Heterologous Expression and Function of Cholesterol Oxidase: A Review

Page: [531 - 540] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Cholesterol was first found in gallstones as an animal sterol; hence it is called cholesterol. Cholesterol oxidase is the chief enzyme in the process of cholesterol degradation. Its role is obtained by the coenzyme FAD, which catalyzes the isomerization and oxidation of cholesterol to produce cholesteric 4-ene-3-ketone and hydrogen peroxide at the same time. Recently, a great advance has been made in the discovery of the structure and function of cholesterol oxidase, and it has proven added value in clinical discovery, medical care, food and biopesticides development and other conditions. By recombinant DNA technology, we can insert the gene in the heterologous host. Heterologous expression (HE) is a successful methodology to produce enzymes for function studies and manufacturing applications, where Escherichia coli has been extensively used as a heterologous host because of its economical cultivation, rapid growth, and efficiency in offering exogenous genes. Heterologous expression of cholesterol oxidase has been considered for several microbial sources, such as Rhodococcus equi, Brevibacterium sp., Rhodococcus sp., Streptomyces coelicolor, Burkholderia cepacia ST-200, Chromobacterium, and Streptomyces spp. All related publications of numerous researchers and scholars were searched in ScienceDirect, Scopus, PubMed, and Google Scholar. In this article, the present situation and promotion of heterologous expression of cholesterol oxidase, the role of protease, and the perspective of its possible applications were reviewed.

Graphical Abstract

[1]
Phillips, C. Nutrigenetics and metabolic disease: Current status and implications for personalised nutrition. Nutrients, 2013, 5(1), 32-57.
[http://dx.doi.org/10.3390/nu5010032] [PMID: 23306188]
[2]
Chen, G.; Li, H.; Zhao, Y.; Zhu, H.; Cai, E.; Gao, Y.; Liu, S.; Yang, H.; Zhang, L. Saponins from stems and leaves of Panax ginseng prevent obesity via regulating thermogenesis, lipogenesis and lipolysis in high-fat diet-induced obese C57BL/6 mice. Food Chem. Toxicol., 2017, 106(Pt A), 393-403.
[http://dx.doi.org/10.1016/j.fct.2017.06.012] [PMID: 28599882]
[3]
Jiang, X.; Tan, Z.; Lin, L.; He, J.; He, C.; Thackray, B.D.; Zhang, Y.; Ye, J. Surface-enhanced raman nanoprobes with embedded standards for quantitative cholesterol detection. Small Methods, 2018, 2(11), 1800182.
[http://dx.doi.org/10.1002/smtd.201800182]
[4]
Paulazo, M.A.; Sodero, A.O. Analysis of cholesterol in mouse brain by HPLC with UV detection. PLoS One, 2020, 15(1), e0228170.
[http://dx.doi.org/10.1371/journal.pone.0228170] [PMID: 31978159]
[5]
Mahmoud, H.E.; El-Far, S.W.; Embaby, A.M. Cloning, expression, and in silico structural modeling of cholesterol oxidase of Acinetobacter sp. strain RAMD in E. coli. FEBS Open Bio, 2021, 11(9), 2560-2575.
[http://dx.doi.org/10.1002/2211-5463.13254] [PMID: 34272838]
[6]
Shahrajabian, M.H. Medicinal herbs with anti-inflammatory activities for natural and organic healing. Curr. Org. Chem., 2021, 25(23), 2885-2901.
[http://dx.doi.org/10.2174/1385272825666211110115656]
[7]
Basu, A.K.; Chattopadhyay, P.; Roychoudhuri, U.; Chakraborty, R. Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples. Bioelectrochemistry, 2007, 70(2), 375-379.
[http://dx.doi.org/10.1016/j.bioelechem.2006.05.006] [PMID: 16814618]
[8]
Moraes, M.L.; de Souza, N.C.; Hayasaka, C.O.; Ferreira, M.; Rodrigues Filho, U.P.; Riul, A., Jr; Zucolotto, V.; Oliveira, O.N., Jr Immobilization of cholesterol oxidase in LbL films and detection of cholesterol using ac measurements. Mater. Sci. Eng. C, 2009, 29(2), 442-447.
[http://dx.doi.org/10.1016/j.msec.2008.08.040]
[9]
Ghosh, S.; Khare, S.K. Biodegradation of 7-ketocholesterol by Rhodococcuserythropolis MTCC 3951: Process optimization and enzymatic insights. Chem Phys Lipids, 2017, 207(Pt B), 253-529.
[10]
Doukyu, N.; Aono, R. Purification of extracellular cholesterol oxidase with high activity in the presence of organic solvents from Pseudomonas sp. strain ST-200. Appl. Environ. Microbiol., 1998, 64(5), 1929-1932.
[http://dx.doi.org/10.1128/AEM.64.5.1929-1932.1998] [PMID: 9572974]
[11]
Ghosh, S.; Khare, S.K. Biodegradation of cytotoxic 7-ketocholesterol by Pseudomonas aeruginosa PseA. Bioresour. Technol., 2016, 213, 44-49.
[http://dx.doi.org/10.1016/j.biortech.2016.03.079] [PMID: 27020128]
[12]
Doukyu, N.; Shibata, K.; Ogino, H.; Sagermann, M. Cloning, sequence analysis, and expression of a gene encoding Chromobacterium sp. DS-1 cholesterol oxidase. Appl. Microbiol. Biotechnol., 2009, 82(3), 479-490.
[http://dx.doi.org/10.1007/s00253-008-1775-9] [PMID: 19015844]
[13]
Yazdi, M.T.; Zahraei, M.; Aghaepour, K.; Kamranpour, N. Purification and partial characterization of a cholesterol oxidase from Streptomyces fradiae. Enzyme Microb. Technol., 2001, 28(4-5), 410-414.
[http://dx.doi.org/10.1016/S0141-0229(00)00337-9] [PMID: 11240199]
[14]
Brzostek, A.; Dziadek, B.; Rumijowska-Galewicz, A.; Pawelczyk, J.; Dziadek, J. Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis. FEMS Microbiol. Lett., 2007, 275(1), 106-112.
