Weapons and Strategies against COVID-19: A Perspective

Page: [144 - 158] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Currently, there are no approved treatments for the fatal infectious coronavirus disease. The process of identifying new applications for approved pharmaceuticals is called drug repurposing. It is a very successful strategy for drug development as it takes less time and cost to uncover a therapeutic agent than the de novo procedure. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the seventh coronavirus that has been identified as a causative agent in humans. SARS-CoV-2 has been recorded in 213 countries, with over 31 million confirmed cases and an estimated death rate of 3%. Medication repositioning may indeed be regarded as a unique therapeutic option for COVID-19 in the present situation. There are various drugs and techniques, which are being used to treat the symptoms of COVID-19. These agents are directed against the viral replication cycle, viral entrance, and viral translocation to the nucleus. Additionally, some can boost the innate antiviral immune response. Drug repurposing is a sensible method and could be a vital approach to treat COVID-19. Combining some of the drugs or supplements with an immunomodulatory diet, psychological assistance, and adherence to standards can ultimately act against COVID-19. A better knowledge of the virus itself and its enzymes will enable the development of more precise and efficient direct-acting antivirals. The primary aim of this review is to present the various aspects of this disease, including various strategies against COVID-19.

Graphical Abstract

[1]
Yeu, Y.; Yoon, Y.; Park, S. Protein localization vector propagation: a method for improving the accuracy of drug repositioning. Mol. Biosyst., 2015, 11(7), 2096-2102.
[http://dx.doi.org/10.1039/C5MB00306G] [PMID: 25998487]
[2]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[3]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[4]
Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement., 2017, 3(4), 651-657.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[5]
Hodos, R.A.; Kidd, B.A.; Shameer, K.; Readhead, B.P.; Dudley, J.T. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 186-210.
[http://dx.doi.org/10.1002/wsbm.1337] [PMID: 27080087]
[6]
Paolini, G.V.; Shapland, R.H.B.; van Hoorn, W.P.; Mason, J.S.; Hopkins, A.L. Global mapping of pharmacological space. Nat. Biotechnol., 2006, 24(7), 805-815.
[http://dx.doi.org/10.1038/nbt1228] [PMID: 16841068]
[7]
Koch, U.; Hamacher, M.; Nussbaumer, P. Cheminformatics at the interface of medicinal chemistry and proteomics. Biochim. Biophys. Acta. Proteins Proteomics, 2014, 1844(1), 156-161.
[http://dx.doi.org/10.1016/j.bbapap.2013.05.010] [PMID: 23707564]
[8]
Piro, R.M. Network medicine: Linking disorders. Hum. Genet., 2012, 131(12), 1811-1820.
[http://dx.doi.org/10.1007/s00439-012-1206-y] [PMID: 22825316]
[9]
Huang, F.; Zhang, C.; Liu, Q.; Zhao, Y.; Zhang, Y.; Qin, Y.; Li, X.; Li, C.; Zhou, C.; Jin, N.; Jiang, C. Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathog., 2020, 16(3), e1008341.
[http://dx.doi.org/10.1371/journal.ppat.1008341] [PMID: 32176725]
[10]
Scherman, D.; Fetro, C. Drug repositioning for rare diseases: Knowledge-based success stories. Therapie, 2020, 75(2), 161-167.
[http://dx.doi.org/10.1016/j.therap.2020.02.007] [PMID: 32164975]
[11]
Novac, N. Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci., 2013, 34(5), 267-272.
[http://dx.doi.org/10.1016/j.tips.2013.03.004] [PMID: 23582281]
[12]
Debnath, N.; Al-Mawsawi, L.Q.; Neamati, N. Are we living in the end of the blockbuster drug era? Drug News Perspect., 2010, 23(10), 670-684.
[http://dx.doi.org/10.1358/dnp.2010.23.10.1506088] [PMID: 21180653]
[13]
Grabowski, H.G.; Vernon, J. The distribution of sales revenues from pharmaceutical innovation. PharmacoEconomics, 2000, 18(S1), 21-32.
[http://dx.doi.org/10.2165/00019053-200018001-00005] [PMID: 11151306]
[14]
Kahn, J.S.; McIntosh, K. History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J., 2005, 24(S11), S223-S227.
[http://dx.doi.org/10.1097/01.inf.0000188166.17324.60] [PMID: 16378050]
[15]
Song, Z.; Xu, Y.; Bao, L.; Zhang, L.; Yu, P.; Qu, Y.; Zhu, H.; Zhao, W.; Han, Y.; Qin, C. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 2019, 11(1), 59.
[http://dx.doi.org/10.3390/v11010059] [PMID: 30646565]
[16]
Raj, K. Rohit; Ghosh, A.; Singh, S. Coronavirus as silent killer: Recent advancement to pathogenesis, therapeutic strategy and future perspectives. Virusdisease, 2020, 31(2), 137-145.
[http://dx.doi.org/10.1007/s13337-020-00580-4] [PMID: 32313824]
[17]
Pilch, B.; Mann, M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol., 2006, 7(5), R40.
[http://dx.doi.org/10.1186/gb-2006-7-5-r40] [PMID: 16709260]
[18]
Adachi, J.; Kumar, C.; Zhang, Y.; Olsen, J.V.; Mann, M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol., 2006, 7(9), R80.
[http://dx.doi.org/10.1186/gb-2006-7-9-r80] [PMID: 16948836]
[19]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[20]
Keshava Prasad, T.S.; Goel, R.; Kandasamy, K.; Keerthikumar, S.; Kumar, S.; Mathivanan, S.; Telikicherla, D.; Raju, R.; Shafreen, B.; Venugopal, A.; Balakrishnan, L.; Marimuthu, A.; Banerjee, S.; Somanathan, D.S.; Sebastian, A.; Rani, S.; Ray, S.; Harrys Kishore, C.J.; Kanth, S.; Ahmed, M.; Kashyap, M.K.; Mohmood, R.; Ramachandra, Y.L.; Krishna, V.; Rahiman, B.A.; Mohan, S.; Ranganathan, P.; Ramabadran, S.; Chaerkady, R.; Pandey, A. Human protein reference database--2009 update. Nucleic Acids Res, 2009, 37(Database), D767-D772.
[http://dx.doi.org/10.1093/nar/gkn892] [PMID: 18988627]
[21]
Rao, R.; Husain, A.; Bharti, A.C.; Kashyap, M.K. Discovery of a novel connecting link between renin–angiotensin system and cancer in barrett’s esophagus by proteomic screening. Proteomics Clin. Appl., 2019, 13(4), 1900006.
[http://dx.doi.org/10.1002/prca.201900006] [PMID: 30891939]
[22]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[23]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[24]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[25]
Gupta, N.; Zhao, Y.Y.; Evans, C.E. The stimulation of thrombosis by hypoxia. Thromb. Res., 2019, 181, 77-83.
[http://dx.doi.org/10.1016/j.thromres.2019.07.013] [PMID: 31376606]
[26]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[27]
Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[28]
Elfiky, A.A.; Mahdy, S.M.; Elshemey, W.M. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. J. Med. Virol., 2017, 89(6), 1040-1047.
[http://dx.doi.org/10.1002/jmv.24736] [PMID: 27864902]
[29]
Báez-Santos, Y.M.; Mielech, A.M.; Deng, X.; Baker, S.; Mesecar, A.D. Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus. J. Virol., 2014, 88(21), 12511-12527.
[http://dx.doi.org/10.1128/JVI.01294-14] [PMID: 25142582]
[30]
Hemida, M.G.; Alnaeem, A. Some one health based control strategies for the middle east respiratory syndrome coronavirus. One Health, 2019, 8(100102), 100102.
[http://dx.doi.org/10.1016/j.onehlt.2019.100102] [PMID: 31485476]
[31]
World Health Organization. Clinical management of severe acute respiratory infection when Middle East respiratory syndrome coronavirus (‏MERS-CoV)‏ infection is suspected: interim guidance; World Health Organization, 2019.
[32]
Elfiky, A.A. Zika viral polymerase inhibition using anti-HCV drugs both in market and under clinical trials. J. Med. Virol., 2016, 88(12), 2044-2051.
[http://dx.doi.org/10.1002/jmv.24678] [PMID: 27604059]
[33]
Elfiky, A.A. Zika virus: Novel guanosine derivatives revealed strong binding and possible inhibition of the polymerase. Future Virol., 2017, 12(12), 721-728.
[http://dx.doi.org/10.2217/fvl-2017-0081]
[34]
Elfiky, A.A. Novel guanosine derivatives as Anti-HCV NS5b polymerase: A QSAR and molecular docking study. Med. Chem., 2019, 15(2), 130-137.
[http://dx.doi.org/10.2174/1573406414666181015152511] [PMID: 30324891]
[35]
Elfiky, A.A.; Elshemey, W.M. IDX-184 is a superior HCV direct-acting antiviral drug: A QSAR study. Med. Chem. Res., 2016, 25(5), 1005-1008.
[http://dx.doi.org/10.1007/s00044-016-1533-y] [PMID: 32214769]
[36]
Elfiky, A.A.; Elshemey, W.M. Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. J. Med. Virol., 2018, 90(1), 13-18.
[http://dx.doi.org/10.1002/jmv.24934] [PMID: 28922464]
[37]
Elfiky, A.A.; Elshemey, W.M.; Gawad, W.A.; Desoky, O.S. Molecular modeling comparison of the performance of NS5b polymerase inhibitor (PSI-7977) on prevalent HCV genotypes. Protein J., 2013, 32(1), 75-80.
[http://dx.doi.org/10.1007/s10930-013-9462-9] [PMID: 23322006]
[38]
Elfiky, A.A.; Ismail, A. Molecular dynamics and docking reveal the potency of novel GTP derivatives against RNA dependent RNA polymerase of genotype 4a HCV. Life Sci., 2019, 238(116958), 116958.
[http://dx.doi.org/10.1016/j.lfs.2019.116958] [PMID: 31628915]
[39]
Elfiky, A.A.; Ismail, A.M. Molecular modeling and docking revealed superiority of IDX-184 as HCV polymerase inhibitor. Future Virol., 2017, 12(7), 339-347.
[http://dx.doi.org/10.2217/fvl-2017-0027]
[40]
Ganesan, A.; Barakat, K. Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Expert Opin. Drug Discov., 2017, 12(4), 407-425.
[http://dx.doi.org/10.1080/17460441.2017.1291628] [PMID: 28164720]
[41]
Doublié, S.; Ellenberger, T. The mechanism of action of T7 DNA polymerase. Curr. Opin. Struct. Biol., 1998, 8(6), 704-712.
[http://dx.doi.org/10.1016/S0959-440X(98)80089-4] [PMID: 9914251]
[42]
Elfiky, A.A.; Ismail, A.M. Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures. SAR QSAR Environ. Res., 2018, 29(5), 409-418.
[http://dx.doi.org/10.1080/1062936X.2018.1454981] [PMID: 29652194]
[43]
Tyrrell, D.A.J.; Bynoe, M.L. Cultivation of viruses from a high proportion of patients with colds. Lancet, 1966, 287(7428), 76-77.
[http://dx.doi.org/10.1016/S0140-6736(66)92364-6] [PMID: 4158999]
[44]
Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; Tsoi, H.W.; Lo, S.K.F.; Chan, K.H.; Poon, V.K.M.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.C.; Chen, H.; Hui, C.K.M.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395(10223), 514-523.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[45]
Guan, W-J.; Ni, Z-Y.; Hu, Y.; Liang, W-H.; Ou, C-Q.; He, J-X.; Liu, L.; Shan, H.; Lei, C-L.; Hui, D.S.C.; Du, B.; Li, L-J.; Zeng, G.; Yuen, K-Y.; Chen, R-C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N-S. Clinical characteristics of 2019 novel coronavirus infection in China. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.06.20020974]
[46]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in wuhan, china, of novel coronavirus–infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[47]
Bauch, C.T.; Lloyd-Smith, J.O.; Coffee, M.P.; Galvani, A.P. Dynamically modeling SARS and other newly emerging respiratory illnesses: Past, present, and future. Epidemiology, 2005, 16(6), 791-801.
[http://dx.doi.org/10.1097/01.ede.0000181633.80269.4c] [PMID: 16222170]
[48]
Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; Wang, M.H. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis., 2020, 92, 214-217.
[http://dx.doi.org/10.1016/j.ijid.2020.01.050] [PMID: 32007643]
[49]
Weissleder, R.; Lee, H.; Ko, J.; Pittet, M.J. COVID-19 diagnostics in context. Sci. Transl. Med, 2020, 12(546), eabc1931.
[http://dx.doi.org/10.1126/scitranslmed.abc1931] [PMID: 32493791]
[50]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[51]
Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) From publicly reported confirmed cases: Estimation and application. Ann. Intern. Med., 2020, 172(9), 577-582.
[http://dx.doi.org/10.7326/M20-0504] [PMID: 32150748]
[52]
Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; Zhou, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty, 2020, 9(1), 29.
[http://dx.doi.org/10.1186/s40249-020-00646-x] [PMID: 32183901]
[53]
Zhang, J.; Dong, X.; Cao, Y.; Yuan, Y.; Yang, Y.; Yan, Y.; Akdis, C.A.; Gao, Y. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy, 2020, 75(7), 1730-1741.
[http://dx.doi.org/10.1111/all.14238] [PMID: 32077115]
[54]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[55]
Danzi, G.B.; Loffi, M.; Galeazzi, G.; Gherbesi, E. Acute pulmonary embolism and COVID-19 pneumonia: A random association? Eur. Heart J., 2020, 41(19), 1858.
[http://dx.doi.org/10.1093/eurheartj/ehaa254] [PMID: 32227120]
[56]
Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA, 2020, 323(14), 1406-1407.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[57]
Roumen, R.M.; van Meurs, P.A.; Kuypers, H.H.; Kraak, W.A.; Sauerwein, R.W. Serum interleukin-6 and C reactive protein responses in patients after laparoscopic or conventional cholecystectomy. Eur. J. Surg., 1992, 158(10), 541-544.
[PMID: 1360826]
[58]
Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology, 2020, 296(2), E115-E117.
[http://dx.doi.org/10.1148/radiol.2020200432] [PMID: 32073353]
[59]
Vyakaranam, A.R.; Crona, J.; Norlén, O.; Hellman, P.; Sundin, A. 11C-hydroxy-ephedrine-PET/CT in the diagnosis of pheochromocytoma and paraganglioma. Cancers, 2019, 11(6), 847.
[http://dx.doi.org/10.3390/cancers11060847] [PMID: 31248124]
[60]
Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L.; Zheng, C. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology, 2020, 295(3), 715-721.
[http://dx.doi.org/10.1148/radiol.2020200370] [PMID: 32053470]
[61]
Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology, 2020, 296(2), E32-E40.
[http://dx.doi.org/10.1148/radiol.2020200642] [PMID: 32101510]
[62]
Li, X.; Zeng, X.; Liu, B.; Yu, Y. COVID-19 infection presenting with CT halo sign. Radiol. Cardiothorac. Imaging, 2020, 2(1), e200026.
[http://dx.doi.org/10.1148/ryct.2020200026] [PMID: 33778543]
[63]
Caruana, G.; Croxatto, A.; Coste, A.T.; Opota, O.; Lamoth, F.; Jaton, K.; Greub, G. Diagnostic strategies for SARS-CoV-2 infection and interpretation of microbiological results. Clin. Microbiol. Infect., 2020, 26(9), 1178-1182.
[http://dx.doi.org/10.1016/j.cmi.2020.06.019] [PMID: 32593741]
[64]
Chan, K.H.; Chan, J.F.W.; Tse, H.; Chen, H.; Lau, C.C.Y.; Cai, J.P.; Tsang, A.K.L.; Xiao, X.; To, K.K.W.; Lau, S.K.P.; Woo, P.C.Y.; Zheng, B.J.; Wang, M.; Yuen, K.Y. Cross-reactive antibodies in convalescent SARS patients’ sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. J. Infect., 2013, 67(2), 130-140.
[http://dx.doi.org/10.1016/j.jinf.2013.03.015] [PMID: 23583636]
[65]
Hoey, J. Updated SARS case definition using laboratory criteria. CMAJ, 2003, 168(12), 1566-1567.
[PMID: 12796338]
[66]
Roh, C.; Jo, S.K. Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. J. Chem. Technol. Biotechnol., 2011, 86(12), 1475-1479.
[http://dx.doi.org/10.1002/jctb.2721] [PMID: 32336860]
[67]
Valizadeh, H.; Abdolmohammadi-Vahid, S.; Danshina, S.; Ziya Gencer, M.; Ammari, A.; Sadeghi, A.; Roshangar, L.; Aslani, S.; Esmaeilzadeh, A.; Ghaebi, M.; Valizadeh, S.; Ahmadi, M. Nanocurcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol., 2020, 89(Pt B), 107088.
[http://dx.doi.org/10.1016/j.intimp.2020.107088]
[68]
Hageman, J.R. The Coronavirus Disease 2019 (COVID-19). Pediatr. Ann., 2020, 49(3), e99-e100.
[http://dx.doi.org/10.3928/19382359-20200219-01] [PMID: 32155273]
[69]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[70]
Stebbing, J.; Krishnan, V.; Bono, S.; Ottaviani, S.; Casalini, G.; Richardson, P.J.; Monteil, V.; Lauschke, V.M.; Mirazimi, A.; Youhanna, S.; Tan, Y.J.; Baldanti, F.; Sarasini, A.; Terres, J.A.R.; Nickoloff, B.J.; Higgs, R.E.; Rocha, G.; Byers, N.L.; Schlichting, D.E.; Nirula, A.; Cardoso, A.; Corbellino, M. Mechanism of baricitinib supports artificial intelligence‐predicted testing in COVID ‐19 patients. EMBO Mol. Med., 2020, 12(8), e12697.
[http://dx.doi.org/10.15252/emmm.202012697] [PMID: 32473600]
[71]
Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis., 2020, 20(4), 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[72]
Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: an old drug against today’s diseases. Lancet Infect. Dis., 2003, 3(11), 722-727.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[73]
Yan, Y.; Zou, Z.; Sun, Y.; Li, X.; Xu, K.F.; Wei, Y.; Jin, N.; Jiang, C. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res., 2013, 23(2), 300-302.
[http://dx.doi.org/10.1038/cr.2012.165] [PMID: 23208422]
[74]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[75]
Zhengli, S. Remdesivir and Chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30, 269-271.
[76]
Al-Bari, M.A.A. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother., 2015, 70(6), 1608-1621.
[http://dx.doi.org/10.1093/jac/dkv018] [PMID: 25693996]
[77]
Biot, C.; Daher, W.; Chavain, N.; Fandeur, T.; Khalife, J.; Dive, D.; De Clercq, E. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem., 2006, 49(9), 2845-2849.
[http://dx.doi.org/10.1021/jm0601856] [PMID: 16640347]
[78]
Marmor, M.F.; Kellner, U.; Lai, T.Y.Y.; Melles, R.B.; Mieler, W.F. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology, 2016, 123(6), 1386-1394.
[http://dx.doi.org/10.1016/j.ophtha.2016.01.058] [PMID: 26992838]
[79]
Colson, P.; Rolain, J.M.; Raoult, D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int. J. Antimicrob. Agents, 2020, 55(3), 105923.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105923] [PMID: 32070753]
[80]
Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 2020, 57, 279-283.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[81]
Tang, W.; Cao, Z.; Han, M.; Wang, Z.; Chen, J.; Sun, W.; Wu, Y.; Xiao, W.; Liu, S.; Chen, E.; Chen, W.; Wang, X.; Yang, J.; Lin, J.; Zhao, Q.; Yan, Y.; Xie, Z.; Li, D.; Yang, Y.; Liu, L.; Qu, J.; Ning, G.; Shi, G.; Xie, Q. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: Open label, randomised controlled trial. BMJ, 2020, 369, m1849.
[http://dx.doi.org/10.1136/bmj.m1849] [PMID: 32409561]
[82]
Kalra, R.S.; Tomar, D.; Meena, A.S.; Kandimalla, R. SARS-CoV-2, ACE2, and hydroxychloroquine: Cardiovascular complications, therapeutics, and clinical readouts in the current settings. Pathogens, 2020, 9(7), 546.
[http://dx.doi.org/10.3390/pathogens9070546] [PMID: 32645974]
[83]
Pandey, A.; Nikam, A.N.; Shreya, A.B.; Mutalik, S.P.; Gopalan, D.; Kulkarni, S.; Padya, B.S.; Fernandes, G.; Mutalik, S.; Prassl, R. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci., 2020, 256(117883), 117883.
[http://dx.doi.org/10.1016/j.lfs.2020.117883] [PMID: 32497632]
[84]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5), 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[85]
Al-Bari, M.A.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol. Res. Perspect., 2017, 5(1), e00293.
[http://dx.doi.org/10.1002/prp2.293] [PMID: 28596841]
[86]
McChesney, E.W. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am. J. Med., 1983, 75(1), 11-18.
[http://dx.doi.org/10.1016/0002-9343(83)91265-2] [PMID: 6408923]
[87]
Yusuf, I.H.; Sharma, S.; Luqmani, R.; Downes, S.M. Hydroxychloroquine retinopathy. Eye, 2017, 31(6), 828-845.
[http://dx.doi.org/10.1038/eye.2016.298] [PMID: 28282061]
[88]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[89]
Feldmann, M.; Maini, R.N.; Woody, J.N.; Holgate, S.T.; Winter, G.; Rowland, M.; Richards, D.; Hussell, T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet, 2020, 395(10234), 1407-1409.
[http://dx.doi.org/10.1016/S0140-6736(20)30858-8] [PMID: 32278362]
[90]
Vastag, B. Old drugs for a new bug: Influenza, HIV drugs enlisted to fight SARS. JAMA, 2003, 290(13), 1695-1696.
[http://dx.doi.org/10.1001/jama.290.13.1695] [PMID: 14519691]
[91]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir–ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[92]
Chan, K.S.; Lai, S.T.; Chu, C.M.; Tsui, E.; Tam, C.Y.; Wong, M.M.L.; Tse, M.W.; Que, T.L.; Peiris, J.S.M.; Sung, J.; Wong, V.C.W.; Yuen, K.Y. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med. J., 2003, 9(6), 399-406.
[PMID: 14660806]
[93]
Ortega, J.T.; Serrano, M.L.; Pujol, F.H.; Rangel, H.R. Unrevealing sequence and structural features of novel coronavirus using in silico approaches: The main protease as molecular target. EXCLI J., 2020, 19, 400-409.
[http://dx.doi.org/10.17179/excli2020-1189] [PMID: 32210741]
[94]
Lim, J.; Jeon, S.; Shin, H.Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K.W.; Kang, Y.M.; Lee, B.; Park, S.J. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci., 2020, 35(6), e79.
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[95]
Xu, K.; Cai, H.; Shen, Y.; Ni, Q.; Chen, Y.; Hu, S.; Li, J.; Wang, H.; Yu, L.; Huang, H.; Qiu, Y.; Wei, G.; Fang, Q.; Zhou, J.; Sheng, J.; Liang, T.; Li, L. Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(2), 147-157.
[http://dx.doi.org/10.3785/j.issn.1008-9292.2020.02.02] [PMID: 32391658]
[96]
Han, W.; Quan, B.; Guo, Y.; Zhang, J.; Lu, Y.; Feng, G.; Wu, Q.; Fang, F.; Cheng, L.; Jiao, N.; Li, X.; Chen, Q. The course of clinical diagnosis and treatment of a case infected with coronavirus disease 2019. J. Med. Virol., 2020, 92(5), 461-463.
[http://dx.doi.org/10.1002/jmv.25711] [PMID: 32073161]
[97]
Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; Cui, J.; Lu, J. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev., 2020, 7(6), 1012-1023.
[http://dx.doi.org/10.1093/nsr/nwaa036] [PMID: 34676127]
[98]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[99]
Chu, C.M.; Cheng, V.C.C.; Hung, I.F.N.; Wong, M.M.L.; Chan, K.H.; Chan, K.S.; Kao, R.Y.T.; Poon, L.L.M.; Wong, C.L.P.; Guan, Y.; Peiris, J.S.M.; Yuen, K.Y. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, 2004, 59(3), 252-256.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[100]
Falzarano, D.; de Wit, E.; Rasmussen, A.L.; Feldmann, F.; Okumura, A.; Scott, D.P.; Brining, D.; Bushmaker, T.; Martellaro, C.; Baseler, L.; Benecke, A.G.; Katze, M.G.; Munster, V.J.; Feldmann, H. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques. Nat. Med., 2013, 19(10), 1313-1317.
[http://dx.doi.org/10.1038/nm.3362] [PMID: 24013700]
[101]
Pasquau, L.J.; Hidalgo, T.C. Chemical characteristics, mechanism of action and antiviral activity of darunavir Enferm. Infecc. Microbiol. Clin., 2008, 26(S10), 3-9.
[http://dx.doi.org/10.1016/S0213-005X(08)76547-9] [PMID: 19195453]
[102]
Khan, S.A.; Zia, K.; Ashraf, S.; Uddin, R.; Ul-Haq, Z. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. J. Biomol. Struct. Dyn., 2021, 39(7), 2607-2616.
[http://dx.doi.org/10.1080/07391102.2020.1751298] [PMID: 32238094]
[103]
Uno, Y. Camostat mesilate therapy for COVID-19. Intern. Emerg. Med., 2020, 15(8), 1577-1578.
[http://dx.doi.org/10.1007/s11739-020-02345-9] [PMID: 32347443]
[104]
Chen, Y.W.; Yiu, C.P.B.; Wong, K.Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res., 2020, 9, 129.
[http://dx.doi.org/10.12688/f1000research.22457.2] [PMID: 32194944]
[105]
Xie, S.; Chen, X.; Qiao, S.; Li, R.; Sun, Y.; Xia, S.; Wang, L.J.; Luo, X.; Deng, R.; Zhou, E.M.; Zhang, G.P. Identification of the RNA pseudoknot within the 3′ end of the porcine reproductive and respiratory syndrome virus genome as a pathogen-associated molecular pattern to activate antiviral signaling via RIG-I and toll-like receptor 3. J. Virol., 2018, 92(12), e00097-e18.
[http://dx.doi.org/10.1128/JVI.00097-18] [PMID: 29618647]
[106]
Baris, H.E.; Baris, S.; Karakoc-Aydiner, E.; Gokce, I.; Yildiz, N.; Cicekkoku, D.; Ogulur, I.; Ozen, A.; Alpay, H.; Barlan, I. The effect of systemic corticosteroids on the innate and adaptive immune system in children with steroid responsive nephrotic syndrome. Eur. J. Pediatr., 2016, 175(5), 685-693.
[http://dx.doi.org/10.1007/s00431-016-2694-x] [PMID: 26833050]
[107]
Thomas, H.; Foster, G.; Platis, D. Mechanisms of action of interferon and nucleoside analogues. J. Hepatol., 2003, 39(S1), 93-98.
[http://dx.doi.org/10.1016/S0168-8278(03)00207-1] [PMID: 14708685]
[108]
Arabi, Y.M.; Alothman, A.; Balkhy, H.H.; Al-Dawood, A.; AlJohani, S.; Al Harbi, S.; Kojan, S.; Al Jeraisy, M.; Deeb, A.M.; Assiri, A.M.; Al-Hameed, F.; AlSaedi, A.; Mandourah, Y.; Almekhlafi, G.A.; Sherbeeni, N.M.; Elzein, F.E.; Memon, J.; Taha, Y.; Almotairi, A.; Maghrabi, K.A.; Qushmaq, I.; Al Bshabshe, A.; Kharaba, A.; Shalhoub, S.; Jose, J.; Fowler, R.A.; Hayden, F.G.; Hussein, M.A. And the MIRACLE trial group. Treatment of middle east respiratory syndrome with a combination of lopinavir-ritonavir and interferon-B1b (MIRACLE Trial): Study protocol for a randomized controlled trial. Trials, 2018, 19(1), 81.
[http://dx.doi.org/10.1186/s13063-017-2427-0] [PMID: 29382391]
[109]
Chan, J.F.W.; Yao, Y.; Yeung, M.L.; Deng, W.; Bao, L.; Jia, L.; Li, F.; Xiao, C.; Gao, H.; Yu, P.; Cai, J.P.; Chu, H.; Zhou, J.; Chen, H.; Qin, C.; Yuen, K.Y. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J. Infect. Dis., 2015, 212(12), 1904-1913.
[http://dx.doi.org/10.1093/infdis/jiv392] [PMID: 26198719]
[110]
Wang, X.; Cao, R.; Zhang, H.; Liu, J.; Xu, M.; Hu, H.; Li, Y.; Zhao, L.; Li, W.; Sun, X.; Yang, X.; Shi, Z.; Deng, F.; Hu, Z.; Zhong, W.; Wang, M. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov., 2020, 6(1), 28.
[http://dx.doi.org/10.1038/s41421-020-0169-8] [PMID: 32373347]
[111]
Leneva, I.A.; Fediakina, I.T.; Gus’kova, T.A.; Glushkov, R.G. [Sensitivity of various influenza virus strains to arbidol. Influence of arbidol combination with different antiviral drugs on reproduction of influenza virus A]. Ter. Arkh., 2005, 77(8), 84-88.
[PMID: 16206613]
[112]
Shi, L.; Xiong, H.; He, J.; Deng, H.; Li, Q.; Zhong, Q.; Hou, W.; Cheng, L.; Xiao, H.; Yang, Z. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch. Virol., 2007, 152(8), 1447-1455.
[http://dx.doi.org/10.1007/s00705-007-0974-5] [PMID: 17497238]
[113]
Blaising, J.; Polyak, S.J.; Pécheur, E.I. Arbidol as a broad-spectrum antiviral: An update. Antiviral Res., 2014, 107, 84-94.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.006] [PMID: 24769245]
[114]
Khamitov, R.A.; Loginova, S.Ia.; Shchukina, V.N.; Borisevich, S.V.; Maksimov, V.A.; Shuster, A.M. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures Vopr. Virusol., 2008, 53(4), 9-13.
[PMID: 18756809]
[115]
Barnard, D.L.; Kumaki, Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol., 2011, 6(5), 615-631.
[http://dx.doi.org/10.2217/fvl.11.33] [PMID: 21765859]
[116]
Deng, L.; Li, C.; Zeng, Q.; Liu, X.; Li, X.; Zhang, H.; Hong, Z.; Xia, J. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J. Infect., 2020, 81(1), e1-e5.
[http://dx.doi.org/10.1016/j.jinf.2020.03.002] [PMID: 32171872]
[117]
Fedson, D.S.; Opal, S.M.; Rordam, O.M. Hiding in plain sight: An approach to treating patients with severe COVID-19 infection. MBio, 2020, 11(2), e00398-e20.
[http://dx.doi.org/10.1128/mBio.00398-20] [PMID: 32198163]
[118]
Wösten-van Asperen, R.M.; Bos, A.P.; Bem, R.A.; Dierdorp, B.S.; Dekker, T.; van Goor, H.; Kamilic, J.; van der Loos, C.M.; van den Berg, E.; Bruijn, M.; van Woensel, J.B.; Lutter, R. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome. Pediatr. Crit. Care Med., 2013, 14(9), e438-e441.
[http://dx.doi.org/10.1097/PCC.0b013e3182a55735] [PMID: 24226567]
[119]
Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Renin–angiotensin–aldosterone system inhibitors in patients with covid-19. N. Engl. J. Med., 2020, 382(17), 1653-1659.
[http://dx.doi.org/10.1056/NEJMsr2005760] [PMID: 32227760]
[120]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[121]
Phadke, M.; Saunik, S. COVID ‐19 treatment by repurposing drugs until the vaccine is in sight. Drug Dev. Res., 2020, 81(5), 541-543.
[http://dx.doi.org/10.1002/ddr.21666] [PMID: 32227357]
[122]
Tikoo, K.; Patel, G.; Kumar, S.; Karpe, P.A.; Sanghavi, M.; Malek, V.; Srinivasan, K. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: Role of epigenetic histone modifications. Biochem. Pharmacol., 2015, 93(3), 343-351.
[http://dx.doi.org/10.1016/j.bcp.2014.11.013] [PMID: 25482567]
[123]
Ferrario, C.M. ACE2: More of Ang-(1–7) or less Ang II? Curr. Opin. Nephrol. Hypertens., 2011, 20(1), 1-6.
[http://dx.doi.org/10.1097/MNH.0b013e3283406f57] [PMID: 21045683]
[124]
Fedson, D.S. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. Ann. Transl. Med., 2016, 4(21), 421.
[http://dx.doi.org/10.21037/atm.2016.11.03] [PMID: 27942512]
[125]
Sheppard, M.; Laskou, F.; Stapleton, P.P.; Hadavi, S.; Dasgupta, B. Tocilizumab (Actemra). Hum. Vaccin. Immunother., 2017, 13(9), 1972-1988.
[http://dx.doi.org/10.1080/21645515.2017.1316909] [PMID: 28841363]
[126]
Bersanelli, M. Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors. Immunotherapy, 2020, 12(5), 269-273.
[http://dx.doi.org/10.2217/imt-2020-0067] [PMID: 32212881]
[127]
Kelleni, M.T. Nitazoxanide/azithromycin combination for COVID-19: A suggested new protocol for early management. Pharmacol. Res., 2020, 157(104874), 104874.
[http://dx.doi.org/10.1016/j.phrs.2020.104874] [PMID: 32360581]
[128]
Rossignol, J.F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J. Infect. Public Health, 2016, 9(3), 227-230.
[http://dx.doi.org/10.1016/j.jiph.2016.04.001] [PMID: 27095301]
[129]
Simsek Yavuz, S.; Ünal, S. Antiviral treatment of COVID-19. Turk. J. Med. Sci., 2020, 50(SI-1), 611-619.
[http://dx.doi.org/10.3906/sag-2004-145] [PMID: 32293834]
[130]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178(104787), 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[131]
Mehta, P.; Ciurtin, C.; Scully, M.; Levi, M.; Chambers, R.C. JAK inhibitors in COVID-19: The need for vigilance regarding increased inherent thrombotic risk. Eur. Respir. J., 2020, 56(3), 2001919.
[http://dx.doi.org/10.1183/13993003.01919-2020] [PMID: 32631841]
[132]
Cantini, F.; Niccoli, L.; Matarrese, D.; Nicastri, E.; Stobbione, P.; Goletti, D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect., 2020, 81(2), 318-356.
[http://dx.doi.org/10.1016/j.jinf.2020.04.017] [PMID: 32333918]
[133]
Bronte, V.; Ugel, S.; Tinazzi, E.; Vella, A.; De Sanctis, F.; Canè, S.; Batani, V.; Trovato, R.; Fiore, A.; Petrova, V.; Hofer, F.; Barouni, R.M.; Musiu, C.; Caligola, S.; Pinton, L.; Torroni, L.; Polati, E.; Donadello, K.; Friso, S.; Pizzolo, F.; Iezzi, M.; Facciotti, F.; Pelicci, P.G.; Righetti, D.; Bazzoni, P.; Rampudda, M.; Comel, A.; Mosaner, W.; Lunardi, C.; Olivieri, O. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J. Clin. Invest., 2020, 130(12), 6409-6416.
[http://dx.doi.org/10.1172/JCI141772] [PMID: 32809969]
[134]
Turing, A. M. I. -computing machinery and intelligence. Mind, 1950, LIX(236), 433-460.
[http://dx.doi.org/10.1093/mind/LIX.236.433]
[135]
Fleming, N. How artificial intelligence is changing drug discovery. Nature, 2018, 557(7707), S55-S57.
[http://dx.doi.org/10.1038/d41586-018-05267-x] [PMID: 29849160]
[136]
Mishra, R.; Chaudhary, K.; Mishra, I. AI in Health science: A Perspective. Curr. Pharm. Biotechnol., 2022.
[http://dx.doi.org/10.2174/1389201023666220929145220] [PMID: 36177622]
[137]
Mujwar, S.; Tripathi, A. Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. J. Mol. Model., 2022, 28(7), 193.
[http://dx.doi.org/10.1007/s00894-022-05185-w] [PMID: 35716240]
[138]
Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell, 2020, 78(4), 779-784.e5.
[http://dx.doi.org/10.1016/j.molcel.2020.04.022] [PMID: 32362314]
[139]
Mujwar, S.; Harwansh, R.K. In silico bioprospecting of taraxerol as a main protease inhibitor of SARS-CoV-2 to develop therapy against COVID-19. Struct. Chem., 2022, 33(5), 1517-1528.
[http://dx.doi.org/10.1007/s11224-022-01943-x] [PMID: 35502321]
[140]
Mujwar, S. Computational repurposing of tamibarotene against triple mutant variant of SARS-CoV-2. Comput. Biol. Med., 2021, 136(104748), 104748.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104748] [PMID: 34388463]
[141]
Jain, R.; Mujwar, S. Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19. Struct. Chem., 2020, 31(6), 2487-2499.
[http://dx.doi.org/10.1007/s11224-020-01605-w] [PMID: 32837119]
[142]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J.A. SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[143]
Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov., 2020, 6(1), 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3] [PMID: 32194980]
[144]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[145]
Dettmers, T.; Minervini, P.; Stenetorp, P. Convolutional 2D Knowledge Graph Embeddings; ArXiv, 2017.
[146]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[147]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[148]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[149]
Altaher, Y.; Nakanishi, M.; Kandeel, M. Annotation of camel genome for estimation of drug binding power, evolution and adaption of cytochrome P450 1a2. Int. J. