Recent Advancements and Applications of Size Exclusion Chromatography in Modern Analysis

Page: [374 - 390] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

In recent years, size exclusion chromatography (SEC) has gained valuable and impactable recognition among various chromatographic techniques. Also addressed as other names, viz. gel permeation chromatography, steric-exclusion chromatography, etc., SEC is typically taken into consideration for the fractionation and molecular weight determination of biomolecules and large macromolecules (proteins and polymers) using porous particles. A homogenous mixture of molecules dispersed in the mobile phase is introduced to the chromatographic column, which provides a solid support in the form of microscopic beads (the stationary phase). The beads act as “sieves” and purify small molecules, which become temporarily trapped inside the pores. Some of the advantages that SEC offers over other chromatographic techniques are short analysis time, no sample loss, good sensitivity, and requirement for less amount of mobile phase. In the proposed manuscript, we have deliberated various proteomic applications of size exclusion chromatography, which include the isolation of extracellular vesicles in cancer, isolation of human synovial fluid, separation of monoclonal antibodies, as well as several tandem techniques, such as deep glycoproteomic analysis using SEC-LC-MS/MS, analysis of mammalian polysomes in cells and tissues using tandem MS-SEC, SEC-SWATH-MS profiling of the proteome with a focus on complexity, etc.

Graphical Abstract

[1]
Porath, J.; Lindner, E.B. Separation methods based on molecular sieving and ion exclusion. Nature, 1961, 191(4783), 69-70.
[http://dx.doi.org/10.1038/191069a0] [PMID: 13737223]
[2]
Pedersen, K.O. Exclusion chromatography. Arch. Biochem. Biophys., 1962(Suppl. 1), 157-168.
[PMID: 13942331]
[3]
Steere, R.L.; Ackers, G.K. Restricted-diffusion chromatography through calibrated columns of granulated agar gel; a simple method for particle-size determination. Nature, 1962, 196(4853), 475-476.
[http://dx.doi.org/10.1038/196475a0]
[4]
Dubin, P.L.; Koontz, S.; Wright, K.L. III Substrate–polymer interactions in liquid exclusion chromatography (GPC) in N,N-dimethylformamide. J. Polym. Sci. Polym. Chem. Ed., 1977, 15(9), 2047-2057.
[http://dx.doi.org/10.1002/pol.1977.170150901]
[5]
Striegel, A.; Yau, W.; Kirkland, J.J.; Bly, D.D. Modern Size-Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography, 2nd Edition; Interscience: New York, 1979.
[6]
Glöckner, G. Polymer characterization by liquid chromatography; Elsevier, 1987.
[7]
Mori, S.; Barth, H.G. Size exclusion chromatography; Springer Science & Business Media, 1999.
[http://dx.doi.org/10.1007/978-3-662-03910-6]
[8]
Wu, C-S. Handbook of size exclusion chromatography and related techniques: revised and expanded; CRC press, 2003.
[http://dx.doi.org/10.1201/9780203913321]
[9]
Ericsson, V. Development of a size exclusion chromatography metod for analysis of extraction solutions from urinary catheters. Uppsala Unversitet , 2010. Available from: http://www.diva-portal.se/smash/get/diva2:317069/FULLTEXT01.pdf
[10]
Hjertén, S.; Mosbach, R. “Molecular-sieve” chromatography of proteins on columns of cross-linked polyacrylamide. Anal. Biochem., 1962, 3(2), 109-118.
[http://dx.doi.org/10.1016/0003-2697(62)90100-8] [PMID: 13907811]
[11]
Moore, J.C. Gel permeation chromatography. I. A new method for molecular weight distribution of high polymers. J. Polym. Sci. A, 1964, 2(2), 835-843.
[http://dx.doi.org/10.1002/pol.1964.100020220]
[12]
Moore, J. Gel permeation chromatography: Its inception. J. Polymer. Sci. Part C: Polymer Symposia., 1968, 21(1), 1-3.
[http://dx.doi.org/10.1002/polc.5070210103]
[13]
Tennikova, T.B.; Horák, D.; Švec, F.; Kolár, J.; Čoupek, J.; Trushin, S.A.; Maltzev, V.G.; Belenkii, B.G. Hydrolysed macroporous glycidyl methacrylate-ethylene dimethacrylate copolymer sorbent for size-exclusion high-performance liquid chromatography of synthetic polymers and biopolymers. J. Chromatogr. A, 1988, 435(2), 357-362.
[http://dx.doi.org/10.1016/S0021-9673(01)82196-8] [PMID: 3346346]
[14]
Fekete, S.; Beck, A.; Veuthey, J.L.; Guillarme, D. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J. Pharm. Biomed. Anal., 2014, 101, 161-173.
[http://dx.doi.org/10.1016/j.jpba.2014.04.011] [PMID: 24816223]
[15]
Hall, M. Size Exclusion Chromatography (SEC). Biopharmaceutical Processing; Elsevier, 2018, pp. 421-432.
[16]
Porath, J.; Flodin, P. Gel filtration: A method for desalting and group separation. Nature, 1959, 183(4676), 1657-1659.
[http://dx.doi.org/10.1038/1831657a0] [PMID: 13666849]
[17]
Yau, W.W.; Kirkland, J.J.; Bly, D.D.; Striegel, A. Modern size-exclusion liquid chromatography: Practice of gel permeation and gel filtration chromatography; John Wiley & Sons, 2009.
[18]
Giddings, J.C. Dynamics of chromatography: principles and theory; CRC Press, 2002.
[19]
Everett, D.H. Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem., 1972, 31(4), 577-638.
[http://dx.doi.org/10.1351/pac197231040577]
[20]
Dawkins, J.V.; Hemming, M. Gel permeation chromatography: universal calibration for rigid rod and random coil polymers. Polymer (Guildf.), 1975, 16(8), 554-560.
[http://dx.doi.org/10.1016/0032-3861(75)90145-7]
[21]
Vander Heyden, Y.; Popovici, S.T.; Schoenmakers, P.J. Evaluation of size-exclusion chromatography and size-exclusion electrochromatography calibration curves. J. Chromatogr. A, 2002, 957(2), 127-137.
[http://dx.doi.org/10.1016/S0021-9673(02)00311-4] [PMID: 12113337]
[22]
Lough, W.J.; Wainer, I.W. High performance liquid chromatography: fundamental principles and practice; CRC press, 1995.
[23]
Shen, X.; Kou, Q.; Guo, R.; Yang, Z.; Chen, D.; Liu, X.; Hong, H.; Sun, L. Native proteomics in discovery mode using size-exclusion chromatography–capillary zone electrophoresis–tandem mass spectrometry. Anal. Chem., 2018, 90(17), 10095-10099.
[http://dx.doi.org/10.1021/acs.analchem.8b02725] [PMID: 30085653]
[24]
Kükrer, B.; Filipe, V.; van Duijn, E.; Kasper, P.T.; Vreeken, R.J.; Heck, A.J.R.; Jiskoot, W. Mass spectrometric analysis of intact human monoclonal antibody aggregates fractionated by size-exclusion chromatography. Pharm. Res., 2010, 27(10), 2197-2204.
[http://dx.doi.org/10.1007/s11095-010-0224-5] [PMID: 20680668]
[25]
Zhang, W.; Li, L.; Wang, D.; Wang, R.; Yu, S.; Gao, N. Characterizing dissolved organic matter in aquatic environments by size exclusion chromatography coupled with multiple detectors. Anal. Chim. Acta, 2022, 1191, 339358.
[http://dx.doi.org/10.1016/j.aca.2021.339358] [PMID: 35033260]
[26]
Link, G.W., Jr; Keller, P.L.; Stout, R.W.; Banes, A.J. Effects of solutions used for storage of size-exclusion columns on subsequent chromatography of peptides and proteins. J. Chromatogr. A, 1985, 331(2), 253-264.
[http://dx.doi.org/10.1016/0021-9673(85)80031-5] [PMID: 2997251]
[27]
Held, D.; Kilz, P. Size-exclusion chromatography as a useful tool for the assessment of polymer quality and determination of macromolecular properties; Chemistry Teacher International, 2021.
[http://dx.doi.org/10.1515/cti-2020-0024]
[28]
Chung, H.J.; Lee, J.H.; Shin, H.Y.; Kwon, J.S.; Kim, J.Y. Minimization of isoamylase interference in size‐exclusion chromatography of debranched starch molecular structure. Stärke, 2022, 74(1-2), 2100147.
[http://dx.doi.org/10.1002/star.202100147]
[29]
Mizutani, T.; Mizutani, A. Prevention of adsorption of protein on controlled-pore glass with amino acid buffer. J. Chromatogr. A, 1975, 111(1), 214-216.
[http://dx.doi.org/10.1016/S0021-9673(01)80166-7] [PMID: 1159000]
[30]
Durkee, K.H.; Roh, B.H.; Doellgast, G.J. Immunoaffinity chromatographic purification of Russell’s viper venom factor X activator using elution in high concentrations of magnesium chloride. Protein Expr. Purif., 1993, 4(5), 405-411.
[http://dx.doi.org/10.1006/prep.1993.1053] [PMID: 8251752]
[31]
Ratto, J.J.; O’Conner, S.R.; Distler, A.R.; Wu, G.M.; Hummel, D.; Treuheit, M.J.; Herman, A.C.; Davis, J.M. Ethanol-sodium chloride-phosphate mobile phase for size-exclusion chromatography of poly(ethylene glycol) modified proteins. J. Chromatogr. A, 1997, 763(1-2), 337-344.
[http://dx.doi.org/10.1016/S0021-9673(96)00817-5]
[32]
Held, D.; Kilz, P. Size-exclusion chromatography as a useful tool for the assessment of polymer quality and determination of macromolecular properties. Chem. Teacher Int., 2021, 3(2), 77-103.
[http://dx.doi.org/10.1515/cti-2020-0024]
[33]
Tayyab, S.; Qamar, S.; Islam, M. Size exclusion chromatography and size exclusion HPLC of proteins. Biochem. Educ., 1991, 19(3), 149-152.
[http://dx.doi.org/10.1016/0307-4412(91)90060-L]
[34]
Huang, T.Y.; Chi, L.M.; Chien, K.Y. Size-exclusion chromatography using reverse-phase columns for protein separation. J. Chromatogr. A, 2018, 1571, 201-212.
[http://dx.doi.org/10.1016/j.chroma.2018.08.020] [PMID: 30146374]
[35]
Becker, A.; Thakur, B.K.; Weiss, J.M.; Kim, H.S.; Peinado, H.; Lyden, D. Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis. Cancer Cell, 2016, 30(6), 836-848.
[http://dx.doi.org/10.1016/j.ccell.2016.10.009] [PMID: 27960084]
[36]
Muller, L.; Hong, C.S.; Stolz, D.B.; Watkins, S.C.; Whiteside, T.L. Isolation of biologically-active exosomes from human plasma. J. Immunol. Methods, 2014, 411, 55-65.
[http://dx.doi.org/10.1016/j.jim.2014.06.007] [PMID: 24952243]
[37]
Gámez-Valero, A.; Monguió-Tortajada, M.; Carreras-Planella, L.; Franquesa, M.; Beyer, K.; Borràs, F.E. Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles’ characteristics compared to precipitating agents. Sci. Rep., 2016, 6(1), 33641.
[http://dx.doi.org/10.1038/srep33641] [PMID: 27640641]
[38]
van Eijndhoven, M.A.J.; Zijlstra, J.M.; Groenewegen, N.J.; Drees, E.E.E.; van Niele, S.; Baglio, S.R.; Koppers-Lalic, D.; van der Voorn, H.; Libregts, S.F.W.M.; Wauben, M.H.M.; de Menezes, R.X.; van Weering, J.R.T.; Nieuwland, R.; Visser, L.; van den Berg, A.; de Jong, D.; Pegtel, D.M. Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients. JCI Insight, 2016, 1(19), e89631.
[http://dx.doi.org/10.1172/jci.insight.89631] [PMID: 27882350]
[39]
Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; Ayre, D.C.; Bach, J.M.; Bachurski, D.; Baharvand, H.; Balaj, L.; Baldacchino, S.; Bauer, N.N.; Baxter, A.A.; Bebawy, M.; Beckham, C.; Bedina Zavec, A.; Benmoussa, A.; Berardi, A.C.; Bergese, P.; Bielska, E.; Blenkiron, C.; Bobis-Wozowicz, S.; Boilard, E.; Boireau, W.; Bongiovanni, A.; Borràs, F.E.; Bosch, S.; Boulanger, C.M.; Breakefield, X.; Breglio, A.M.; Brennan, M.Á.; Brigstock, D.R.; Brisson, A.; Broekman, M.L.D.; Bromberg, J.F.; Bryl-Górecka, P.; Buch, S.; Buck, A.H.; Burger, D.; Busatto, S.; Buschmann, D.; Bussolati, B.; Buzás, E.I.; Byrd, J.B.; Camussi, G.; Carter, D.R.F.; Caruso, S.; Chamley, L.W.; Chang, Y.T.; Chen, C.; Chen, S.; Cheng, L.; Chin, A.R.; Clayton, A.; Clerici, S.P.; Cocks, A.; Cocucci, E.; Coffey, R.J.; Cordeiro-da-Silva, A.; Couch, Y.; Coumans, F.A.W.; Coyle, B.; Crescitelli, R.; Criado, M.F.; D’Souza-Schorey, C.; Das, S.; Datta Chaudhuri, A.; de Candia, P.; De Santana, E.F.; De Wever, O.; del Portil-lo, H.A.; Demaret, T.; Deville, S.; Devitt, A.; Dhondt, B.; Di Vizio, D.; Dieterich, L.C.; Dolo, V.; Dominguez Rubio, A.P.; Dominici, M.; Dourado, M.R.; Driedonks, T.A.P.; Duarte, F.V.; Duncan, H.M.; Eichenberger, R.M.; Ekström, K.; E.L., Andaloussi S.; Elie-Caille, C.; Erdbrügger, U.; Falcón-Pérez, J.M.; Fatima, F.; Fish, J.E.; Flores-Bellver, M.; Försönits, A.; Frelet-Barrand, A.; Fricke, F.; Fuhrmann, G.; Gabrielsson, S.; Gámez-Valero, A.; Gardiner, C.; Gärtner, K.; Gaudin, R.; Gho, Y.S.; Giebel, B.; Gilbert, C.; Gimona, M.; Giusti, I.; Goberdhan, D.C.I.; Görgens, A.; Gorski, S.M.; Greening, D.W.; Gross, J.C.; Gualerzi, A.; Gupta, G.N.; Gustafson, D.; Handberg, A.; Haraszti, R.A.; Harrison, P.; Hegyesi, H.; Hendrix, A.; Hill, A.F.; Hochberg, F.H.; Hoffmann, K.F.; Holder, B.; Holthofer, H.; Hosseinkhani, B.; Hu, G.; Huang, Y.; Huber, V.; Hunt, S.; Ibrahim, A.G.E.; Ikezu, T.; Inal, J.M.; Isin, M.; Ivanova, A.; Jackson, H.K.; Jacobsen, S.; Jay, S.M.; Jayachandran, M.; Jenster, G.; Jiang, L.; Johnson, S.M.; Jones, J.C.; Jong, A.; Jovanovic-Talisman, T.; Jung, S.; Kalluri, R.; Kano, S.; Kaur, S.; Kawamura, Y.; Keller, E.T.; Khamari, D.; Khomyakova, E.; Khvorova, A.; Kierulf, P.; Kim, K.P.; Kislinger, T.; Klingeborn, M.; Klinke, D.J., II; Kornek, M.; Kosanović, M.M.; Kovács, Á.F.; Krämer-Albers, E.M.; Krasemann, S.; Krause, M.; Kurochkin, I.V.; Kusuma, G.D.; Kuypers, S.; Laitinen, S.; Langevin, S.M.; Languino, L.R.; Lannigan, J.; Lässer, C.; Laurent, L.C.; Lavieu, G.; Lázaro-Ibáñez, E.; Le Lay, S.; Lee, M.S.; Lee, Y.X.F.; Lemos, D.S.; Lenassi, M.; Leszczynska, A.; Li, I.T.S.; Liao, K.; Libregts, S.F.; Ligeti, E.; Lim, R.; Lim, S.K.; Linē, A.; Linnemannstöns, K.; Llorente, A.; Lombard, C.A.; Lorenowicz, M.J.; Lörincz, Á.M.; Lötvall, J.; Lovett, J.; Lowry, M.C.; Loyer, X.; Lu, Q.; Lukomska, B.; Lunavat, T.R.; Maas, S.L.N.; Malhi, H.; Marcilla, A.; Mariani, J.; Mariscal, J.; Martens-Uzunova, E.S.; Martin-Jaular, L.; Martinez, M.C.; Martins, V.R.; Mathieu, M.; Mathivanan, S.; Maugeri, M.; McGinnis, L.K.; McVey, M.J.; Meckes, D.G., Jr; Meehan, K.L.; Mertens, I.; Minciacchi, V.R.; Möller, A.; Møller Jørgensen, M.; Morales-Kastresana, A.; Morhayim, J.; Mullier, F.; Muraca, M.; Musante, L.; Mussack, V.; Muth, D.C.; Myburgh, K.H.; Najrana, T.; Nawaz, M.; Nazarenko, I.; Nejsum, P.; Neri, C.; Neri, T.; Nieuwland, R.; Nimrichter, L.; Nolan, J.P.; Nolte-’t Hoen, E.N.M.; Noren Hooten, N.; O’Driscoll, L.; O’Grady, T.; O’Loghlen, A.; Ochiya, T.; Olivier, M.; Ortiz, A.; Ortiz, L.A.; Osteikoetxea, X.; Østergaard, O.; Ostrowski, M.; Park, J.; Pegtel, D.M.; Peinado, H.; Perut, F.; Pfaffl, M.W.; Phinney, D.G.; Pieters, B.C.H.; Pink, R.C.; Pisetsky, D.S.; Pogge von Strandmann, E.; Polakovicova, I.; Poon, I.K.H.; Powell, B.H.; Prada, I.; Pulliam, L.; Quesenberry, P.; Radeghieri, A.; Raffai, R.L.; Raimondo, S.; Rak, J.; Ramirez, M.I.; Raposo, G.; Rayyan, M.S.; Regev-Rudzki, N.; Ricklefs, F.L.; Robbins, P.D.; Roberts, D.D.; Rodrigues, S.C.; Rohde, E.; Rome, S.; Rouschop, K.M.A.; Rughetti, A.; Russell, A.E.; Saá, P.; Sahoo, S.; Salas-Huenuleo, E.; Sánchez, C.; Saugstad, J.A.; Saul, M.J.; Schiffelers, R.M.; Schneider, R.; Schøyen, T.H.; Scott, A.; Shahaj, E.; Sharma, S.; Shatnyeva, O.; Shekari, F.; Shelke, G.V.; Shetty, A.K.; Shiba, K.; Siljander, P.R.M.; Silva, A.M.; Skowronek, A.; Snyder, O.L., II; Soares, R.P.; Sódar, B.W.; Soekmadji, C.; Sotillo, J.; Stahl, P.D.; Stoorvogel, W.; Stott, S.L.; Strasser, E.F.; Swift, S.; Tahara, H.; Tewari, M.; Timms, K.; Tiwari, S.; Tixeira, R.; Tkach, M.; Toh, W.S.; Tomasini, R.; Torrecilhas, A.C.; Tosar, J.P.; Toxavidis, V.; Urbanelli, L.; Vader, P.; van Balkom, B.W.M.; van der Grein, S.G.; Van Deun, J.; van Herwijnen, M.J.C.; Van Keuren-Jensen, K.; van Niel, G.; van Royen, M.E.; van Wijnen, A.J.; Vasconcelos, M.H.; Vechetti, I.J., Jr; Veit, T.D.; Vella, L.J.; Velot, É.; Verweij, F.J.; Vestad, B.; Viñas, J.L.; Visnovitz, T.; Vukman, K.V.; Wahlgren, J.; Watson, D.C.; Wauben, M.H.M.; Weaver, A.; Webber, J.P.; Weber, V.; Wehman, A.M.; Weiss, D.J.; Welsh, J.A.; Wendt, S.; Wheelock, A.M.; Wiener, Z.; Witte, L.; Wolfram, J.; Xagorari, A.; Xander, P.; Xu, J.; Yan, X.; Yáñez-Mó, M.; Yin, H.; Yuana, Y.; Zappulli, V.; Zarubova, J.; Žėkas, V.; Zhang, J.; Zhao, Z.; Zheng, L.; Zheutlin, A.R.; Zickler, A.M.; Zimmermann, P.; Zivkovic, A.M.; Zocco, D.; Zuba-Surma, E.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles, 2018, 7(1), 1535750.
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[40]
Hong, C.S.; Funk, S.; Muller, L.; Boyiadzis, M.; Whiteside, T.L. Isolation of biologically active and morphologically intact exosomes from plasma of patients with cancer. J. Extracell. Vesicles, 2016, 5(1), 29289.
[http://dx.doi.org/10.3402/jev.v5.29289] [PMID: 27018366]
[41]
Liu, D.S.K.; Upton, F.M.; Rees, E.; Limb, C.; Jiao, L.R.; Krell, J.; Frampton, A.E. Size-Exclusion chromatography as a technique for the investigation of novel extracellular vesicles in cancer. Cancers (Basel), 2020, 12(11), 3156.
[http://dx.doi.org/10.3390/cancers12113156] [PMID: 33121160]
[42]
Brennan, K.; Martin, K.; FitzGerald, S.P.; O’Sullivan, J.; Wu, Y.; Blanco, A.; Richardson, C.; Mc Gee, M.M. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci. Rep., 2020, 10(1), 1039.
[http://dx.doi.org/10.1038/s41598-020-57497-7] [PMID: 31974468]
[43]
De Toro, J.; Herschlik, L.; Waldner, C.; Mongini, C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front. Immunol., 2015, 6, 203.
[http://dx.doi.org/10.3389/fimmu.2015.00203] [PMID: 25999947]
[44]
Navajas, R.; Corrales, FJ; Paradela, A. Serum exosome isolation by size-exclusion chromatography for the discovery and validation of preeclampsia-associated biomarkers. Methods Mol. Biol., 2019, 1959, 39-50.
[http://dx.doi.org/10.1007/978-1-4939-9164-8_3] [PMID: 30852814]
[45]
Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia. Circ. Res., 2019, 124(7), 1094-1112.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313276] [PMID: 30920918]
[46]
O’Gorman, N.; Wright, D.; Poon, L.C.; Rolnik, D.L.; Syngelaki, A.; de Alvarado, M.; Carbone, I.F.; Dutemeyer, V.; Fiolna, M.; Frick, A.; Karagiotis, N.; Mastrodima, S.; de Paco Matallana, C.; Papaioannou, G.; Pazos, A.; Plasencia, W.; Nicolaides, K.H. Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks’ gestation: comparison with NICE guidelines and ACOG recommendations. Ultrasound Obstet. Gynecol., 2017, 49(6), 756-760.
[http://dx.doi.org/10.1002/uog.17455] [PMID: 28295782]
[47]
Mateos, J.; Carneiro, I.; Corrales, F.; Elortza, F.; Paradela, A.; del Pino, M.S.; Iloro, I.; Marcilla, M.; Mora, M.I.; Valero, L.; Ciordia, S.; Fernández, V.; Fortuño, M.A.; García-Sánchez, I.; Martínez, R.; Muñoz, M.A.; Rodriguez, C.; Doménech, N. Multicentric study of the effect of pre-analytical variables in the quality of plasma samples stored in biobanks using different complementary proteomic methods. J. Proteomics, 2017, 150, 109-120.
[http://dx.doi.org/10.1016/j.jprot.2016.09.003] [PMID: 27620695]
[48]
Kleinrouweler, C.E.; Wiegerinck, M.M.J.; Ris-Stalpers, C.; Bossuyt, P.M.M.; van der Post, J.A.M.; von Dadelszen, P.; Mol, B.W.J.; Pajkrt, E. Accuracy of circulating placental growth factor, vascular endothelial growth factor, soluble fms-like tyrosine kinase 1 and soluble endoglin in the prediction of pre-eclampsia: a systematic review and meta-analysis. BJOG, 2012, 119(7), 778-787.
[http://dx.doi.org/10.1111/j.1471-0528.2012.03311.x] [PMID: 22433027]
[49]
Prekasan, D.; Saju, K.K. Review of the tribological characteristics of synovial fluid. Procedia Technol., 2016, 25, 1170-1174.
[http://dx.doi.org/10.1016/j.protcy.2016.08.235]
[50]
Cloutier, N.; Tan, S.; Boudreau, L.H.; Cramb, C.; Subbaiah, R.; Lahey, L.; Albert, A.; Shnayder, R.; Gobezie, R.; Nigrovic, P.A.; Farndale, R.W.; Robinson, W.H.; Brisson, A.; Lee, D.M.; Boilard, E. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle‐associated immune complexes. EMBO Mol. Med., 2013, 5(2), 235-249.