[http://dx.doi.org/10.1111/j.1574-6968.2007.00865.x] [PMID: 17651430]
[15]
Doukyu, N.; Shibata, K.; Ogino, H.; Sagermann, M. Purification and characterization of Chromobacterium sp. DS-1 cholesterol oxidase with thermal, organic solvent, and detergent tolerance. Appl. Microbiol. Biotechnol., 2008, 80(1), 59-70.
[http://dx.doi.org/10.1007/s00253-008-1526-y] [PMID: 18512056]
[16]
Ghosh, S.; Ahmad, R.; Khare, S.K. Immobilization of cholesterol oxidase: An overview. Open Biotechnol. J., 2018, 12(1), 176-188.
[http://dx.doi.org/10.2174/1874070701812010176]
[17]
Lim, L.; Molla, G.; Guinn, N.; Ghisla, S.; Pollegioni, L.; Vrielink, A. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase. Biochem. J., 2006, 400(1), 13-22.
[http://dx.doi.org/10.1042/BJ20060664] [PMID: 16856877]
[18]
Vrielink, A.; Ghisla, S. Cholesterol oxidase: Biochemistry and structural features. FEBS J., 2009, 276(23), 6826-6843.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07377.x] [PMID: 19843169]
[19]
Drzyzga, O.; Fernández de las Heras, L.; Morales, V.; Navarro Llorens, J.M.; Perera, J. Cholesterol degradation by Gordonia cholesterolivorans. Appl. Environ. Microbiol., 2011, 77(14), 4802-4810.
[http://dx.doi.org/10.1128/AEM.05149-11] [PMID: 21622796]
[20]
García, J.L.; Uhía, I.; Galán, B. Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb. Biotechnol., 2012, 5(6), 679-699.
[http://dx.doi.org/10.1111/j.1751-7915.2012.00331.x] [PMID: 22309478]
[21]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Different methods for molecular and rapid detection of human novel coronavirus. Curr. Pharm. Des., 2021, 27(25), 2893-2903.
[http://dx.doi.org/10.2174/1381612827666210604114411] [PMID: 34086547]
[22]
Volontè, F.; Pollegioni, L.; Molla, G.; Frattini, L.; Marinelli, F.; Piubelli, L. Production of recombinant cholesterol oxidase containing covalently bound FAD in Escherichia coli. BMC Biotechnol., 2010, 10(1), 33.
[http://dx.doi.org/10.1186/1472-6750-10-33] [PMID: 20409334]
[23]
N, D.; R, A. Cloning, sequence analysis and expression of a gene encoding an organic solvent- and detergent-tolerant cholesterol oxidase of Burkholderia cepacia strain ST-200. Appl. Microbiol. Biotechnol., 2001, 57(1-2), 146-152.
[http://dx.doi.org/10.1007/s002530100753] [PMID: 11693912]
[24]
Murooka, Y.; Ishizaki, T.; Nimi, O.; Maekawa, N. Cloning and expression of a Streptomyces cholesterol oxidase gene in Streptomyces lividans with plasmid pIJ702. Appl. Environ. Microbiol., 1986, 52(6), 1382-1385.
[http://dx.doi.org/10.1128/aem.52.6.1382-1385.1986] [PMID: 3466572]
[25]
Coulombe, R.; Yue, K.Q.; Ghisla, S.; Vrielink, A. Oxygen access to the active site of cholesterol oxidase through a narrow channel is gated by an Arg-Glu pair. J. Biol. Chem., 2001, 276(32), 30435-30441.
[http://dx.doi.org/10.1074/jbc.M104103200] [PMID: 11397813]
[26]
Ahmad, S.; Roy, P.K.; Khan, A.W.; Basu, S.K.; Johri, B.N. Microbial transformation of sterols to C19-steroids by Rhodococcus equi. World J. Microbiol. Biotechnol., 1991, 7(5), 557-561.
[http://dx.doi.org/10.1007/BF00368360] [PMID: 24425197]
[27]
Biellmann, J.F. Resolution of alcohols by cholesterol oxidase fromRhodococcus erythropolis: Lack of enantiospecificity for the steroids. Chirality, 2001, 13(1), 34-39.
[http://dx.doi.org/10.1002/1520-636X(2001)13:1<34::AID-CHIR7>3.0.CO;2-O] [PMID: 11135412]
[28]
Batra, B.; Narwal, V.; Sumit; Ahlawat, J.; Sharma, M. An amperometric cholesterol biosensor based on immobilization of cholesterol oxidase onto titanium dioxide nanoparticles. Sensors Inter, 2021, 2, 100111.
[http://dx.doi.org/10.1016/j.sintl.2021.100111]
[29]
Haritha, V.S.; Kumar, S.R.S.; Rakhi, R.B. Amperometric cholesterol biosensor based on cholesterol oxidase and Pt-Au/MWNTs modified glassy carbon electrode. Mater. Today Proc., 2022, 50(Part 1), 34-39.
[http://dx.doi.org/10.1016/j.matpr.2021.03.128]
[30]
Dervisevic, M.; Çevik, E.; Şenel, M.; Nergiz, C.; Abasiyanik, M.F. Amperometric cholesterol biosensor based on reconstituted cholesterol oxidase on boronic acid functional conducting polymers. J. Electroanal. Chem., 2016, 776, 18-24.
[http://dx.doi.org/10.1016/j.jelechem.2016.06.033]
[31]
Hao, M.; Fan, G.; Zhang, Y.; Xin, Y.; Zhang, L. Preparation and characterization of copper-Brevibacterium cholesterol oxidase hybrid nanoflowers. Int. J. Biol. Macromol., 2019, 126, 539-548.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.237] [PMID: 30593816]
[32]
Wang, S.; Chen, S.; Shang, K.; Gao, X.; Wang, X. Sensitive electrochemical detection of cholesterol using a portable paper sensor based on the synergistic effect of cholesterol oxidase and nanoporous gold. Int. J. Biol. Macromol., 2021, 189, 356-362.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.145] [PMID: 34450139]
[33]
Fazaeli, A.; Fana, S.E.; Golestani, A.; Aminian, M. Improvement of thermostability of cholesterol oxidase from streptomyces Sp. SA-COO by random mutagenesis. Protein Expr. Purif., 2022, 191, 106028.
