Dichlorophosphoryl Isocyanate: Synthesis, Chemical Reactions, and Biological Activity of its Derivatives

Page: [833 - 851] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Dichlorophosphoryl isocyanate (DCPI) is the most basic and easy phosphoric isocyanate substrate that introduces organic moieties. Synthesized since 1954, the DCPI has a high reactivity toward primary and secondary alkyl, alcohols, phenols, thiols, and amines via the nucleophilic addition reaction on the carbon atom of the isocyanate group. In addition to their synthesis, the resulting products undergo nucleophilic substitutions of the chlorine atoms. Their reactions with nucleophilic and bi-nucleophile reagents yield acyclic and P-heterocyclic compounds, respectively. The resulting compounds have different potential antibacterial, antifungal, and antitumor activities.

[1]
Richardson, R.J.; Makhaeva, G.F. Organophosphorus compounds. Encyclop. Toxicol., 2014, 3, 714-719.
[2]
(a) Singh, B.K.; Walker, A. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev., 2006, 30(3), 428-471.
[http://dx.doi.org/10.1111/j.1574-6976.2006.00018.x] [PMID: 16594965];
(b) Ajiboye, T.O.; Oladoye, P.O.; Olanrewaju, C.A.; Akinsola, G.O. Organophosphorus pesticides: Impacts, detection and removal strategies. Environ. Nanotechnol. Monit. Manag., 2022, 17, 100655.
[http://dx.doi.org/10.1016/j.enmm.2022.100655]
[3]
(a) Delfino, R.T.; Ribeiro, T.S.; Figueroa-Villar, J.D. Organophosphorus compounds as chemical warfare agents: A review. J. Braz. Chem. Soc., 2009, 20(3), 407-428.
[http://dx.doi.org/10.1590/S0103-50532009000300003];
(b) Holmstedt, B. Pharmacology of organophosphorus anticholinesterase agents.Cholinesterases and Anticholinesterase Agents. Handb. Exp. Pharmacol., 1963, 15, 428-485.
[4]
(a) Hall, S.A. Organic phosphorus insecticides. Adv. Chem. Ser., 1950, 1, 150-159.
[http://dx.doi.org/10.1021/ba-1950-0001.ch029];
(b) Cook, A.M.; Daughton, C.G.; Alexander, M. Phosphorus-containing pesticide breakdown products: Quantitative utilization as phosphorus sources by bacteria. Appl. Environ. Microbiol., 1978, 36(5), 668-672.
[http://dx.doi.org/10.1128/aem.36.5.668-672.1978] [PMID: 727784];
(c) Omar, S.A. Availability of phosphorus and sulfur of insecticide origin by fungi. Biodegradation, 1998, 9(5), 327-336.
[http://dx.doi.org/10.1023/A:1008310909262] [PMID: 10192894]
[5]
(a) Martyniuk, C.J.; Mehinto, A.C.; Denslow, N.D. Organochlorine pesticides: Agrochemicals with potent endocrine-disrupting properties in fish. Mol. Cell. Endocrinol., 2020, 507, 110764.
[http://dx.doi.org/10.1016/j.mce.2020.110764] [PMID: 32112812];
(b) Karasali, H.; Maragou, N. Pesticides and Herbicides: Types of Pesticide. Encyclop. Food Health, 2016, 319-325.;
(c) Heilier, J.F.; Donnez, J.; Lison, D. Organochlorines and endometriosis: A mini-review. Chemosphere, 2008, 71(2), 203-210.
[http://dx.doi.org/10.1016/j.chemosphere.2007.09.044] [PMID: 18006040]
[6]
(a) Teng, H.B. The design and synthesis of a novel organophosphorus compound containing the structure of both β-amino acid and β-aminophosphonate. Chin. Chem. Lett., 2010, 21(7), 810-812.
[http://dx.doi.org/10.1016/j.cclet.2010.03.035];
(b) Dong, S.; Zhang, J.; Huang, G.; Wei, W.; Huang, T. Conducting microporous organic polymer with –OH functional groups: Special structure and multi-functional integrated property for organophosphorus biosensor. Chem. Eng. J., 2021, 405, 126682.