[http://dx.doi.org/10.1002/emmm.201201846] [PMID: 23165896]
[51]
György, B.; Szabó, T.G.; Turiák, L.; Wright, M.; Herczeg, P.; Lédeczi, Z.; Kittel, Á.; Polgár, A.; Tóth, K.; Dérfalvi, B.; Zelenák, G.; Böröcz, I.; Carr, B.; Nagy, G.; Vékey, K.; Gay, S.; Falus, A.; Buzás, E.I. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS One, 2012, 7(11), e49726.
[http://dx.doi.org/10.1371/journal.pone.0049726] [PMID: 23185418]
[52]
Boilard, E.; Nigrovic, P.A.; Larabee, K.; Watts, G.F.M.; Coblyn, J.S.; Weinblatt, M.E.; Massarotti, E.M.; Remold-O’Donnell, E.; Farndale, R.W.; Ware, J.; Lee, D.M. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science, 2010, 327(5965), 580-583.
[http://dx.doi.org/10.1126/science.1181928] [PMID: 20110505]
[53]
Knijff‐Dutmer, E.; Koerts, J.; Nieuwland, R. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis & Rheumatism. Arthritis Rheum., 2002, 46(6), 1498-1503.
[http://dx.doi.org/10.1002/art.10312] [PMID: 12115179]
[54]
Foers, A.D.; Cheng, L.; Hill, A.F.; Wicks, I.P.; Pang, K.C. Extracellular vesicles in joint inflammation. Arthritis Rheumatol., 2017, 69(7), 1350-1362.
[http://dx.doi.org/10.1002/art.40076] [PMID: 28217910]
[55]
Skriner, K.; Adolph, K.; Jungblut, P.R.; Burmester, G.R. Association of citrullinated proteins with synovial exosomes. Arthritis Rheum., 2006, 54(12), 3809-3814.
[http://dx.doi.org/10.1002/art.22276] [PMID: 17133577]
[56]
Mustonen, A.M.; Nieminen, P.; Joukainen, A.; Jaroma, A.; Kääriäinen, T.; Kröger, H.; Lázaro-Ibáñez, E.; Siljander, P.R.M.; Kärjä, V.; Härkönen, K.; Koistinen, A.; Rilla, K. First in vivo detection and characterization of hyaluronan-coated extracellular vesicles in human synovial fluid. J. Orthop. Res., 2016, 34(11), 1960-1968.
[http://dx.doi.org/10.1002/jor.23212] [PMID: 26919117]
[57]
Boere, J.; van de Lest, C.H.A.; Libregts, S.F.W.M.; Arkesteijn, G.J.A.; Geerts, W.J.C.; Nolte-’t Hoen, E.N.M.; Malda, J.; van Weeren, P.R.; Wauben, M.H.M. Synovial fluid pretreatment with hyaluronidase facilitates isolation of CD44+ extracellular vesicles. J. Extracell. Vesicles, 2016, 5(1), 31751.
[http://dx.doi.org/10.3402/jev.v5.31751] [PMID: 27511891]
[58]
György, B.; Módos, K.; Pállinger, É.; Pálóczi, K.; Pásztói, M.; Misják, P.; Deli, M.A.; Sipos, Á.; Szalai, A.; Voszka, I.; Polgár, A.; Tóth, K.; Csete, M.; Nagy, G.; Gay, S.; Falus, A.; Kittel, Á.; Buzás, E.I. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood, 2011, 117(4), e39-e48.
[http://dx.doi.org/10.1182/blood-2010-09-307595] [PMID: 21041717]
[59]
Baranyai, T.; Herczeg, K.; Onódi, Z.; Voszka, I.; Módos, K.; Marton, N.; Nagy, G.; Mäger, I.; Wood, M.J.; El Andaloussi, S.; Pálinkás, Z.; Kumar, V.; Nagy, P.; Kittel, Á.; Buzás, E.I.; Ferdinandy, P.; Giricz, Z. Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One, 2015, 10(12), e0145686.
[http://dx.doi.org/10.1371/journal.pone.0145686] [PMID: 26690353]
[60]
Welton, J.L.; Webber, J.P.; Botos, L.A.; Jones, M.; Clayton, A. Ready-made chromatography columns for extracellular vesicle isolation from plasma. J. Extracell. Vesicles, 2015, 4(1), 27269.
[http://dx.doi.org/10.3402/jev.v4.27269] [PMID: 25819214]
[61]
Lozano-Ramos, I.; Bancu, I.; Oliveira-Tercero, A.; Armengol, M.P.; Menezes-Neto, A.; Portillo, H.A.D.; Lauzurica-Valdemoros, R.; Borràs, F.E. Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples. J. Extracell. Vesicles, 2015, 4(1), 27369.
[http://dx.doi.org/10.3402/jev.v4.27369] [PMID: 26025625]
[62]
Blans, K.; Hansen, M.S.; Sørensen, L.V.; Hvam, M.L.; Howard, K.A.; Möller, A.; Wiking, L.; Larsen, L.B.; Rasmussen, J.T. Pellet-free isolation of human and bovine milk extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles, 2017, 6(1), 1294340.
[http://dx.doi.org/10.1080/20013078.2017.1294340] [PMID: 28386391]
[63]
Taylor, D.D.; Shah, S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods, 2015, 87, 3-10.
[http://dx.doi.org/10.1016/j.ymeth.2015.02.019] [PMID: 25766927]
[64]
Linares, R.; Tan, S.; Gounou, C.; Arraud, N.; Brisson, A.R. High-speed centrifugation induces aggregation of extracellular vesicles. J. Extracell. Vesicles, 2015, 4(1), 29509.
[http://dx.doi.org/10.3402/jev.v4.29509] [PMID: 26700615]
[65]
Nordin, J.Z.; Lee, Y.; Vader, P.; Mäger, I.; Johansson, H.J.; Heusermann, W.; Wiklander, O.P.B.; Hällbrink, M.; Seow, Y.; Bultema, J.J.; Gilthorpe, J.; Davies, T.; Fairchild, P.J.; Gabrielsson, S.; Meisner-Kober, N.C.; Lehtiö, J.; Smith, C.I.E.; Wood, M.J.A.; Andaloussi, S.E.L. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine, 2015, 11(4), 879-883.
[http://dx.doi.org/10.1016/j.nano.2015.01.003] [PMID: 25659648]
[66]
Kabir, S.M.M.; Koh, J. Sustainable textile processing by enzyme applications; IntechOpen London: UK, 2021.
[67]
Fahey, J.L. Antibodies and immunoglobulins. JAMA, 1965, 194(1), 71-74.
[http://dx.doi.org/10.1001/jama.1965.03090140079020] [PMID: 4157599]
[68]
Lu, R.M.; Hwang, Y.C.; Liu, I.J.; Lee, C.C.; Tsai, H.Z.; Li, H.J.; Wu, H.C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci., 2020, 27(1), 1-30.
[http://dx.doi.org/10.1186/s12929-019-0592-z] [PMID: 31894001]
[69]
Castelli, M.S.; McGonigle, P.; Hornby, P.J. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol. Res. Perspect., 2019, 7(6), e00535.
[http://dx.doi.org/10.1002/prp2.535] [PMID: 31859459]
[70]
Strohl, W.R. Current progress in innovative engineered antibodies. Protein Cell, 2018, 9(1), 86-120.
[http://dx.doi.org/10.1007/s13238-017-0457-8] [PMID: 28822103]
[71]
Chakrabarti, A. Separation of monoclonal antibodies by analytical size exclusion chromatography; Böldicke, T., Ed.; Antibody Engineering; Böldicke, T., Ed.; InTech, 2018.
[http://dx.doi.org/10.5772/intechopen.73321]
[72]
Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry. MAbs; Haberger, M.; Leiss, M.; Heidenreich, A-K.; Pester, O.; Hafenmair, G.; Hook, M., Eds.; Taylor & Francis, 2016.
[73]
Rutherfurd, S.M.; Moughan, P.J. Available versus digestible dietary amino acids. Br. J. Nutr., 2012, 108(S2)(Suppl. 2), S298-S305.
[http://dx.doi.org/10.1017/S0007114512002528] [PMID: 23107541]
[74]
Devi, S.; Varkey, A.; Sheshshayee, M.S.; Preston, T.; Kurpad, A.V. Measurement of protein digestibility in humans by a dual-tracer method. Am. J. Clin. Nutr., 2018, 107(6), 984-991.
[http://dx.doi.org/10.1093/ajcn/nqy062] [PMID: 29771297]
[75]
Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; Clemente, A.; Corredig, M.; Dupont, D.; Dufour, C.; Edwards, C.; Golding, M.; Karakaya, S.; Kirkhus, B.; Le Feunteun, S.; Lesmes, U.; Macierzanka, A.; Mackie, A.R.; Martins, C.; Marze, S.; McClements, D.J.; Ménard, O.; Minekus, M.; Portmann, R.; Santos, C.N.; Souchon, I.; Singh, R.P.; Vegarud, G.E.; Wickham, M.S.J.; Weitschies, W.; Recio, I. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc., 2019, 14(4), 991-1014.
[http://dx.doi.org/10.1038/s41596-018-0119-1] [PMID: 30886367]
[76]
Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; Dufour, C.; Egger, L.; Golding, M.; Karakaya, S.; Kirkhus, B.; Le Feunteun, S.; Lesmes, U.; Macierzanka, A.; Mackie, A.; Marze, S.; McClements, D.J.; Ménard, O.; Recio, I.; Santos, C.N.; Singh, R.P.; Vegarud, G.E.; Wickham, M.S.J.; Weitschies, W.; Brodkorb, A. A standardised static in vitro digestion method suitable for food – an international consensus. Food Funct., 2014, 5(6), 1113-1124.
[http://dx.doi.org/10.1039/C3FO60702J] [PMID: 24803111]
[77]
Egger, L.; Ménard, O.; Delgado-Andrade, C.; Alvito, P.; Assunção, R.; Balance, S.; Barberá, R.; Brodkorb, A.; Cattenoz, T.; Clemente, A.; Comi, I.; Dupont, D.; Garcia-Llatas, G.; Lagarda, M.J.; Le Feunteun, S. JanssenDuijghuijsen, L.; Karakaya, S.; Lesmes, U.; Mackie, A.R.; Martins, C.; Meynier, A.; Miralles, B.; Murray, B.S.; Pihlanto, A.; Picariello, G.; Santos, C.N.; Simsek, S.; Recio, I.; Rigby, N.; Rioux, L-E.; Stoffers, H.; Tavares, A.; Tavares, L.; Turgeon, S.; Ulleberg, E.K.; Vegarud, G.E.; Vergères, G.; Portmann, R. The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Res. Int., 2016, 88, 217-225.
[http://dx.doi.org/10.1016/j.foodres.2015.12.006]
[78]
Sanchón, J.; Fernández-Tomé, S.; Miralles, B.; Hernández-Ledesma, B.; Tomé, D.; Gaudichon, C.; Recio, I. Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation. Food Chem., 2018, 239, 486-494.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.134] [PMID: 28873595]
[79]
Egger, L.; Schlegel, P.; Baumann, C.; Stoffers, H.; Guggisberg, D.; Brügger, C.; Dürr, D.; Stoll, P.; Vergères, G.; Portmann, R. Physiological comparability of the harmonized INFOGEST in vitro digestion method to in vivo pig digestion. Food Res. Int., 2017, 102, 567-574.
[http://dx.doi.org/10.1016/j.foodres.2017.09.047] [PMID: 29195987]
[80]
Wubshet, S.G.; Måge, I.; Böcker, U.; Lindberg, D.; Knutsen, S.H.; Rieder, A.; Rodriguez, D.A.; Afseth, N.K. FTIR as a rapid tool for monitoring molecular weight distribution during enzymatic protein hydrolysis of food processing by-products. Anal. Methods, 2017, 9(29), 4247-4254.
[http://dx.doi.org/10.1039/C7AY00865A]
[81]
Le Roux, L.; Ménard, O.; Chacon, R.; Dupont, D.; Jeantet, R.; Deglaire, A.; Nau, F. Are faba bean and pea proteins potential whey protein substitutes in infant formulas? An in vitro dynamic digestion approach. Foods, 2020, 9(3), 362.
[http://dx.doi.org/10.3390/foods9030362] [PMID: 32245044]
[82]
Rieder, A.; Afseth, N.K.; Böcker, U.; Knutsen, S.H.; Kirkhus, B.; Mæhre, H.K.; Ballance, S.; Wubshet, S.G. Improved estimation of in vitro protein digestibility of different foods using size exclusion chromatography. Food Chem., 2021, 358, 129830.
[http://dx.doi.org/10.1016/j.foodchem.2021.129830] [PMID: 33940301]
[83]
O’mahony, J.; Fox, P. Milk proteins: Introduction and historical aspects. Advanced dairy chemistry; Springer, 2013, pp. 43-85.
[84]
Jaros, D.; Schwarzenbolz, U.; Raak, N.; Löbner, J.; Henle, T.; Rohm, H. Cross-linking with microbial transglutaminase: Relationship between polymerisation degree and stiffness of acid casein gels. Int. Dairy J., 2014, 38(2), 174-178.
[http://dx.doi.org/10.1016/j.idairyj.2013.10.011]
[85]
Lauber, S.; Henle, T.; Klostermeyer, H. Relationship between the crosslinking of caseins by transglutaminase and the gel strength of yoghurt. Eur. Food Res. Technol., 2000, 210(5), 305-309.
[http://dx.doi.org/10.1007/s002170050554]
[86]
Tang, C.; Yang, X-Q.; Chen, Z.; Wu, H.; Peng, Z-Y. YANG XQ, Chen Z, Wu H, PENG ZY. Physicochemical and structural characteristics of sodium caseinate biopolymers induced by microbial transglutaminase. J. Food Biochem., 2005, 29(4), 402-421.
[http://dx.doi.org/10.1111/j.1745-4514.2005.00038.x]
[87]
Monogioudi, E.; Creusot, N.; Kruus, K.; Gruppen, H.; Buchert, J.; Mattinen, M.L. Cross-linking of β-casein by Trichoderma reesei tyrosinase and Streptoverticillium mobaraense transglutaminase followed by SEC–MALLS. Food Hydrocoll., 2009, 23(7), 2008-2015.
[http://dx.doi.org/10.1016/j.foodhyd.2009.03.011]
[88]
Hiller, B.; Lorenzen, P.C. Effect of buffer systems on the extent of enzymatic oligomerisation of milk proteins. Lebensm. Wiss. Technol., 2008, 41(6), 1140-1144.
[http://dx.doi.org/10.1016/j.lwt.2007.07.003]
[89]
Selinheimo, E.; Lampila, P.; Mattinen, M.L.; Buchert, J. Formation of protein-oligosaccharide conjugates by laccase and tyrosinase. J. Agric. Food Chem., 2008, 56(9), 3118-3128.
[http://dx.doi.org/10.1021/jf0730791] [PMID: 18422326]
[90]
Boeriu, C.G.; Oudgenoeg, G.; Spekking, W.T.J.; Berendsen, L.B.J.M.; Vancon, L.; Boumans, H.; Gruppen, H.; van Berkel, W.J.H.; Laane, C.; Voragen, A.G.J. Horseradish peroxidase-catalyzed cross-linking of feruloylated arabinoxylans with β-casein. J. Agric. Food Chem., 2004, 52(21), 6633-6639.
[http://dx.doi.org/10.1021/jf049622k] [PMID: 15479033]
[91]
O’Regan, J.; Mulvihill, D.M. Preparation, characterisation and selected functional properties of sodium caseinate–maltodextrin conjugates. Food Chem., 2009, 115(4), 1257-1267.
[http://dx.doi.org/10.1016/j.foodchem.2009.01.045]
[92]
Corzo-Martínez, M.; Moreno, F.J.; Villamiel, M.; Harte, F.M. Characterization and improvement of rheological properties of sodium caseinate glycated with galactose, lactose and dextran. Food Hydrocoll., 2010, 24(1), 88-97.
[http://dx.doi.org/10.1016/j.foodhyd.2009.08.008]
[93]
Lauber, S.; Klostermeyer, H.; Henle, T. On the influence of non‐enzymatic crosslinking of caseins on the gel strength of yoghurt. Nahrung, 2001, 45(3), 215-217.
[http://dx.doi.org/10.1002/1521-3803(20010601)45:3<215:AID-FOOD215>3.0.CO;2-1] [PMID: 11455791]
[94]
Bulca, S.; Dumpler, J.; Kulozik, U. Kinetic description of heat-induced cross-linking reactions of whey protein-free casein solutions. Int. J. Dairy Technol., 2016, 69(4), 489-496.
[http://dx.doi.org/10.1111/1471-0307.12357]
[95]
Moeckel, U.; Duerasch, A.; Weiz, A.; Ruck, M.; Henle, T. Glycation reactions of casein micelles. J. Agric. Food Chem., 2016, 64(14), 2953-2961.
[http://dx.doi.org/10.1021/acs.jafc.6b00472] [PMID: 27018258]
[96]
Menéndez, O.; Schwarzenbolz, U.; Rohm, H.; Henle, T. Casein gelation under simultaneous action of transglutaminase and glucono‐δ‐lactone. Nahrung, 2004, 48(3), 165-168.
[http://dx.doi.org/10.1002/food.200300433] [PMID: 15285105]
[97]
Raak, N.; Abbate, R.; Lederer, A.; Rohm, H.; Jaros, D. Size separation techniques for the characterisation of cross-linked casein: A review of methods and their applications. Separations, 2018, 5(1), 14.
[http://dx.doi.org/10.3390/separations5010014]
[98]
Caruana, E.J.; Roman, M.; Hernández-Sánchez, J.; Solli, P. Longitudinal studies. J. Thorac. Dis., 2015, 7(11), E537-E540.
[PMID: 26716051]
[99]
Maas, S.L.N.; Breakefield, X.O.; Weaver, A.M. Extracellular vesicles: Unique intercellular delivery vehicles. Trends Cell Biol., 2017, 27(3), 172-188.
[http://dx.doi.org/10.1016/j.tcb.2016.11.003] [PMID: 27979573]
[100]
Tkach, M.; Théry, C. Communication by extracellular vesicles: Where we are and where we need to go. Cell, 2016, 164(6), 1226-1232.
[http://dx.doi.org/10.1016/j.cell.2016.01.043] [PMID: 26967288]
[101]
Müller Bark, J.; Kulasinghe, A.; Chua, B.; Day, B.W.; Punyadeera, C. Circulating biomarkers in patients with glioblastoma. Br. J. Cancer, 2020, 122(3), 295-305.
[http://dx.doi.org/10.1038/s41416-019-0603-6] [PMID: 31666668]
[102]
Anderson, N.L.; Anderson, N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell. Proteomics, 2002, 1(11), 845-867.
[http://dx.doi.org/10.1074/mcp.R200007-MCP200] [PMID: 12488461]
[103]
Wildes, D.; Wells, J.A. Sampling the N-terminal proteome of human blood. Proc. Natl. Acad. Sci. USA, 2010, 107(10), 4561-4566.
[http://dx.doi.org/10.1073/pnas.0914495107] [PMID: 20173099]
[104]
Anastasi, F.; Greco, F.; Dilillo, M.; Vannini, E.; Cappello, V.; Baroncelli, L.; Costa, M.; Gemmi, M.; Caleo, M.; McDonnell, L.A. Proteomics analysis of serum small extracellular vesicles for the longitudinal study of a glioblastoma multiforme mouse model. Sci. Rep., 2020, 10(1), 20498.
[http://dx.doi.org/10.1038/s41598-020-77535-8] [PMID: 33235327]
[105]
Kulkarni, J.A.; Witzigmann, D.; Thomson, S.B.; Chen, S.; Leavitt, B.R.; Cullis, P.R.; van der Meel, R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol., 2021, 16(6), 630-643.
[http://dx.doi.org/10.1038/s41565-021-00898-0] [PMID: 34059811]
[106]
Gaus, H.J.; Gupta, R.; Chappell, A.E.; Østergaard, M.E.; Swayze, E.E.; Seth, P.P. Characterization of the interactions of chemically-modified therapeutic nucleic acids with plasma proteins using a fluorescence polarization assay. Nucleic Acids Res., 2019, 47(3), 1110-1122.
[http://dx.doi.org/10.1093/nar/gky1260] [PMID: 30566688]
[107]
Johnson, M.D.; Lloyd, J.; Tekkam, S.; Crooke, S.N.; Witherden, D.A.; Havran, W.L.; Finn, M.G. Degradable hydrogels for the delivery of immune-modulatory proteins in the wound environment. ACS Appl. Bio Mater., 2020, 3(8), 4779-4788.
[http://dx.doi.org/10.1021/acsabm.0c00301] [PMID: 32984778]
[108]
Ñahui Palomino, R.A.; Vanpouille, C.; Costantini, P.E.; Margolis, L. Microbiota–host communications: Bacterial extracellular vesicles as a common language. PLoS Pathog., 2021, 17(5), e1009508.
[http://dx.doi.org/10.1371/journal.ppat.1009508] [PMID: 33984071]
[109]
Doyle, L.; Wang, M. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019, 8(7), 727.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[110]
Margolis, L.; Sadovsky, Y. The biology of extracellular vesicles: The known unknowns. PLoS Biol., 2019, 17(7), e3000363.
[http://dx.doi.org/10.1371/journal.pbio.3000363] [PMID: 31318874]
[111]
Yáñez-Mó, M.; Siljander, P.R.M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; Colás, E.; Cordeiro-da Silva, A.; Fais, S.; Falcon-Perez, J.M.; Ghobrial, I.M.; Giebel, B.; Gimona, M.; Graner, M.; Gursel, I.; Gursel, M.; Heegaard, N.H.H.; Hendrix, A.; Kierulf, P.; Kokubun, K.; Kosanovic, M.; Kralj-Iglic, V.; Krämer-Albers, E.M.; Laitinen, S.; Lässer, C.; Lener, T.; Ligeti, E.; Linē, A.; Lipps, G.; Llorente, A.; Lötvall, J.; Manček-Keber, M.; Marcilla, A.; Mittelbrunn, M.; Nazarenko, I.; Nolte-’t Hoen, E.N.M.; Nyman, T.A.; O’Driscoll, L.; Olivan, M.; Oliveira, C.; Pállinger, É.; del Portillo, H.A.; Reventós, J.; Rigau, M.; Rohde, E.; Sammar, M.; Sánchez-Madrid, F.; Santarém, N.; Schallmoser, K.; Stampe Ostenfeld, M.; Stoorvogel, W.; Stukelj, R.; Van der Grein, S.G.; Helena Vasconcelos, M.; Wauben, M.H.M.; De Wever, O. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles, 2015, 4(1), 27066.
[http://dx.doi.org/10.3402/jev.v4.27066] [PMID: 25979354]
[112]
Hong, J.; Dauros-Singorenko, P.; Whitcombe, A.; Payne, L.; Blenkiron, C.; Phillips, A.; Swift, S. Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions. J. Extracell. Vesicles, 2019, 8(1), 1632099.
[http://dx.doi.org/10.1080/20013078.2019.1632099] [PMID: 31275533]
[113]
Dauros Singorenko, P.; Chang, V.; Whitcombe, A.; Simonov, D.; Hong, J.; Phillips, A.; Swift, S.; Blenkiron, C. Isolation of membrane vesicles from prokaryotes: A technical and biological comparison reveals heterogeneity. J. Extracell. Vesicles, 2017, 6(1), 1324731.
[http://dx.doi.org/10.1080/20013078.2017.1324731] [PMID: 28717421]
[114]
Jia, Z.; Monteiro, M.J. Cyclic polymers: Methods and strategies. J. Polym. Sci. A Polym. Chem., 2012, 50(11), 2085-2097.
[http://dx.doi.org/10.1002/pola.25999]
[115]
Haque, F.M.; Grayson, S.M. The synthesis, properties and potential applications of cyclic polymers. Nat. Chem., 2020, 12(5), 433-444.
[http://dx.doi.org/10.1038/s41557-020-0440-5] [PMID: 32251372]
[116]
Lonsdale, D.E.; Bell, C.A.; Monteiro, M.J. Strategy for rapid and high-purity monocyclic polymers by CuAAC “click” reactions. Macromolecules, 2010, 43(7), 3331-3339.
[http://dx.doi.org/10.1021/ma902597p]
[117]
Lonsdale, D.E.; Monteiro, M.J. Kinetic simulations for cyclization of α,ω-telechelic polymers. J. Polym. Sci. A Polym. Chem., 2010, 48(20), 4496-4503.
[http://dx.doi.org/10.1002/pola.24240]
[118]
Shi, Y.; Chen, S.P.R.; Jia, Z.; Monteiro, M.J. Analysis of cyclic polymer purity by size exclusion chromatography: A model system. Polym. Chem., 2020, 11(46), 7354-7361.
[http://dx.doi.org/10.1039/D0PY01277G]
[119]
Muthusamy, B.; Hanumanthu, G.; Suresh, S.; Rekha, B.; Srinivas, D.; Karthick, L.; Vrushabendra, B.M.; Sharma, S.; Mishra, G.; Chatterjee, P.; Mangala, K.S.; Shivashankar, H.N.; Chandrika, K.N.; Deshpande, N.; Suresh, M.; Kannabiran, N.; Niranjan, V.; Nalli, A.; Prasad, T.S.K.; Arun, K.S.; Reddy, R.; Chandran, S.; Jadhav, T.; Julie, D.; Mahesh, M.; John, S.L.; Palvankar, K.; Sudhir, D.; Bala, P.; Rashmi, N.S.; Vishnupriya, G.; Dhar, K.; Reshma, S.; Chaerkady, R.; Gandhi, T.K.B.; Harsha, H.C.; Mohan, S.S.; Deshpande, K.S.; Sarker, M.; Pandey, A. Plasma Proteome Database as a resource for proteomics research. Proteomics, 2005, 5(13), 3531-3536.
[http://dx.doi.org/10.1002/pmic.200401335] [PMID: 16041672]
[120]
Ping, P.; Vondriska, T.M.; Creighton, C.J.; Gandhi, T.K.B.; Yang, Z.; Menon, R.; Kwon, M.S.; Cho, S.Y.; Drwal, G.; Kellmann, M.; Peri, S.; Suresh, S.; Gronborg, M.; Molina, H.; Chaerkady, R.; Rekha, B.; Shet, A.S.; Gerszten, R.E.; Wu, H.; Raftery, M.; Wasinger, V.; Schulz-Knappe, P.; Hanash, S.M.; Paik, Y.; Hancock, W.S.; States, D.J.; Omenn, G.S.; Pandey, A. A functional annotation of subproteomes in human plasma. Proteomics, 2005, 5(13), 3506-3519.
[http://dx.doi.org/10.1002/pmic.200500140] [PMID: 16104058]
[121]
Johansson, Å.; Enroth, S.; Palmblad, M.; Deelder, A.M.; Bergquist, J.; Gyllensten, U. Identification of genetic variants influencing the human plasma proteome. Proc. Natl. Acad. Sci. USA, 2013, 110(12), 4673-4678.
[http://dx.doi.org/10.1073/pnas.1217238110] [PMID: 23487758]
[122]
te Pas, M.F.W.; Koopmans, S.J.; Kruijt, L.; Calus, M.P.L.; Smits, M.A. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model. PLoS One, 2013, 8(9), e73087.
[http://dx.doi.org/10.1371/journal.pone.0073087] [PMID: 24086269]
[123]
Harney, D.J.; Hutchison, A.T.; Hatchwell, L.; Humphrey, S.J.; James, D.E.; Hocking, S.; Heilbronn, L.K.; Larance, M. Proteomic analysis of human plasma during intermittent fasting. J. Proteome Res., 2019, 18(5), 2228-2240.
[http://dx.doi.org/10.1021/acs.jproteome.9b00090] [PMID: 30892045]
[124]
O’Dwyer, K.A.U.M.ME; Joshi, L.; Kilcoyne, M. BioMed Res. Int., 2015, 2015, 490531.
[125]
Jiang, H.; Desaire, H.; Butnev, V.Y.; Bousfield, G.R. Glycoprotein profiling by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom., 2004, 15(5), 750-758.
[http://dx.doi.org/10.1016/j.jasms.2004.01.009] [PMID: 15121204]
[126]
Saraswat, M.; Garapati, K.; Mun, D.G.; Pandey, A. Extensive heterogeneity of glycopeptides in plasma revealed by deep glycoproteomic analysis using size-exclusion chromatography. Mol. Omics, 2021, 17(6), 939-947.
[http://dx.doi.org/10.1039/D1MO00132A] [PMID: 34368825]
[127]
Zhang, Y.; Mao, Y.; Zhao, W.; Su, T.; Zhong, Y.; Fu, L.; Zhu, J.; Cheng, J.; Yang, H. Glyco-CPLL: an integrated method for in-depth and comprehensive N-glycoproteome profiling of human plasma. J. Proteome Res., 2020, 19(2), 655-666.
[http://dx.doi.org/10.1021/acs.jproteome.9b00557] [PMID: 31860302]
[128]
Sun, S.; Hu, Y.; Jia, L.; Eshghi, S.T.; Liu, Y.; Shah, P.; Zhang, H. Site-specific profiling of serum glycoproteins using N-linked glycan and glycosite analysis revealing atypical N-glycosylation sites on albumin and α-1B-glycoprotein. Anal. Chem., 2018, 90(10), 6292-6299.
[http://dx.doi.org/10.1021/acs.analchem.8b01051] [PMID: 29671580]
[129]
Nilsson, J.; Rüetschi, U.; Halim, A.; Hesse, C.; Carlsohn, E.; Brinkmalm, G.; Larson, G. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat. Methods, 2009, 6(11), 809-811.
[http://dx.doi.org/10.1038/nmeth.1392] [PMID: 19838169]
[130]
Veyel, D.; Sokolowska, E.M.; Moreno, J.C.; Kierszniowska, S.; Cichon, J.; Wojciechowska, I.; Luzarowski, M.; Kosmacz, M.; Szlachetko, J.; Gorka, M.; Méret, M.; Graf, A.; Meyer, E.H.; Willmitzer, L.; Skirycz, A. PROMIS, global analysis of PROtein–metabolite interactions using size separation in Arabidopsis thaliana. J. Biol. Chem., 2018, 293(32), 12440-12453.
[http://dx.doi.org/10.1074/jbc.RA118.003351] [PMID: 29853640]
[131]
Sokolowska, E.M.; Schlossarek, D.; Luzarowski, M.; Skirycz, A. PROMIS: global analysis of PROtein‐metabolite interactions. Curr. Protoc. Plant Biol., 2019, 4(4), e20101.
[http://dx.doi.org/10.1002/cppb.20101] [PMID: 31750999]
[132]
Gorka, M.; Swart, C.; Siemiatkowska, B.; Martínez-Jaime, S.; Skirycz, A.; Streb, S.; Graf, A. Protein Complex Identification and quantitative complexome by CN-PAGE. Sci. Rep., 2019, 9(1), 11523.
[http://dx.doi.org/10.1038/s41598-019-47829-7] [PMID: 31395906]
[133]
Yoshikawa, H.; Larance, M.; Harney, D.J.; Sundaramoorthy, R.; Ly, T.; Owen-Hughes, T.; Lamond, A.I. Efficient analysis of mammalian polysomes in cells and tissues using Ribo Mega-SEC. eLife, 2018, 7, e36530.
[http://dx.doi.org/10.7554/eLife.36530] [PMID: 30095066]
[134]
Heusel, M.; Bludau, I.; Rosenberger, G.; Hafen, R.; Frank, M.; Banaei-Esfahani, A.; Drogen, A.; Collins, B.C.; Gstaiger, M.; Aebersold, R. Complex‐centric proteome profiling by SEC ‐ SWATH ‐ MS. Mol. Syst. Biol., 2019, 15(1), e8438.
[http://dx.doi.org/10.15252/msb.20188438] [PMID: 30642884]
[135]
Bludau, I.; Heusel, M.; Frank, M.; Rosenberger, G.; Hafen, R.; Banaei-Esfahani, A.; van Drogen, A.; Collins, B.C.; Gstaiger, M.; Aebersold, R. Complex-centric proteome profiling by SEC-SWATH-MS for the parallel detection of hundreds of protein complexes. Nat. Protoc., 2020, 15(8), 2341-2386.
[http://dx.doi.org/10.1038/s41596-020-0332-6] [PMID: 32690956]
[136]
Gillet, L.C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics, 2012, 11(6), O111.016717.
[http://dx.doi.org/10.1074/mcp.O111.016717] [PMID: 22261725]
[137]
Röst, H.L.; Rosenberger, G.; Navarro, P.; Gillet, L.; Miladinović, S.M.; Schubert, O.T.; Wolski, W.; Collins, B.C.; Malmström, J.; Malmström, L.; Aebersold, R. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat. Biotechnol., 2014, 32(3), 219-223.
[http://dx.doi.org/10.1038/nbt.2841] [PMID: 24727770]
[138]
Navarro, P.; Kuharev, J.; Gillet, L.C.; Bernhardt, O.M.; MacLean, B.; Röst, H.L.; Tate, S.A.; Tsou, C.C.; Reiter, L.; Distler, U.; Rosenberger, G.; Perez-Riverol, Y.; Nesvizhskii, A.I.; Aebersold, R.; Tenzer, S. A multicenter study benchmarks software tools for label-free proteome quantification. Nat. Biotechnol., 2016, 34(11), 1130-1136.
[http://dx.doi.org/10.1038/nbt.3685] [PMID: 27701404]
[139]
Wang, R.; Zhao, H.; Pan, X.; Orfila, C.; Lu, W.; Ma, Y. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α‐glucosidase inhibitory peptides from soy protein. Food Sci. Nutr., 2019, 7(5), 1848-1856.
[http://dx.doi.org/10.1002/fsn3.1038] [PMID: 31139399]
[140]
Drucker, D.J. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action. Diabetes Care, 2007, 30(6), 1335-1343.
[http://dx.doi.org/10.2337/dc07-0228] [PMID: 17337495]
[141]
Toby, T.K.; Fornelli, L.; Kelleher, N.L. Progress in top-down proteomics and the analysis of proteoforms. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2016, 9(1), 499-519.
[http://dx.doi.org/10.1146/annurev-anchem-071015-041550] [PMID: 27306313]
[142]
Cai, W.; Tucholski, T.M.; Gregorich, Z.R.; Ge, Y. Top-down proteomics: Technology advancements and applications to heart diseases. Expert Rev. Proteomics, 2016, 13(8), 717-730.
[http://dx.doi.org/10.1080/14789450.2016.1209414] [PMID: 27448560]
[143]
Chen, B.; Brown, K.A.; Lin, Z.; Ge, Y. Top-down proteomics: ready for prime time? Anal. Chem., 2018, 90(1), 110-127.
[http://dx.doi.org/10.1021/acs.analchem.7b04747] [PMID: 29161012]
[144]
Aebersold, R.; Agar, J.N.; Amster, I.J.; Baker, M.S.; Bertozzi, C.R.; Boja, E.S.; Costello, C.E.; Cravatt, B.F.; Fenselau, C.; Garcia, B.A.; Ge, Y.; Gunawardena, J.; Hendrickson, R.C.; Hergenrother, P.J.; Huber, C.G.; Ivanov, A.R.; Jensen, O.N.; Jewett, M.C.; Kelleher, N.L.; Kiessling, L.L.; Krogan, N.J.; Larsen, M.R.; Loo, J.A.; Ogorzalek Loo, R.R.; Lundberg, E.; MacCoss, M.J.; Mallick, P.; Mootha, V.K.; Mrksich, M.; Muir, T.W.; Patrie, S.M.; Pesavento, J.J.; Pitteri, S.J.; Rodriguez, H.; Saghatelian, A.; Sandoval, W.; Schlüter, H.; Sechi, S.; Slavoff, S.A.; Smith, L.M.; Snyder, M.P.; Thomas, P.M.; Uhlén, M.; Van Eyk, J.E.; Vidal, M.; Walt, D.R.; White, F.M.; Williams, E.R.; Wohlschlager, T.; Wysocki, V.H.; Yates, N.A.; Young, N.L.; Zhang, B. How many human proteoforms are there? Nat. Chem. Biol., 2018, 14(3), 206-214.
[http://dx.doi.org/10.1038/nchembio.2576] [PMID: 29443976]
[145]
Smith, L.M.; Kelleher, N.L. Proteoforms as the next proteomics currency. Science, 2018, 359(6380), 1106-1107.
[http://dx.doi.org/10.1126/science.aat1884] [PMID: 29590032]
[146]
Marshall, A.G.; Hendrickson, C.L.; Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom. Rev., 1998, 17(1), 1-35.
[http://dx.doi.org/10.1002/(SICI)1098-2787(1998)17:1<1:AID-MAS1>3.0.CO;2-K] [PMID: 9768511]
[147]
Han, X.; Jin, M.; Breuker, K.; McLafferty, F.W. Extending top-down mass spectrometry to proteins with masses greater than 200 kilodaltons. Science, 2006, 314(5796), 109-112.
[http://dx.doi.org/10.1126/science.1128868] [PMID: 17023655]
[148]
Gregorich, Z.R.; Cai, W.; Lin, Z.; Chen, A.J.; Peng, Y.; Kohmoto, T.; Ge, Y. Distinct sequences and post-translational modifications in cardiac atrial and ventricular myosin light chains revealed by top-down mass spectrometry. J. Mol. Cell. Cardiol., 2017, 107, 13-21.
[http://dx.doi.org/10.1016/j.yjmcc.2017.04.002] [PMID: 28427997]
[149]
Li, H.; Nguyen, H.H.; Ogorzalek Loo, R.R.; Campuzano, I.D.G.; Loo, J.A. An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem., 2018, 10(2), 139-148.
[http://dx.doi.org/10.1038/nchem.2908] [PMID: 29359744]
[150]
Tipton, J.D.; Tran, J.C.; Catherman, A.D.; Ahlf, D.R.; Durbin, K.R.; Lee, J.E.; Kellie, J.F.; Kelleher, N.L.; Hendrickson, C.L.; Marshall, A.G. Nano-LC FTICR tandem mass spectrometry for top-down proteomics: Routine baseline unit mass resolution of whole cell lysate proteins up to 72 kDa. Anal. Chem., 2012, 84(5), 2111-2117.
[http://dx.doi.org/10.1021/ac202651v] [PMID: 22356091]
[151]
Oh, H.; Breuker, K.; Sze, S.K.; Ge, Y.; Carpenter, B.K.; McLafferty, F.W. Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy. Proc. Natl. Acad. Sci. USA, 2002, 99(25), 15863-15868.
[http://dx.doi.org/10.1073/pnas.212643599] [PMID: 12444260]
[152]
Lin, Z.; Guo, F.; Gregorich, Z.R.; Sun, R.; Zhang, H.; Hu, Y.; Shanmuganayagam, D.; Ge, Y. Comprehensive characterization of swine cardiac troponin T proteoforms by top-down mass spectrometry. J. Am. Soc. Mass Spectrom., 2018, 29(6), 1284-1294.
[http://dx.doi.org/10.1007/s13361-018-1925-y] [PMID: 29633223]
[153]
Kellie, J.F.; Catherman, A.D.; Durbin, K.R.; Tran, J.C.; Tipton, J.D.; Norris, J.L.; Witkowski, C.E., II; Thomas, P.M.; Kelleher, N.L. Robust analysis of the yeast proteome under 50 kDa by molecular-mass-based fractionation and top-down mass spectrometry. Anal. Chem., 2012, 84(1), 209-215.
[http://dx.doi.org/10.1021/ac202384v] [PMID: 22103811]
[154]
Tran, J.C.; Zamdborg, L.; Ahlf, D.R.; Lee, J.E.; Catherman, A.D.; Durbin, K.R.; Tipton, J.D.; Vellaichamy, A.; Kellie, J.F.; Li, M.; Wu, C.; Sweet, S.M.M.; Early, B.P.; Siuti, N.; LeDuc, R.D.; Compton, P.D.; Thomas, P.M.; Kelleher, N.L. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature, 2011, 480(7376), 254-258.
[http://dx.doi.org/10.1038/nature10575] [PMID: 22037311]
[155]
Anderson, L.C.; DeHart, C.J.; Kaiser, N.K.; Fellers, R.T.; Smith, D.F.; Greer, J.B.; LeDuc, R.D.; Blakney, G.T.; Thomas, P.M.; Kelleher, N.L.; Hendrickson, C.L. Identification and characterization of human proteoforms by top-down LC-21 tesla FT-ICR mass spectrometry. J. Proteome Res., 2017, 16(2), 1087-1096.
[http://dx.doi.org/10.1021/acs.jproteome.6b00696] [PMID: 27936753]
[156]
Cai, W.; Tucholski, T.; Chen, B.; Alpert, A.J.; McIlwain, S.; Kohmoto, T.; Jin, S.; Ge, Y. Top-down proteomics of large proteins up to 223 kDa enabled by serial size exclusion chromatography strategy. Anal. Chem., 2017, 89(10), 5467-5475.
[http://dx.doi.org/10.1021/acs.analchem.7b00380] [PMID: 28406609]
[157]
Tucholski, T.; Knott, S.J.; Chen, B.; Pistono, P.; Lin, Z.; Ge, Y. A top-down proteomics platform coupling serial size exclusion chromatography and Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem., 2019, 91(6), 3835-3844.
[http://dx.doi.org/10.1021/acs.analchem.8b04082] [PMID: 30758949]