[http://dx.doi.org/10.1016/j.pep.2021.106028] [PMID: 34863881]
[34]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev. Org. Chem., 2022, 19(3), 293-318.
[http://dx.doi.org/10.2174/1570178618666210707161025]
[35]
Lasunción, M.A.; Martínez-Botas, J.; Martín-Sánchez, C.; Busto, R.; Gómez-Coronado, D. Cell cycle dependence on the mevalonate pathway: Role of cholesterol and non-sterol isoprenoids. Biochem. Pharmacol., 2022, 196, 114623.
[http://dx.doi.org/10.1016/j.bcp.2021.114623] [PMID: 34052188]
[36]
Yao, J.; Xie, Z.; Zeng, X.; Wang, L.; Yue, T. Bimetallic Eu/Fe-MOFs ratiometric fluorescent nanoenzyme for selective cholesterol detection in biological serum: Synthesis, characterization, mechanism and DFT calculations. Sens. Actuators B Chem., 2022, 354, 130760.
[http://dx.doi.org/10.1016/j.snb.2021.130760]
[37]
Chiu, Y.C.; Chu, P.W.; Lin, H.C.; Chen, S.K. Accumulation of cholesterol suppresses oxidative phosphorylation and altered responses to inflammatory stimuli of macrophages. Biochem. Biophys. Rep., 2021, 28, 101166.
[http://dx.doi.org/10.1016/j.bbrep.2021.101166] [PMID: 34786493]
[38]
Gimpl, G.; Gehrig-Burger, K. Probes for studying cholesterol binding and cell biology. Steroids, 2011, 76(3), 216-231.
[http://dx.doi.org/10.1016/j.steroids.2010.11.001] [PMID: 21074546]
[39]
Derina, K.; Korotkova, E.; Barek, J. Non-enzymatic electrochemical approaches to cholesterol determination. J. Pharm. Biomed. Anal., 2020, 191, 113538.
[http://dx.doi.org/10.1016/j.jpba.2020.113538] [PMID: 32919143]
[40]
Pham, H.; Singaram, I.; Sun, J.; Ralko, A.; Puckett, M.; Sharma, A.; Vrielink, A.; Cho, W. Development of a novel spatiotemporal depletion system for cellular cholesterol. J. Lipid Res., 2022, 63(3), 100178.
[http://dx.doi.org/10.1016/j.jlr.2022.100178] [PMID: 35143844]
[41]
Brotea, G.P.; Draisey, T.F.; Thibert, R.J. Fluorometric determination of cholesterol using an oxidase-peroxidase-resorufin system. Microchem. J., 1989, 39(1), 1-9.
[http://dx.doi.org/10.1016/0026-265X(89)90001-5]
[42]
Rastogi, L.; Dash, K.; Sashidhar, R.B. Selective and sensitive detection of cholesterol using intrinsic peroxidase-like activity of biogenic palladium nanoparticles. Curr. Res. Biotechnol., 2021, 3, 42-48.
[http://dx.doi.org/10.1016/j.crbiot.2021.02.001]
[43]
Smith, A.G.; Brooks, C.J.W. Application of Cholesterol oxidase in the analysis of steroids. J. Chromatogr. A, 1974, 101(2), 373-378.
[http://dx.doi.org/10.1016/S0021-9673(00)82854-X] [PMID: 4443399]
[44]
Narwal, V.; Deswal, R.; Batra, B.; Kalra, V.; Hooda, R.; Sharma, M.; Rana, J.S. Cholesterol biosensors: A review. Steroids, 2019, 143, 6-17.
[http://dx.doi.org/10.1016/j.steroids.2018.12.003] [PMID: 30543816]
[45]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-Covid-19 era. Appl. Sci., 2021, 11(17), 7889.
[http://dx.doi.org/10.3390/app11177889]
[46]
Kumari, L.; Kanwar, S.S. Cholesterol oxidase and its applications. Adv. Microbiol., 2012, 2, 49-65.
[http://dx.doi.org/10.4236/aim.2012.22007]
[47]
Hasdianty, A.; Nor Suhaila, Y.; Hazeeq Hazwan, A.; Nallapan Maniyam, M.; Mohd Fadzli, A.; Ibrahim, A.L. Inferring the evolutionary relationship of 23 Malaysian Rhodococcus isolates with potential as cholesterol degrading bacteria. Biocatal. Agric. Biotechnol., 2020, 30, 101840.
[http://dx.doi.org/10.1016/j.bcab.2020.101840]
[48]
Li, B.; Gao, W.; Ling, L.; Yu, S. Enzyme-assisted ReMALDI-MS assay for quantification of cholesterol in food. Food Chem., 2022, 383, 132444.
[http://dx.doi.org/10.1016/j.foodchem.2022.132444] [PMID: 35182868]
[49]
Masoud, R.; Bizouarn, T.; Houée-Levin, C. Cholesterol: A modulator of the phagocyte NADPH oxidase activity - A cell-free study. Redox Biol., 2014, 3, 16-24.
[http://dx.doi.org/10.1016/j.redox.2014.10.001] [PMID: 25462061]
[50]
Lee, K.M.; Biellmann, J.F. Cholesterol oxidase in microemulsion: Enzymatic activity on a substrate of low water solubility and inactivation by hydrogen peroxide. Bioorg. Chem., 1986, 14(3), 262-273.
[http://dx.doi.org/10.1016/0045-2068(86)90037-4]
[51]
Hesselink, P.G.M.; Kerkenaar, A.; Witholt, B. Inhibition of microbial cholesterol oxidases by dimethylmorpholines. J. Steroid Biochem., 1990, 35(1), 107-113.
