. Green synthesis, biological evaluation, molecular docking studies and 3D-QSAR analysis of novel phenylalanine linked quinazoline-4(3H)-one-sulphonamide hybrid entities distorting the malarial reductase activity in folate pathway. Bioorg. Med. Chem., 2019, 27(16), 3574-3586.
[http://dx.doi.org/10.1016/j.bmc.2019.06.038] [PMID: 31272837]
[54]
Adhikari, N.; Kashyap, A.; Shakya, A.; Ghosh, S.K.; Bhattacharyya, D.R.; Bhat, H.R.; Singh, U.P. Microwave assisted synthesis, docking and antimalarial evaluation of hybrid PABA‐substituted 1,3,5‐triazine derivatives. J. Heterocycl. Chem., 2020, 57(6), 2389-2399.
[http://dx.doi.org/10.1002/jhet.3955]
[55]
Baréa, P.; de Paula, J.; Alonso, L.; de Oliveira, A.; da Costa, W.; Alonso, A.; Nakamura, C.; Sarragiotto, M. Synthesis, antileishmanial activity and spin labeling EPR studies of novel β-carboline-oxazoline and β -carboline-dihydrooxazine derivatives. J. Braz. Chem. Soc., 2020, 31, 1170-1185.
[http://dx.doi.org/10.21577/0103-5053.20200003]
[56]
Sabir, S.; Kumar, G.; Verma, V.P.; Jat, J.L. Aziridine ring opening: An overview of sustainable methods. ChemistrySelect, 2018, 3(13), 3702-3711.
[http://dx.doi.org/10.1002/slct.201800170]
[57]
Sarojini, P.; Jeyachandran, M.; Sriram, D.; Ranganathan, P.; Gandhimathi, S. Facile microwave-assisted synthesis and antitubercular evaluation of novel aziridine derivatives. J. Mol. Struct., 2021, 1233, 130038.
[http://dx.doi.org/10.1016/j.molstruc.2021.130038]
[58]
Parikh, P.H.; Timaniya, J.B.; Patel, M.J.; Patel, K.P. Microwave-assisted synthesis of pyrano[2,3-c]-pyrazole derivatives and their anti-microbial, anti-malarial, anti-tubercular, and anti-cancer activities. J. Mol. Struct., 2022, 1249, 131605.
[http://dx.doi.org/10.1016/j.molstruc.2021.131605]
[59]
Choudhary, M.I.; Rizvi, F.; Siddiqui, H.; Yousuf, S.; Zafar, H.; Shaikh, M. Microwave assisted Biology-Oriented Drug Synthesis (BIODS) of new N,N′-disubstituted benzylamine analogous of 4-aminoantipyrine against leishmaniasis – In vitro assay and in silico-predicted molecular interactions with key metabolic targets. Bioorg. Chem., 2022, 120, 105621.
[http://dx.doi.org/10.1016/j.bioorg.2022.105621] [PMID: 35074578]
[60]
Chen, D.; Sharma, S.K.; Mudhoo, A. Eds.; Handbook on Applications of Ultrasound. Sonochemistry for Sustainability; CRC Press: Boca Raton, 2012.
[http://dx.doi.org/10.1201/b11012]
[61]
Bazureau, J-P.; Draye, M. Ultrasound and Microwaves: Recent Advances in Organic Chemistry; Transworld Research Network: Kerala, 2011, p. 241.
[62]
Kalaria, P.N.; Satasia, S.P.; Avalani, J.R.; Raval, D.K. Ultrasound-assisted one-pot four-component synthesis of novel 2-amino-3-cyanopyridine derivatives bearing 5-imidazopyrazole scaffold and their biological broadcast. Eur. J. Med. Chem., 2014, 83, 655-664.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.071] [PMID: 25010936]
[63]
Aliança, A.S.D.S.; Oliveira, A.R.; Feitosa, A.P.S.; Ribeiro, K.R.C.; de Castro, M.C.A.B.; Leite, A.C.L.; Alves, L.C.; Brayner, F.A. In vitro evaluation of citotoxicity and leishmanicidal activity of phthalimido-thiazole derivatives. Eur. J. Pharm. Sci., 2017, 105, 1-10.
[http://dx.doi.org/10.1016/j.ejps.2017.05.005] [PMID: 28478133]
[64]
Lenardi, M.; Estévez, V.; Villacampa, M.; Menéndez, J.C. The hantzsch pyrrole synthesis: Non-conventional variations and applications of a neglected classical reaction. Synthesis, 2019, 51(04), 816-828.