[http://dx.doi.org/10.1016/j.cej.2020.126682];
(c) Oltean, D.; Pöllnitz, A.; Silvestru, A. Organophosphorus ligands with XPNSO skeleton (X = O, S) and their Pd(II) complexes. Crystal and molecular structure of [XP(OEt)2(O2SR)]NH (X = O, R = Me, Ph; X = S, R = C6H4Cl-4) and Pd[SP(OEt)2(O2SC6H4Cl-4)N]2. Polyhedron, 2013, 53, 67-75.
[http://dx.doi.org/10.1016/j.poly.2013.01.023]
[7]
(a) Kolodiazhnyi, O.; Kolodiazhna, O.; Grishkun, E.; Kolodiazhna, A.; Sheiko, S. Generation of tert-butyl-λ 5 -phosphanedione and its chemical properties. Phosphorus Sulfur Silicon Relat. Elem., 2022, 197(5-6), 657-659.
[http://dx.doi.org/10.1080/10426507.2022.2031197];
(b) Alencar Filho, E.B.; Santos, A.A.; Oliveira, B.G. A quantum chemical study of molecular properties and QSPR modeling of oximes, amidoximes and hydroxamic acids with nucleophilic activity against toxic organophosphorus agents. J. Mol. Struct., 2017, 1133, 338-347.
[http://dx.doi.org/10.1016/j.molstruc.2016.12.035]
[8]
(a) Ogunyemi, B.T.; Adejoro, I.A. Structural and electronic properties of organophosphorus-based systems as sensitizers in solar cells. Mater. Today Chem., 2021, 20, 100469.
[http://dx.doi.org/10.1016/j.mtchem.2021.100469];
(b) Liagkouridis, I.; Cousins, A.P.; Cousins, I.T. Physical–chemical properties and evaluative fate modelling of ‘emerging’ and ‘novel’ brominated and organophosphorus flame retardants in the indoor and outdoor environment. Sci. Total Environ., 2015, 524-525, 416-426.
[http://dx.doi.org/10.1016/j.scitotenv.2015.02.106] [PMID: 25933174]
[9]
(a) Gao, B.; Zhang, Z.; Li, L.; Kaziem, A.E.; He, Z.; Yang, Q.; Qing, P.; Zhang, Q.; Wang, M. Stereoselective environmental behavior and biological effect of the chiral organophosphorus insecticide isofenphos-methyl. Sci. Total Environ., 2019, 648, 703-710.
[http://dx.doi.org/10.1016/j.scitotenv.2018.08.182] [PMID: 30134211];
(b) Liu, X.; Sakthivel, R.; Liu, W.C.; Huang, C.W.; Li, J.; Xu, C.; Wu, Y.; Song, L.; He, W.; Chung, R.J. Ultra-highly sensitive organophosphorus biosensor based on chitosan/tin disulfide and British housefly acetylcholinesterase. Food Chem., 2020, 324, 126889.
[http://dx.doi.org/10.1016/j.foodchem.2020.126889] [PMID: 32353659];
(c) Cheng, F.; Yang, X.; Fan, C.; Zhu, H. Organophosphorus chemistry of fullerene: Synthesis and biological effects of organophosphorus compounds of C60. Tetrahedron, 2001, 57(34), 7331-7335.
[http://dx.doi.org/10.1016/S0040-4020(01)00670-6];
(d) Regulska, E.; Romero-Nieto, C. Design of organophosphorus materials for organic electronics and bio-applications. Mater. Today Chem., 2021, 22, 100604.
[http://dx.doi.org/10.1016/j.mtchem.2021.100604]
[10]
Neog, K.; Gogoi, P. Recent advances in the synthesis of organophosphorus compounds via Kobayashi’s aryne precursor: A review. Org. Biomol. Chem., 2020, 18(47), 9549-9561.