[http://dx.doi.org/10.1016/0022-4731(90)90153-J] [PMID: 2308321]
[52]
Lario, P.I.; Sampson, N.; Vrielink, A. Sub-atomic resolution crystal structure of cholesterol oxidase: What atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity. J. Mol. Biol., 2003, 326(5), 1635-1650.
[http://dx.doi.org/10.1016/S0022-2836(03)00054-8] [PMID: 12595270]
[53]
Slotte, J.P.; Östman, A.L. Oxidation/isomerization of 5-cholesten-3β-ol and 5-cholesten-3-one to 4-cholesten-3-one in pure sterol and mixed phospholipid-containing monolayers by cholesterol oxidase. Biochim. Biophys. Acta Biomembr., 1993, 1145(2), 243-249.
[http://dx.doi.org/10.1016/0005-2736(93)90295-B] [PMID: 8431456]
[54]
Yin, Y.; Liu, P.; Anderson, R.G.W.; Sampson, N.S. Construction of a catalytically inactive cholesterol oxidase mutant: Investigation of the interplay between active site-residues glutamate 361 and histidine 447. Arch. Biochem. Biophys., 2002, 402(2), 235-242.
[http://dx.doi.org/10.1016/S0003-9861(02)00081-4] [PMID: 12051668]
[55]
Thurnhofer, H.; Gains, N.; Mütsch, B.; Hauser, H. Cholesterol oxidase as a structural probe of biological membranes: Its application to brush-border membrane. Biochim. Biophys. Acta Biomembr., 1986, 856(1), 174-181.
[http://dx.doi.org/10.1016/0005-2736(86)90024-6] [PMID: 3456800]
[56]
Yoshimoto, T.; Ritani, A.; Ohwada, K.; Takahashi, K.; Kodera, Y.; Matsushima, A.; Saito, Y.; Inada, Y. Polyethylene glycol derivative-modified cholesterol oxidase soluble and active in benzene. Biochem. Biophys. Res. Commun., 1987, 148(2), 876-882.
[http://dx.doi.org/10.1016/0006-291X(87)90957-0] [PMID: 3479986]
[57]
Morrill, G.A.; Kostellow, A.B.; Gupta, R.K. The pore-lining regions in cytochrome c oxidases: A computational analysis of caveolin, cholesterol and transmembrane helix contributions to proton movement. Biochim. Biophys. Acta Biomembr., 2014, 1838(11), 2838-2851.
[http://dx.doi.org/10.1016/j.bbamem.2014.07.011] [PMID: 25037006]
[58]
Lolekha, P.H.; Srisawasdi, P.; Jearanaikoon, P.; Wetprasit, N.; Sriwanthana, B.; Kroll, M.H. Performance of four sources of cholesterol oxidase for serum cholesterol determination by the enzymatic endpoint method. Clin. Chim. Acta, 2004, 339(1-2), 135-145.
[http://dx.doi.org/10.1016/j.cccn.2003.10.005] [PMID: 14687904]
[59]
Ferraz, H.C.; Guimarães, J.A.; Alves, T.L.M.; Constantino, C.J.L. Monomolecular films of cholesterol oxidase and S-Layer proteins. Appl. Surf. Sci., 2011, 257(15), 6535-6539.
[http://dx.doi.org/10.1016/j.apsusc.2011.01.143]
[60]
Mendes, M.V.; Recio, E.; Antón, N.; Guerra, S.M.; Santos-Aberturas, J.; Martín, J.F.; Aparicio, J.F. Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin. Chem. Biol., 2007, 14(3), 279-290.
[http://dx.doi.org/10.1016/j.chembiol.2007.01.010] [PMID: 17379143]
[61]
Isobe, K.; Shoji, K.; Nakanishi, Y.; Yokoe, M.; Wakao, N. Purification and some properties of cholesterol oxidase stable in detergents from γ-proteobacterium Y-134. J. Biosci. Bioeng., 2003, 95(3), 257-263.
[http://dx.doi.org/10.1016/S1389-1723(03)80026-9] [PMID: 16233402]
[62]
Wang, H.; Mu, S. Bioelectrochemical characteristics of cholesterol oxidase immobilized in a polyaniline film. Sens. Actuators B Chem., 1999, 56(1-2), 22-30.
[http://dx.doi.org/10.1016/S0925-4005(99)00025-8]
[63]
Lin, C.; Yang, M-C. Cholesterol oxidation using hollow fiber dialyzer immobilized with cholesterol oxidase: Effect of storage and reuse. Biomaterials, 2003, 24(4), 549-557.
[http://dx.doi.org/10.1016/S0142-9612(02)00366-6] [PMID: 12437949]
[64]
Bokoch, M.P.; Devadoss, A.; Palencsár, M.S.; Burgess, J.D. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes. Anal. Chim. Acta, 2004, 519(1), 47-55.
[http://dx.doi.org/10.1016/j.aca.2004.03.030]
[65]
Golden, E.; Attwood, P.V.; Duff, A.P.; Meilleur, F.; Vrielink, A. Production and characterization of recombinant perdeuterated cholesterol oxidase. Anal. Biochem., 2015, 485, 102-108.
[http://dx.doi.org/10.1016/j.ab.2015.06.008] [PMID: 26073659]
[66]
Yao, K.; Wang, F.Q.; Zhang, H.C.; Wei, D.Z. Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metab. Eng., 2013, 15, 75-87.
[http://dx.doi.org/10.1016/j.ymben.2012.10.005] [PMID: 23164577]
[67]
Piubelli, L.; Pedotti, M.; Molla, G.; Feindler-Boeckh, S.; Ghisla, S.; Pilone, M.S.; Pollegioni, L. On the oxygen reactivity of flavoprotein oxidases: An oxygen access tunnel and gate in brevibacterium sterolicum cholesterol oxidase. J. Biol. Chem., 2008, 283(36), 24738-24747.
[http://dx.doi.org/10.1074/jbc.M802321200] [PMID: 18614534]
[68]
Šulek, F.; Drofenik, M.; Habulin, M.; Knez, Ž. Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase. J. Magn. Magn. Mater., 2010, 322(2), 179-185.
[http://dx.doi.org/10.1016/j.jmmm.2009.07.075]
[69]
Lv, C.; Wang, W.; Tang, Y.; Wang, L.; Yang, S. Effect of cholesterol bioavailability-improving factors on cholesterol oxidase production by a mutant Brevibacterium sp. DGCDC-82. Process Biochem., 2002, 37(8), 901-907.
[http://dx.doi.org/10.1016/S0032-9592(01)00296-5]
[70]
Caldinelli, L.; Iametti, S.; Barbiroli, A.; Bonomi, F.; Fessas, D.; Molla, G.; Pilone, M.S.; Pollegioni, L. Dissecting the structural determinants of the stability of cholesterol oxidase containing covalently bound flavin. J. Biol. Chem., 2005, 280(24), 22572-22581.
[http://dx.doi.org/10.1074/jbc.M500549200] [PMID: 15817448]
[71]
Gholivand, M.B.; Khodadadian, M. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode. Biosens. Bioelectron., 2014, 53, 472-478.
[http://dx.doi.org/10.1016/j.bios.2013.09.074] [PMID: 24211460]
[72]
Srisawasdi, P.; Jearanaikoon, P.; Wetprasit, N.; Sriwanthana, B.; Kroll, M.H.; Lolekha, P.H. Application of Streptomyces and Brevibacterium cholesterol oxidase for total serum cholesterol assay by the enzymatic kinetic method. Clin. Chim. Acta, 2006, 372(1-2), 103-111.
[http://dx.doi.org/10.1016/j.cca.2006.03.030] [PMID: 16678143]
[73]
Silva, R.A.; Carmona-Ribeiro, A.M.; Petri, D.F.S. Enzymatic activity of cholesterol oxidase immobilized onto polymer nanoparticles mediated by Congo red. Colloids Surf. B Biointerfaces, 2013, 110, 347-355.
[http://dx.doi.org/10.1016/j.colsurfb.2013.03.024] [PMID: 23751415]
[74]
Qin, H.M.; Wang, J.W.; Guo, Q.; Li, S.; Xu, P.; Zhu, Z.; Sun, D.; Lu, F. Refolding of a novel cholesterol oxidase from Pimelobacter simplex reveals dehydrogenation activity. Protein Expr. Purif., 2017, 139, 1-7.
[http://dx.doi.org/10.1016/j.pep.2017.07.008] [PMID: 28712956]
[75]
Zhao, M.; Li, Y.; Ma, X.; Xia, M.; Zhang, Y. Adsorption of cholesterol oxidase and entrapment of horseradish peroxidase in metal-organic frameworks for the colorimetric biosensing of cholesterol. Talanta, 2019, 200, 293-299.
[http://dx.doi.org/10.1016/j.talanta.2019.03.060] [PMID: 31036187]
[76]
Kojima, K.; Kobayashi, T.; Tsugawa, W.; Ferri, S.; Sode, K. Mutational analysis of the oxygen-binding site of cholesterol oxidase and its impact on dye-mediated dehydrogenase activity. J. Mol. Catal., B Enzym., 2013, 88, 41-46.
[http://dx.doi.org/10.1016/j.molcatb.2012.11.001]
[77]
Xin, Y.; Lu, L.; Wang, Q.; Zhang, L.; Tong, Y.; Wang, W. Coenzyme-like ligands for affinity isolation of cholesterol oxidase. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1021, 169-174.
[http://dx.doi.org/10.1016/j.jchromb.2016.01.043] [PMID: 26856529]
[78]
Salazar, P.; Martín, M.; González-Mora, J.L. In situ electrodeposition of cholesterol oxidase-modified polydopamine thin film on nanostructured screen printed electrodes for free cholesterol determination. J. Electroanal. Chem., 2019, 837, 191-199.
[http://dx.doi.org/10.1016/j.jelechem.2019.02.032]
[79]
Ghosh, S.; Ahmad, R.; Gautam, V.K.; Khare, S.K. Cholesterol-oxidase-magnetic nanobioconjugates for the production of 4-cholesten-3-one and 4-cholesten-3, 7-dione. Bioresour. Technol., 2018, 254, 91-96.
[http://dx.doi.org/10.1016/j.biortech.2018.01.030] [PMID: 29413944]
[80]
Wu, S.; Hao, J.; Yang, S.; Sun, Y.; Wang, Y.; Zhang, W.; Mao, H.; Song, X.M. Layer-by-layer self-assembly film of PEI-reduced graphene oxide composites and cholesterol oxidase for ultrasensitive cholesterol biosensing. Sens. Actuators B Chem., 2019, 298, 126856.
[http://dx.doi.org/10.1016/j.snb.2019.126856]
[81]
G. Jayanthi, K.; S K, S. Cholesterol oxidase immobilized inulin based nanocomposite as the sensing material for cholesterol in biological and food samples. Enzyme Microb. Technol., 2020, 140, 109631.
[http://dx.doi.org/10.1016/j.enzmictec.2020.109631] [PMID: 32912691]
[82]
Kim, M.W.; Kim, Y.H.; Bal, J.; Stephanie, R.; Baek, S.H.; Lee, S.K.; Park, C.Y.; Park, T.J. Rational design of bienzyme nanoparticles-based total cholesterol electrochemical sensors and the construction of cholesterol oxidase expression system. Sens. Actuators B Chem., 2021, 349, 130742.
[http://dx.doi.org/10.1016/j.snb.2021.130742]
[83]
Alapati, K.; Handanahal S, S. Characterization of cholesterol oxidase from a marine Streptomyces sp. and its cytotoxicity. Process Biochem., 2020, 89, 175-185.
[http://dx.doi.org/10.1016/j.procbio.2019.10.024]
[84]
Szulc-Kielbik, I.; Brzostek, A.; Gatkowska, J.; Kielbik, M.; Klink, M. Determination of in vitro and in vivo immune response to recombinant cholesterol oxidase from Mycobacterium tuberculosis. Immunol. Lett., 2020, 228, 103-111.
[http://dx.doi.org/10.1016/j.imlet.2020.11.002] [PMID: 33166528]
[85]
Ahmad, S.; Goswami, P. Application of chitosan beads immobilized Rhodococcus sp. NCIM 2891 cholesterol oxidase for cholestenone production. Process Biochem., 2014, 49(12), 2149-2157.
[http://dx.doi.org/10.1016/j.procbio.2014.10.004]
[86]
Huang, J.; Liu, H.; Zhang, P.; Zhang, P.; Li, M.; Ding, L. Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles. Mater. Sci. Eng. C, 2015, 57, 31-37.
[http://dx.doi.org/10.1016/j.msec.2015.07.038] [PMID: 26354237]
[87]
Purcell, J.P.; Greenplate, J.T.; Jennings, M.G.; Ryerse, J.S.; Pershing, J.C.; Sims, S.R.; Prinsen, M.J.; Corbin, D.R.; Tran, M.; Sammons, R.D.; Stonard, R.J. Cholesterol oxidase: A potent insecticidal protein active against boll weevil larvae. Biochem. Biophys. Res. Commun., 1993, 196(3), 1406-1413.
[http://dx.doi.org/10.1006/bbrc.1993.2409] [PMID: 8250897]
[88]
Ursan, R.; Odnoshivkina, U.G.; Petrov, A.M. Membrane cholesterol oxidation downregulates atrial β-adrenergic responses in ROS-dependent manner. Cell. Signal., 2020, 67, 109503.
[http://dx.doi.org/10.1016/j.cellsig.2019.109503] [PMID: 31857238]
[89]
Ansari, A.A.; Kaushik, A.; Solanki, P.R.; Malhotra, B.D. Sol–gel derived nanoporous cerium oxide film for application to cholesterol biosensor. Electrochem. Commun., 2008, 10(9), 1246-1249.
[http://dx.doi.org/10.1016/j.elecom.2008.06.003]
[90]
Khan, R.; Kaushik, A.; Mishra, A.P. Immobilization of cholesterol oxidase onto electrochemically polymerized film of biocompatible polyaniline-Triton X-100. Mater. Sci. Eng. C, 2009, 29(4), 1399-1403.
[http://dx.doi.org/10.1016/j.msec.2008.11.001]
[91]
Pollegioni, L.; Wels, G.; Pilone, M.S.; Ghisla, S. Kinetic mechanisms of cholesterol oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum. Eur. J. Biochem., 1999, 264(1), 140-151.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00586.x] [PMID: 10447682]
[92]
Corbin, D.R.; Greenplate, J.T.; Wong, E.Y.; Purcell, J.P. Cloning of an insecticidal cholesterol oxidase gene and its expression in bacteria and in plant protoplasts. Appl. Environ. Microbiol., 1994, 60(12), 4239-4244.
[http://dx.doi.org/10.1128/aem.60.12.4239-4244.1994] [PMID: 7811062]
[93]
Sampson, N.S.; Kass, I.J.; Ghoshroy, K.B. Assessment of the role of an omega loop of cholesterol oxidase: A truncated loop mutant has altered substrate specificity. Biochemistry, 1998, 37(16), 5770-5778.
[http://dx.doi.org/10.1021/bi973067g] [PMID: 9548964]
[94]
Chernov, K.G.; Neuvonen, M.; Brock, I.; Ikonen, E.; Verkhusha, V.V. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells. J. Biol. Chem., 2017, 292(21), 8811-8822.
[http://dx.doi.org/10.1074/jbc.M116.761718] [PMID: 28391244]
[95]
Fazaeli, A.; Golestani, A.; Lakzaei, M.; Rasi Varaei, S.S.; Aminian, M. Expression optimization of recombinant cholesterol oxidase in Escherichia coli and its purification and characterization. AMB Express, 2018, 8(1), 183.
[http://dx.doi.org/10.1186/s13568-018-0711-3] [PMID: 30421362]
[96]
Fazaeli, A.; Golestani, A.; Lakzaei, M.; Rasi Varaei, S.S.; Aminian, M. Expression optimization, purification, and functional characterization of cholesterol oxidase from Chromobacterium sp. DS1. PLoS One, 2019, 14(2), e0212217.
[http://dx.doi.org/10.1371/journal.pone.0212217] [PMID: 30759160]
[97]
Sampson, N.S.; Chen, X. Increased Expression ofBrevibacterium sterolicumCholesterol Oxidase inEscherichia coliby Genetic Modification. Protein Expr. Purif., 1998, 12(3), 347-352.
[http://dx.doi.org/10.1006/prep.1997.0855] [PMID: 9535702]
[98]
Kellner-Weibel, G.; de la Llera-Moya, M.; Connelly, M.A.; Stoudt, G.; Christian, A.E.; Haynes, M.P.; Williams, D.L.; Rothblat, G.H. Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution. Biochemistry, 2000, 39(1), 221-229.
[http://dx.doi.org/10.1021/bi991666c] [PMID: 10625497]
[99]
Guo, M.; Chen, J.; Li, J.; Nie, L.; Yao, S. Carbon nanotubes-based amperometric cholesterol biosensor fabricated through layer-by-layer technique. Electroanalysis, 2004, 16(23), 1992-1998.
[http://dx.doi.org/10.1002/elan.200403053]
[100]
Park, M.S.; Kwon, B.; Shim, J.J.; Huh, C.S.; Ji, G.E. Heterologous expression of cholesterol oxidase in Bifidobacterium longum under the control of 16S rRNA gene promoter of bifidobacteria. Biotechnol. Lett., 2007, 30(1), 165-172.
[http://dx.doi.org/10.1007/s10529-007-9514-3] [PMID: 17849088]
[101]
Varga, Z.V.; Kupai, K.; Szűcs, G.; Gáspár, R.; Pálóczi, J.; Faragó, N.; Zvara, Á.; Puskás, L.G.; Rázga, Z.; Tiszlavicz, L.; Bencsik, P.; Görbe, A.; Csonka, C.; Ferdinandy, P.; Csont, T. MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J. Mol. Cell. Cardiol., 2013, 62, 111-121.
[http://dx.doi.org/10.1016/j.yjmcc.2013.05.009] [PMID: 23722270]
[102]
Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol., 2014, 5, 172.
[http://dx.doi.org/10.3389/fmicb.2014.00172] [PMID: 24860555]
[103]
Wang, R.; Li, J.; Li, J. Functional and structural analyses for MlrC enzyme of Novosphingobium sp. THN1 in microcystinbiodegradation: Involving optimized heterologous expression, bioinformatics and site-directed mutagenesis. Chemosphere, 2020, 255, 126906.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126906] [PMID: 32387905]
[104]
Butzin, N.C.; Owen, H.A.; Collins, M.L.P. A new system for heterologous expression of membrane proteins: Rhodospirillum rubrum. Protein Expr. Purif., 2010, 70(1), 88-94.
[http://dx.doi.org/10.1016/j.pep.2009.10.014] [PMID: 19887111]
[105]
Huo, L.; Hug, J.J.; Fu, C.; Bian, X.; Zhang, Y.; Müller, R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat. Prod. Rep., 2019, 36(10), 1412-1436.
[http://dx.doi.org/10.1039/C8NP00091C] [PMID: 30620035]
[106]
Goradel, N.H.; Negahdari, B.; Mohajel, N.; Malekshahi, Z.V.; Shirazi, M.M.A.; Arashkia, A. Heterologous administration of HPV16 E7 epitope-loaded nanocomplexes inhibits tumor growth in mouse model. Int Immunopharmacol, 2021, 101(Part B), 108298.
[http://dx.doi.org/10.1016/j.intimp.2021.108298]
[107]
Wuisan, Z.G.; Kresna, I.D.M.; Böhringer, N.; Lewis, K.; Schäberle, T.F. Optimization of heterologous Darobactin A expression and identification of the minimal biosynthetic gene cluster. Metab. Eng., 2021, 66, 123-136.
[http://dx.doi.org/10.1016/j.ymben.2021.04.007] [PMID: 33872780]
[108]
Miazzi, F.; Schulze, H.C.; Zhang, L.; Kaltofen, S.; Hansson, B.S.; Wicher, D. Low Ca2+ levels in the culture media support the heterologous expression of insect odorant receptor proteins in HEK cells. J. Neurosci. Methods, 2019, 312, 122-125.
[http://dx.doi.org/10.1016/j.jneumeth.2018.11.021] [PMID: 30476491]
[109]
van Dijk, J.W.A.; Wang, C.C.C. Chapter six- Heterologous expression of fungal secondary metabolite pathways in the Aspergillus nidulans host system. Methods Enzymol., 2016, 575, 127-142.
[http://dx.doi.org/10.1016/bs.mie.2016.02.021] [PMID: 27417927]
[110]
Rivera-de-Torre, E.; Rimbault, C.; Jenkins, T.P.; Sørensen, C.V.; Damsbo, A.; Saez, N.J.; Duhoo, Y.; Hackney, C.M.; Ellgaard, L.; Laustsen, A.H. Strategies for heterologous expression, synthesis, and purification of animal venom toxins. Front. Bioeng. Biotechnol., 2022, 9, 811905.
[http://dx.doi.org/10.3389/fbioe.2021.811905] [PMID: 35127675]
[111]
Nah, H.J.; Pyeon, H.R.; Kang, S.H.; Choi, S.S.; Kim, E.S. Cloning and heterologous expression of a large-sized natural product biosynthetic gene cluster in Streptomyces species. Front. Microbiol., 2017, 8, 394.
[http://dx.doi.org/10.3389/fmicb.2017.00394] [PMID: 28360891]
[112]
Corrales-García, L.L.; Serrano-Carreón, L.; Corzo, G. Improving the heterologous expression of human β-defensin 2 (HBD2) using an experimental design. Protein Expr. Purif., 2020, 167, 105539.
[http://dx.doi.org/10.1016/j.pep.2019.105539] [PMID: 31715251]
[113]
Bauswein, M.; Peterhoff, D.; Plentz, A.; Hiergeist, A.; Wagner, R.; Gessner, A.; Salzberger, B.; Schmidt, B.; Bauernfeind, S. Increased neutralization of SARS-CoV-2 Delta variant after heterologous ChAdOx1 nCoV-19/BNT162b2 versus homologous BNT162b2 vaccination. iScience, 2022, 25(2), 103694.
[http://dx.doi.org/10.1016/j.isci.2021.103694] [PMID: 35013723]
[114]
Haikonen, T.; Rajamäki, M.L.; Valkonen, J.P.T. Improved silencing suppression and enhanced heterologous protein expression are achieved using an engineered viral helper component proteinase. J. Virol. Methods, 2013, 193(2), 687-692.
[http://dx.doi.org/10.1016/j.jviromet.2013.07.054] [PMID: 23933077]
[115]
Stevens, D.C.; Hari, T.P.A.; Boddy, C.N. The role of transcription in heterologous expression of polyketides in bacterial hosts. Nat. Prod. Rep., 2013, 30(11), 1391-1411.
[http://dx.doi.org/10.1039/c3np70060g] [PMID: 24061690]
[116]
Kaachra, A.; Vats, S.K.; Kumar, S. Heterologous expression of key C and N metabolic enzymes improves re-assimilation of photorespired CO2 and NH3, and growth. Plant Physiol., 2018, 177(4), 1396-1409.
[http://dx.doi.org/10.1104/pp.18.00379] [PMID: 29891741]
[117]
Fujishiro, K.; Uchida, H.; Shimokawa, K.; Nakano, M.; Sano, F.; Ohta, T.; Kayahara, N.; Aisaka, K.; Uwajima, T. Purification and properties of a new Brevibacterium sterolicum cholesterol oxidase produced by E. coli MM294/pnH10. FEMS Microbiol. Lett., 2002, 215(2), 243-248.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11397.x] [PMID: 12399041]
[118]
Ghasemian, A.; Yazdi, M.T.; Sepehrizadeh, Z.; Yazdi, Z.T.; Zarrini, G. Overexpression, one-step purification, and characterization of a type II cholesterol oxidase from a local isolate Rhodococcus sp. PTCC 1633. World J. Microbiol. Biotechnol., 2009, 25(5), 773-779.
[http://dx.doi.org/10.1007/s11274-008-9948-3]
[119]
Wang, L.; Wang, W. Coenzyme precursor-assisted expression of a cholesterol oxidase from Brevibacterium sp. in Escherichia coli. Biotechnol. Lett., 2007, 29(5), 761-766.
[http://dx.doi.org/10.1007/s10529-006-9295-0] [PMID: 17237971]
[120]
Brigidi, P.; Bolognani, F.; Rossi, M.; Cerre, C.; Matteuzzi, D. Cloning of the gene for cholesterol oxidase in Bacillus spp., Lactobacillus reuteri and its expression in Escherichia coli. Lett. Appl. Microbiol., 1993, 17(2), 61-64.
[http://dx.doi.org/10.1111/j.1472-765X.1993.tb00371.x] [PMID: 7763933]
[121]
Kiatpapan, P.; Yamashita, M.; Kawaraichi, N.; Yasuda, T.; Murooka, Y. Heterologous expression of a gene encoding cholesterol oxidase in probiotic strains of Lactobacillus plantarum and Propionibacterium freudenreichii under the control of native promoters. J. Biosci. Bioeng., 2001, 92(5), 459-465.
[http://dx.doi.org/10.1016/S1389-1723(01)80296-6] [PMID: 16233128]
[122]
Nomura, N.; Choi, K.P.; Yamashita, M.; Yamamoto, H.; Murooka, Y. Genetic modification of the Streptomyces cholesterol oxidase gene for expression in Escherichia coli and development of promoter-probe vectors for use in enteric bacteria. J. Ferment. Bioeng., 1995, 79(5), 410-416.
[http://dx.doi.org/10.1016/0922-338X(95)91253-2]
[123]
Molnár, I.; Choi, K.P.; Hayashi, N.; Murooka, Y. Secretory overproduction of Streptomyces cholesterol oxidase by Streptomyces lividans with a multi-copy shuttle vector. J. Ferment. Bioeng., 1991, 72(5), 368-372.
[http://dx.doi.org/10.1016/0922-338X(91)90089-Y]
[124]
Opekarová, M.; Tanner, W. Specific lipid requirements of membrane proteins—a putative bottleneck in heterologous expression. Biochim. Biophys. Acta Biomembr., 2003, 1610(1), 11-22.
[http://dx.doi.org/10.1016/S0005-2736(02)00708-3] [PMID: 12586375]
[125]
Lecomte, X.; Gagnaire, V.; Lortal, S.; Dary, A.; Genay, M. Streptococcus thermophilus, an emerging and promising tool for heterologous expression: Advantages and future trends. Food Microbiol., 2016, 53(Pt A), 2-9.
[126]
Lambertz, C.; Garvey, M.; Klinger, J.; Heesel, D.; Klose, H.; Fischer, R.; Commandeur, U. Challenges and advances in the heterologous expression of cellulolytic enzymes: A review. Biotechnol. Biofuels, 2014, 7(1), 135.
[http://dx.doi.org/10.1186/s13068-014-0135-5] [PMID: 25356086]
[127]
Briscoe, J.; Thérond, P.P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol., 2013, 14(7), 416-429.
[http://dx.doi.org/10.1038/nrm3598] [PMID: 23719536]
[128]
Riobo, N.A. Cholesterol and its derivatives in Sonic Hedgehog signaling and cancer. Curr. Opin. Pharmacol., 2012, 12(6), 736-741.
[http://dx.doi.org/10.1016/j.coph.2012.07.002] [PMID: 22832232]
[129]
Guan, X.L.; Souza, C.M.; Pichler, H.; Dewhurst, G.; Schaad, O.; Kajiwara, K.; Wakabayashi, H.; Ivanova, T.; Castillon, G.A.; Piccolis, M.; Abe, F.; Loewith, R.; Funato, K.; Wenk, M.R.; Riezman, H. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol. Biol. Cell, 2009, 20(7), 2083-2095.
[http://dx.doi.org/10.1091/mbc.e08-11-1126] [PMID: 19225153]
[130]
Pollegioni, L.; Piubelli, L.; Molla, G. Cholesterol oxidase: Biotechnological applications. FEBS J., 2009, 276(23), 6857-6870.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07379.x] [PMID: 19843167]
[131]
Platt, F.M.; Wassif, C.; Colaco, A.; Dardis, A.; Lloyd-Evans, E.; Bembi, B.; Porter, F.D. Disorders of cholesterol metabolism and their unanticipated convergent mechanisms of disease. Annu. Rev. Genomics Hum. Genet., 2014, 15(1), 173-194.
[http://dx.doi.org/10.1146/annurev-genom-091212-153412] [PMID: 25184529]
[132]
Nes, W.D. Biosynthesis of cholesterol and other sterols. Chem. Rev., 2011, 111(10), 6423-6451.
[http://dx.doi.org/10.1021/cr200021m] [PMID: 21902244]
[133]
Kreit, J.; Sampson, N.S. Cholesterol oxidase: Physiological functions. FEBS J., 2009, 276(23), 6844-6856.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07378.x] [PMID: 19843168]
[134]
Doukyu, N. Characteristics and biotechnological applications of microbial cholesterol oxidases. Appl. Microbiol. Biotechnol., 2009, 83(5), 825-837.
[http://dx.doi.org/10.1007/s00253-009-2059-8] [PMID: 19495743]
[135]
Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules, 2023, 28(4), 1845.
[http://dx.doi.org/10.3390/molecules28041845] [PMID: 36838831]
[136]
Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae, 2023, 9(2), 193.
[http://dx.doi.org/10.3390/horticulturae9020193]