[http://dx.doi.org/10.1055/s-0037-1610320]
[65]
da Silva, E.B.; Oliveira e Silva, D.A.; Oliveira, A.R.; da Silva Mendes, C.H.; dos Santos, T.A.R.; da Silva, A.C.; de Castro, M.C.A.; Ferreira, R.S.; Moreira, D.R.M.; Cardoso, M.V.O.; de Simone, C.A.; Pereira, V.R.A.; Leite, A.C.L. Desing and synthesis of potent anti-Trypanosoma cruzi agents new thiazoles derivatives which induce apoptotic parasite death. Eur. J. Med. Chem., 2017, 130, 39-50.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.026] [PMID: 28242550]
[66]
Pogaku, V.; Krishna, V.S.; Sriram, D.; Rangan, K.; Basavoju, S. Ultrasonication-ionic liquid synergy for the synthesis of new potent anti-tuberculosis 1,2,4-triazol-1-yl-pyrazole based spirooxindolopyrrolizidines. Bioorg. Med. Chem. Lett., 2019, 29(13), 1682-1687.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.026] [PMID: 31047752]
[67]
Chavan, P.; Salve, A.; Jadhav, S.; Pansare, D.; Rai, M. Ultrasound assisted, synthesis of N ‐(7‐(R)‐2‐oxa‐8‐azabicyclo[4.2.0]octan‐8‐ yl)isonicotinamide derivatives and their biological evaluation. J. Heterocycl. Chem., 2020, 57(3), 1228-1235.
[http://dx.doi.org/10.1002/jhet.3860]
[68]
Ajani, O.O.; Iyaye, K.T.; Ademosun, O.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs-A review. RSC Advances, 2022, 12(29), 18594-18614.
[http://dx.doi.org/10.1039/D2RA02896D] [PMID: 35873320]
[69]
Otani, T.; Kunimatsu, S.; Takahashi, T.; Nihei, H.; Saito, T. TfOH-promoted transformation from 2-alkynylphenyl isothiocyanates to quinoline-2-thiones or indoles. Tetrahedron Lett., 2009, 50(27), 3853-3856.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.045]
[70]
Ismail, M.; Abass, M.; Hassan, M. Chemistry of substituted quinolinones. Part VI. Synthesis and nucleophilic reactions of 4-Chloro-8-methylquinolin-2(1H)-one and its thione analogue. Molecules, 2000, 5(12), 1224-1239.
[http://dx.doi.org/10.3390/51201224]
[71]
Geesi, M.H.; Moustapha, M.E.; Bakht, M.A.; Riadi, Y. Ultrasound-accelerated green synthesis of new quinolin-2-thione derivatives and antimicrobial evaluation against Escherichia coli and Staphylococcus aureus. Sustain. Chem. Pharm., 2020, 15, 100195.
[http://dx.doi.org/10.1016/j.scp.2019.100195]
[72]
Kumar, G.; Shankar, R. 2‐Isoxazolines: A synthetic and medicinal overview. ChemMedChem, 2021, 16(3), 430-447.
[http://dx.doi.org/10.1002/cmdc.202000575] [PMID: 33029886]
[73]
Jain, V.S.; Vora, D.K.; Ramaa, C.S. Thiazolidine-2,4-diones: Progress towards multifarious applications. Bioorg. Med. Chem., 2013, 21(7), 1599-1620.
[http://dx.doi.org/10.1016/j.bmc.2013.01.029] [PMID: 23419324]
[74]
Thari, F.Z.; Tachallait, H.; El Alaoui, N.E.; Talha, A.; Arshad, S.; Álvarez, E.; Karrouchi, K.; Bougrin, K. Ultrasound-assisted one-pot green synthesis of new N- substituted-5-arylidene-thiazolidine-2,4-dione-isoxazoline derivatives using NaCl/Oxone/Na3PO4 in aqueous media. Ultrason. Sonochem., 2020, 68, 105222.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105222] [PMID: 32585575]
[75]
Rock, J.; Garcia, D.; Espino, O.; Shetu, S.A.; Chan-Bacab, M.J.; Moo-Puc, R.; Patel, N.B.; Rivera, G.; Bandyopadhyay, D. Benzopyrazine-based small molecule inhibitors as trypanocidal and leishmanicidal agents: Green synthesis, in vitro, and in silico evaluations. Front Chem., 2021, 9, 725892.
[http://dx.doi.org/10.3389/fchem.2021.725892] [PMID: 34604170]
[76]
Nagasundaram, N.; Padmasree, K.; Santhosh, S.; Vinoth, N.; Sedhu, N.; Lalitha, A. Ultrasound promoted synthesis of new azo fused dihydropyrano[2,3-c]pyrazole derivatives: In vitro antimicrobial, anticancer, DFT, in silico ADMET and molecular docking studies. J. Mol. Struct., 2022, 1263, 133091.
[http://dx.doi.org/10.1016/j.molstruc.2022.133091]
[77]
Welton, T. Solvents and sustainable chemistry. Proc.- Royal Soc., Math. Phys. Eng. Sci., 2015, 471(2183), 20150502.
[http://dx.doi.org/10.1098/rspa.2015.0502] [PMID: 26730217]
[78]
Abraham, M.A.; Moens, L. Clean Solvents: Alternative Media for Chemical Reactions and Processing; American Chemical Society: Washington, DC, 2002, pp. 1-9.
[http://dx.doi.org/10.1021/bk-2002-0819]
[79]
Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem., 2016, 18(1), 288-296.
[http://dx.doi.org/10.1039/C5GC01008J]
[80]
Jimenez-Gonzalez, C.; Curzons, A.D.; Constable, D.J.C.; Cunningham, V.L. Expanding GSK’s Solvent Selection Guide-application of life cycle assessment to enhance solvent selections. Clean Technol. Environ. Policy, 2004, 7, 42-50.
[http://dx.doi.org/10.1007/s10098-004-0245-z]
[81]
Tahghighi, A.; Razmi, S.; Mahdavi, M.; Foroumadi, P.; Ardestani, S.K.; Emami, S.; Kobarfard, F.; Dastmalchi, S.; Shafiee, A.; Foroumadi, A. Synthesis and anti-leishmanial activity of 5-(5-nitrofuran-2-yl)-1,3,4-thiadiazol-2-amines containing N-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl] moieties. Eur. J. Med. Chem., 2012, 50, 124-128.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.046] [PMID: 22336386]
[82]
de Moraes Gomes, P.A.T.; de Oliveira Barbosa, M.; Farias Santiago, E.; de Oliveira Cardoso, M.V.; Capistrano Costa, N.T.; Hernandes, M.Z.; Moreira, D.R.M.; da Silva, A.C.; dos Santos, T.A.R.; Pereira, V.R.A.; Brayner dos Santosd, F.A.; do Nascimento Pereira, G.A.; Ferreira, R.S.; Leite, A.C.L. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi. Eur. J. Med. Chem., 2016, 121, 387-398.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.050] [PMID: 27295485]
[83]
Rolón, M.; Peixoto de Abreu Lima, A.; Coronel, C.; Vega, M.C.; Pandolfi, E.; Rojas de Arias, A. The efficacy of new 2,5-dihydroxybenzyl derivatives against Trypanosoma cruzi, Leishmania infantum and Leishmania braziliensis. J. Infect. Dev. Ctries., 2019, 13(6), 565-576.
[http://dx.doi.org/10.3855/jidc.10622] [PMID: 32058992]
[84]
El-Saghier, A.M.; Mohamed, M.A.; Abd-Allah, O.A.; Kadry, A.M.; Ibrahim, T.M.; Bekhit, A.A. Green synthesis, antileishmanial activity evaluation, and in silico studies of new amino acid-coupled 1,2,4-triazoles. Med. Chem. Res., 2019, 28(2), 169-181.
[http://dx.doi.org/10.1007/s00044-018-2274-x]
[85]
da Silva, A.A.; Maia, P.I.S.; Lopes, C.D.; de Albuquerque, S.; Valle, M.S. Synthesis, characterization and antichagasic evaluation of thiosemicarbazones prepared from chalcones and dibenzalacetones. J. Mol. Struct., 2021, 1232, 130014-130019.
[http://dx.doi.org/10.1016/j.molstruc.2021.130014]
[86]
Walsh, P.J.; Li, H.; de Parrodi, C.A. A green chemistry approach to asymmetric catalysis: Solvent-free and highly concentrated reactions. Chem. Rev., 2007, 107(6), 2503-2545.
[http://dx.doi.org/10.1021/cr0509556] [PMID: 17530908]
[87]
Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev., 2000, 100(3), 1025-1074.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257]
[88]
Bhagat, S. Shah, P.; Garg, S.K.; Mishra, S.; Kamal Kaur, P.; Singh, S.; Chakraborti, A.K. α-Aminophosphonates as novel anti-leishmanial chemotypes: synthesis, biological evaluation, and CoMFA studies. MedChemComm, 2014, 5(5), 665-670.
[http://dx.doi.org/10.1039/C3MD00388D]
[89]
Koley, S.; Tiwari, N. Neelabh.; Singh, R.K.; Singh, M.S. 2-Mercaptoquinoline analogues: A potent antileishmanial agent. ChemistrySelect, 2018, 3(6), 1688-1692.
[http://dx.doi.org/10.1002/slct.201703095]
[90]
Sahu, A.; Agrawal, R.K.; Pandey, R. Synthesis and systemic toxicity assessment of quinine-triazole scaffold with antiprotozoal potency. Bioorg. Chem., 2019, 88, 102939-102945.
[http://dx.doi.org/10.1016/j.bioorg.2019.102939] [PMID: 31028993]
[91]
Jelali, H.; Al Nasr, I.S.; Koko, W.S.; Khan, T.A.; Deniau, E.; Sauthier, M.; Alresheedi, F.; Hamdi, N. Synthesis, characterization and in vitro bioactivity studies of isoindolin‐1‐3‐phosophonate compounds. J. Heterocycl. Chem., 2022, 59(3), 493-506.
[http://dx.doi.org/10.1002/jhet.4396]
[92]
Sarfraz, M.; Wang, C.; Sultana, N.; Ellahi, H.; Rehman, M.F.; Jameel, M.; Akhter, S.; Kanwal, F.; Tariq, M.I.; Xue, S. 2,3-Dihydroquinazolin-4(1H)-one as a New Class of Anti-Leishmanial Agents: A Combined Experimental and Computational Study. Crystals (Basel), 2021, 12(1), 44-60.
[http://dx.doi.org/10.3390/cryst12010044]