[http://dx.doi.org/10.1039/D0OB01988G] [PMID: 33200153]
[11]
(a) Mary, F.; Arrachart, G.; Leydier, A.; Pellet-Rostaing, S. Synthesis of organophosphorus ligands with a central oxygen atom and their applications in solvent extraction. Tetrahedron, 2019, 75(30), 3968-3976.
[http://dx.doi.org/10.1016/j.tet.2019.06.004];
(b) Demchuk, O.M.; Jasiński, R. Organophosphorus ligands: Recent developments in design, synthesis, and application in environmentally benign catalysis. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(2), 245-253.
[http://dx.doi.org/10.1080/10426507.2015.1064921];
(c) Morodo, R.; Bianchi, P.; Monbaliu, J.C.M. Continuous flow organophosphorus chemistry. Eur. J. Org. Chem., 2020, 2020(33), 5236-5277.
[http://dx.doi.org/10.1002/ejoc.202000430];
(d) Bagi, P.; Herbay, R.; Varga, B.; Fersch, D.; Fogassy, E.; Keglevich, G. The preparation and application of optically active organophosphorus compounds. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(4-6), 591-594.
[http://dx.doi.org/10.1080/10426507.2018.1547725]
[12]
Atwood, D.; Paisley-Jones, C. Pesticides Industry Sales and Usage: 2008-2012 Market Estimates; US Environmental Protection Agency: Washington, DC, 2017, p. 32.
[13]
(a) Mukherjee, S.; Gupta, R.D. Organophosphorus nerve agents: types, toxicity, and treatments. J. Toxicol., 2020, 2020, 1-16.
[http://dx.doi.org/10.1155/2020/3007984] [PMID: 33029136];
(b) Zhang, L.; Murata, H.; Amitai, G.; Smith, P.N.; Matyjaszewski, K.; Russell, A.J. Catalytic detoxification of organophosphorus nerve agents by butyrylcholinesterase-polymer-oxime bioscavengers. Biomacromolecules, 2020, 21(9), 3867-3877.
[http://dx.doi.org/10.1021/acs.biomac.0c00959] [PMID: 32786529];
(c) Doctor, B.P.; Blick, D.W.; Caranto, G.; Castro, C.A.; Gentry, M.K.; Larrison, R.; Maxwell, D.M.; Murphy, M.R.; Schutz, M.; Waibel, K.; Wolfe, A.D. Cholinesterases as scavengers for organophosphorus compounds: Protection of primate performance against soman toxicity. Chem. Biol. Interact., 1993, 87(1-3), 285-293.
[http://dx.doi.org/10.1016/0009-2797(93)90056-5] [PMID: 8343986];
(d) Holland, K.E.; Solano, M.I.; Johnson, R.C.; Maggio, V.L.; Barr, J.R. Modifications to the organophosphorus nerve agent-protein adduct refluoridation method for retrospective analysis of nerve agent exposures. J. Anal. Toxicol., 2008, 32(1), 116-124.
[http://dx.doi.org/10.1093/jat/32.1.116] [PMID: 18269803];
(e) Hulse, E.J.; Davies, J.O.J.; Simpson, A.J.; Sciuto, A.M.; Eddleston, M. Respiratory complications of organophosphorus nerve agent and insecticide poisoning. Implications for respiratory and critical care. Am. J. Respir. Crit. Care Med., 2014, 190(12), 1342-1354.
[http://dx.doi.org/10.1164/rccm.201406-1150CI] [PMID: 25419614]
[14]
(a) Patil, P.D.; Singh, A.A.; Yadav, G.D. Biodegradation of organophosphorus insecticide chlorpyrifos into a major fuel additive 2,4-bis(1,1 dimethylethyl) phenol using white-rot fungal strain Trametes hirsuta MTCC-1171. J. Indian Chem. Soc., 2021, 98(9), 100120.
[http://dx.doi.org/10.1016/j.jics.2021.100120];
(b) Almeida Cardoso, G.S.; Freitas, T.; do Rosário, F.F.; Cajaiba, J. Enhancing the permeability of a carbonate rock core by dissolution/precipitation treatment with organophosphorus additives evaluated by SEM/EDS and ICP-OES. J. Petrol. Sci. Eng., 2020, 193, 107341.
[http://dx.doi.org/10.1016/j.petrol.2020.107341]
[15]
Solbu, K.; Daae, H.L.; Olsen, R.; Thorud, S.; Ellingsen, D.G.; Lindgren, T.; Bakke, B.; Lundanes, E.; Molander, P. Organophosphates in aircraft cabin and cockpit air—method development and measurements of contaminants. J. Environ. Monit., 2011, 13(5), 1393-1403.
[http://dx.doi.org/10.1039/c0em00763c] [PMID: 21399836]
[16]
(a) Gouy, M.H.; Jordheim, L.P.; Lefebvre, I.; Cros, E.; Dumontet, C.; Peyrottes, S.; Perigaud, C. Special feature of mixed phosphotriester derivatives of cytarabine. J. Bioorg. Med. Chem, 2009, 17(17), 6340-6347.;
(b) Berridge, M.J.; Irvine, R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 1984, 312, 315-321.;
(c) McGuigan, C.; Derudas, M.; Gonczy, B.; Hinsinger, K.; Kandil, S.; Pertusati, F. ProTides of N-(3-(5-deoxyuridine))prop-2-ynyl)octanamide as potential anti- tubercular and anti-viral agents. J. Bioorg. Med. Chem, 2014, 22(9), 2816-2824.;
(d) Neisius, M.; Liang, S.; Mispreuve, H.; Gaan, S. Phosphoramidate-containing flame-retardant flexible polyurethane foams. Ind. Eng. Chem. Res., 2013, 52(29), 9752-9762.
[17]
Habboush, A.E.; Farroha, S.M.; Khalaf, H.I. Extraction-gas chromatographic method for the determination of organophosphorus compounds as lubricating oil additives. J. Chromatogr. A, 1995, 696(2), 257-263.
[http://dx.doi.org/10.1016/0021-9673(94)01008-3]
[18]
(a) Wei, G.L.; Li, D.Q.; Zhuo, M.N.; Liao, Y.S.; Xie, Z.Y.; Guo, T.L.; Li, J.J.; Zhang, S.Y.; Liang, Z.Q. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environ. Pollut., 2015, 196, 29-46.
[http://dx.doi.org/10.1016/j.envpol.2014.09.012] [PMID: 25290907];
(b) Reemtsma, T.; Quintana, J.B.; Rodil, R.; Garcı´a-López, M.; Rodrı´guez, I. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate. Trends Analyt. Chem., 2008, 27(9), 727-737.
[http://dx.doi.org/10.1016/j.trac.2008.07.002]
[19]
(a) Grob, D.; Johns, R.J. Use of oximes in the treatment of intoxication by anticholinesterase compounds in normal subjects. Am. J. Med., 1958, 24(4), 497-511.
[http://dx.doi.org/10.1016/0002-9343(58)90290-0] [PMID: 13520751];
(b) Becker, B. Glaucoma, 1957-1958. Arch. Ophthalmol., 1958, 60(6), 1112-1150.
[http://dx.doi.org/10.1001/archopht.1958.00940081132021] [PMID: 13593947]
[20]
Gross, R.; Wulf, G. Klinische und experimentelle Erfahrungen mit zyk lischen und nichtzyklischen Phosphamidestern des N-Losl in der Chemotherapie von Tumoren. Strahentherapie, 1959, 41, 361-367.
[21]
(a) Chamizo Carmona, E.; Gallego Flores, A.; Loza Santamaría, E.; Herrero Olea, A.; Rosario Lozano, M.P. Systematic literature review of bisphosphonates and osteonecrosis of the jaw in patients with osteoporosis. Reumatol. Clin., 2013, 9(3), 172-177.
[http://dx.doi.org/10.1016/j.reuma.2012.05.005] [PMID: 22784630];
(b) Lau, T.C.; Lim, B.P.; Li, S.C. POS3 Cost-Effectiveness analysis of bisphosphonates and raloxifene for treatment of osteoporosis and prevention of fractures. Value Health, 2005, 8(3), 408.
[http://dx.doi.org/10.1016/S1098-3015(10)63112-9]
[22]
McKellar, Q.A.; Jackson, F. Veterinary anthelmintics: Old and new. Trends Parasitol., 2004, 20(10), 456-461.
[http://dx.doi.org/10.1016/j.pt.2004.08.002] [PMID: 15363438]
[23]
(a) Petkowski, J.; Bains, W.; Seager, S. Natural products containing ‘rare’ organophosphorus functional groups. Molecules, 2019, 24(5), 866.
[http://dx.doi.org/10.3390/molecules24050866] [PMID: 30823503];
(b) Minear, R.A. Characterization of naturally occurring dissolved organophosphorus compounds. Environ. Sci. Technol., 1972, 6(5), 431-437.
[http://dx.doi.org/10.1021/es60064a007]
[24]
Fitzsimons, M.F.; Probert, I.; Gaillard, F.; Rees, A.P. Dissolved organic phosphorus uptake by marine phytoplankton is enhanced by the presence of dissolved organic nitrogen. J. Exp. Mar. Biol. Ecol., 2020, 530-531, 151434.
[http://dx.doi.org/10.1016/j.jembe.2020.151434]
[25]
Benitez-Nelson, C.R. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev., 2000, 51(1-4), 109-135.
[http://dx.doi.org/10.1016/S0012-8252(00)00018-0]
[26]
Kirsanov, A.V.J. Gen. Chem. (U. S. S. R.) 24, 1954, 1033-1038. Chem. Abstr., 1955, 49, 8787.
[27]
Smaliy, R.V.; Chaikovskaya, A.A.; Pinchuk, A.M.; Tolmachev, A.A. Isocyanatophosphoric acid dichloride: a novel reagent for the introduction of a cyano group into the molecules of electron-rich heterocycles and enamines. Synthesis, 2002, 16(16), 2416-2420.
[http://dx.doi.org/10.1055/s-2002-35238]
[28]
Lest, J.B.; Damaskus, C.W.F. Armour-pharmaceutical company french Patent No. 1397493. Chem. Abstr., 1965, 63, 5605.
[29]
Kulibaba, N.K.; Shevchenko, V.I.; Kirsanov, A.V.Zh. Obshch. Khim, 1971, 41, 2105.
[30]
Semenii, V.Y. C. A. 87, 119978 (1977); SU 461 104 (1973/1975). 1975.
[31]
Flemming, R.; Lehman, H.A.; Riesel, L.; Mobius, G.C.A. 1976, 85, 20606; DD 116458 (1974/1975).
[32]
Kuhn, S.J.; Olah, G.A. Organophosphorus compounds: X. Phosphorisocyanatitic difluoride and chloride fluoride. Preparation of alkyl carbamatophosphorodifluoridates and ureidophosphorodifluoridates. Can. J. Chem., 1962, 40(10), 1951-1954.
[http://dx.doi.org/10.1139/v62-299]
[33]
Brotherton, T.K.; Lynn, J.W.; Smith, J. Process for producing phosphoryl isocyanates. US3470271A, 1969.
[34]
Goryunov, E.I.; Molchanova, G.N.; Goryunova, I.B.; Baulina, T.V.; Petrovskii, P.V.; Mikhailovskaya, V.S.; Buyanovskaya, A.G.; Nifant’ev, E.E. Catalytic synthesis of phosphoryl isocyanates. Russ. Chem. Bull., 2005, 54(11), 2626-2628.
[http://dx.doi.org/10.1007/s11172-006-0166-6]
[35]
Schwabedissen, J.; Li, D.X.; Reuter, C.G.; Stammler, H.G.; Mitzel, N.W.; Bernhardt, E.; Zeng, X. Conformation and structure of dichlorophosphoryl isocyanate in the gaseous and solid phases. Z. Anorg. Allg. Chem., 2018, 644, 1415-1422.
[http://dx.doi.org/10.1002/zaac.201800191]
[36]
Zeng, X.; Gerken, M.; Beckers, H.; Willner, H. Spectroscopic and structural studies of difluorophosphoryl azide F2P(O)N3, difluorophosphoryl isocyanate F2P(O)NCO, and difluorophosphoric acid anhydride, F2(O)POP(O)F2. Inorg. Chem., 2010, 49(6), 3002-3010.
[http://dx.doi.org/10.1021/ic902524u] [PMID: 20143848]
[37]
Kirsanov, A.W.; Maranez, M.S. Zh. Obshch. Khim, 1959, 29, 2256.
[38]
Michel, H.J.; Nicolas, H.J.; Stohr, P.; Huber, N.W.; Kreher, T. Triamides of phosphoric acid (uncle) to regulate the enzymatic hydrolysis of urea. ES2198304T5, 1983.
[39]
Reddy, P.V.G.; Reddy, C.S.; Raju, C.N. Synthesis and antimicrobial activity of N-(substituted)-N′-(2,3-dihydro-2-oxido-5-benzoyl-1H-1,2,3-benzodiazaphosphol-2-yl) ureas. Chem. Pharm. Bull. (Tokyo), 2003, 51(7), 860-863.
[http://dx.doi.org/10.1248/cpb.51.860] [PMID: 12843597]
[40]
Haranath, P.; Anasuyamma, U.; Reddy, P.V.G.; Reddy, C.S. Synthesis and antimicrobial activity of N -(substituted)- N -[1,2,4,8,10,11-hexachloro-6-oxido-12 H -dibenzo(d,g)(1,3,2)-dioxaphosphocin-6-yl]ureas. J. Heterocycl. Chem., 2004, 41(6), 1001-1004.
[http://dx.doi.org/10.1002/jhet.5570410625]
[41]
Anasuyamma, U.; Haranath, P.; Kumar, M.A.; Reddy, C.S.; Raju, C.N. Synthesis and antimicrobial activity of 1‐[(substituted carbamoyl)amino]‐1H,3H‐1λ5‐[1,3,2]oxazaphospholo[3,4‐a]benzimidazol‐1‐ones. Synth. Commun., 2007, 37(19), 3429-3437.
[http://dx.doi.org/10.1080/00397910701483886]
[42]
Gholivand, K.; Dorosti, N.; Ghaziany, F.; Mirshahi, M.; Sarikhani, S. N-phosphinyl ureas: Synthesis, characterization, X-ray structure, and in vitro evaluation of antitumor activity. Heteroatom Chem., 2012, 23(1), 74-83.
[http://dx.doi.org/10.1002/hc.20754]
[43]
Rao, L.N.; Nagaraju, C.; Reddy, C.D.; Auschwitz, T.S.; Brown, C.W.; Klucik, J.; Hickey, M.R.; Wakefield, C.A.; Berlin, K.D. Synthesis and antimicrobial activity of 2-substitued-2,3-dihydro-5-thiophenoxy-1H-1,3,2-benzodiaza-phosphole 2-oxides. Phosphorus Sulfur Silicon Relat. Elem., 2000, 158(1), 39-56.
[http://dx.doi.org/10.1080/10426500008042072]
[44]
Rao, L.N.; Reddy, C.D.; Raju, C.N. Synthesis and characterization of 2-alkylcarbamato-1,2,3,4-tetrahydro-1,3,2-benzodiazaphosphorine 2-oxides. Heterocycl. Commun., 2000, 6(5), 431-436.
[45]
Venugopal, M.; Reddy, B.S.; Reddy, C.D.; Berlin, K.D. Synthesis and antimicrobial activity of 2-substituted-2,3-dihydro-5-propoxy-1 H -1,3,2-benzodiazaphosphole 2-Oxides. J. Heterocycl. Chem., 2001, 38(1), 275-279.
[http://dx.doi.org/10.1002/jhet.5570380141]
[46]
Babu, M.F.S.; Rao, L.N.; Venugopal, M.; Raju, C.N.; Reddy, C.S. Synthesis and antimicrobial activity of 8-alkylcarbamato-16H-dinaphtho [2,1-d:1?2?-g] 1,3,2-dioxaphosphocin 8-oxides. Heteroatom Chem., 2001, 12(1), 16-20.
[http://dx.doi.org/10.1002/1098-1071(2001)12:1<16::AID-HC4>3.0.CO;2-B]
[47]
Kumar, K.A.; Reddy, C.S.; Reddy, C.D. Synthesis of 6-Alkyl Carbamato/Alkyl Thiocarbamato-2,10-dichloro-12-trichloromethyl-12 H -dibenzo[d,g][1,3,2]-dioxaphosphocin 6-Oxides. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(6-7), 1745-1748.
[http://dx.doi.org/10.1080/10426500212279]
[48]
Zhdanov, R.I.; Buina, N.A.; Kapitanova, N.G.; Nuretdinov, I.A. Biologically active stable radicals; XV1. Spin-labeled alkyl carbamate- N -phosphonic acid aziridides. Synthesis, 1979, 1979(4), 269-270.
[http://dx.doi.org/10.1055/s-1979-28640]
[49]
Shipov, A.E.; Genkina, G.K.; Goryunov, E.I.; Goryunova, I.B.; Petrovskii, P.V. Phosphorus-containing derivatives of L-aspartic and L-glutamic acids. Russ. Chem. Bull. Int. Ed., 2010, 59(1), 122-126.
[50]
Stec, W.J. Cyclophosphamide and its congeners. Organophosphorus Chem., 1982, 13, 145-174.
[51]
Tolmachev, A.A.; Chaikovskaya, A.A.; Smaliy, R.V.; Kudrya, T.N.; Yurchenko, A.A.; Pinchuk, A.M. C-acylation of electron-rich heterocyclic compounds with Kirsanov isocyanate. Heteroatom Chem., 1999, 10(4), 343-348.
[http://dx.doi.org/10.1002/(SICI)1098-1071(1999)10:4<343::AID-HC14>3.0.CO;2-C]
[52]
Smaliy, R.V.; Chaikovskaya, A.A.; Pinchuk, A.M. Reactions of isocyanatophosphoryl difluoride with π-abundant nitrogen heterocycles and carbonyl compounds. Russ. Chem. Bull., 2006, 55(3), 585-587.
[http://dx.doi.org/10.1007/s11172-006-0297-9]
[53]
Vincent, J.G.; Vincent, H.W.; Morton, J. Filter paper disc modification of the oxford cup penicillin determination. Exp. Biol. Med. (Maywood), 1944, 55(3), 162-164.
[http://dx.doi.org/10.3181/00379727-55-14502]
[54]
Horsfall, J.C.; Rich, S. Indian Phytopathol., 1963, 6, 1.
[55]
Benson, H.J. Microbiological Applications, 5th ed; McGraw-Hill Science Publications, 1990, p. 134.
[56]
Babu, Y.H.; Reddy, P.V.G.; Reddy, C.S.; Reddy, C.D.; Devi, P.U.M. Synthesis and antimicrobial activity of novel 2‐alkyl/arylcarbamato‐6‐(1,1‐dimethylethyl)‐3‐cyclohexyl‐3,4‐dihydro‐2 H ‐1,3,2‐benzoxazaphosphorine‐2‐oxides. J. Heterocycl. Chem., 2002, 39(5), 1039-1044.
[http://dx.doi.org/10.1002/jhet.5570390529]
[57]
Kavangh, F. Analytical Microbiology; Academic Press: New York, 1963, p. 290.
[58]
Cruickshan, K.R. Medical Microbiology, A guide to Diagnosis and Control of Infection. II Ed E & S. Livingston Ltd.: Edinburgh and London, 1968.
[59]
Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(4_ts), 493-496.
[http://dx.doi.org/10.1093/ajcp/45.4_ts.493] [PMID: 5325707]
[60]
Uma Maheswari Devi, P.; Srinivas Reddy, P.; Usha Rani, N.R.; Reddy, K.J.; Narsa Reddy, M.; Reddanna, P. Lipoxygenase metabolites of α-linoleic acid in the development of resistance in pigeonpea, Cajanus cajan (L.) millsp, seedlings against Fusarium udum infection. Eur. J. Plant Pathol., 2000, 106(9), 857-865.
[http://dx.doi.org/10.1023/A:1008797006206]
[61]
Colle, J.G.; Duguid, J.P.; Fraser, A.G.; Mannion, B.P. Mackie & Mecartney, Practical Medicinal Microbiology, 13th Ed; Edinburgh and London: Churchil Livingstone Ltd, 1989, p. 2.
[62]
Twentyman, P.R.; Fox, N.E.; Rees, J.K.H. Chemosensitivity testing of fresh leukaemia cells using the MTT colorimetric assay. Br. J. Haematol., 1989, 71(1), 19-24.
[http://dx.doi.org/10.1111/j.1365-2141.1989.tb06268.x] [PMID: 2917126]
[63]
Sun, M.; Wu, X.; Chen, J.; Cai, J.; Cao, M.; Ji, M. Design, synthesis, and in vitro antitumor evaluation of novel diaryl ureas derivatives. Eur. J. Med. Chem., 2010, 45(6), 2299-2306.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.005] [PMID: 20181414]
[64]
Li, H.Q.; Zhu, T.T.; Yan, T.; Luo, Y.; Zhu, H.L. Design, synthesis and structure–activity relationships of antiproliferative 1,3-disubstituted urea derivatives. Eur. J. Med. Chem., 2009, 44(2), 453-459.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.011] [PMID: 18514972]
[65]
Yao, P.; Zhai, X.; Liu, D.; Qi, B.H.; Tan, H.L.; Jin, Y.C.; Gong, P. Synthesis and antiproliferative activity of novel diaryl ureas possessing a 4H-pyrido[1,2-a]pyrimidin-4-one group. Arch. Pharm. (Weinheim), 2010, 343(1), 17-23.
[PMID: 19927308]
[66]
Song, D.Q.; Wang, Y.M.; Du, N.N.; He, W.Y.; Chen, K.L.; Wang, G.F.; Yang, P.; Wu, L.Z.; Zhang, X.B.; Jiang, J.D. Synthesis and activity evaluation of benzoylurea derivatives as potential antiproliferative agents. Bioorg. Med. Chem. Lett., 2009, 19(3), 755-758.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.020] [PMID: 19111465]
[67]
Liu, S.; Ji, X.; Gilliland, G.L.; Stevens, W.J.; Armstrong, R.N. Second-sphere electrostatic effects in the active site of glutathione S-transferase. Observation of an on-face hydrogen bond between the side chain of threonine 13 and the. π.-cloud of tyrosine 6 and its influence on catalysis. J. Am. Chem. Soc., 1993, 115(17), 7910-7911.
[http://dx.doi.org/10.1021/ja00070a060]
[68]
Steiner, T.; Koellner, G. Hydrogen bonds with π-acceptors in proteins: Frequencies and role in stabilizing local 3D structures11Edited by R. Huber. J. Mol. Biol., 2001, 305(3), 535-557.
[http://dx.doi.org/10.1006/jmbi.2000.4301] [PMID: 11152611]
[69]
Hollósy, F.; Lóránd, T.; Örfi, L.; Erös, D.; Kéri, G.; Idei, M. Relationship between lipophilicity and antitumor activity of molecule library of Mannich ketones determined by high-performance liquid chromatography, clogP calculation and cytotoxicity test. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 768(2), 361-368.
[http://dx.doi.org/10.1016/S1570-0232(02)00004-1] [PMID: 11888064]
[70]
Fiuza, S.M.; Gomes, C.; Teixeira, L.J.; Girão da Cruz, M.T.; Cordeiro, M.N.D.S.; Milhazes, N.; Borges, F.; Marques, M.P.M. Phenolic acid derivatives with potential anticancer properties––a structure–activity relationship study. Part 1: Methyl, propyl and octyl esters of caffeic and gallic acids. Bioorg. Med. Chem., 2004, 12(13), 3581-3589.
[http://dx.doi.org/10.1016/j.bmc.2004.04.026] [PMID: 15186842]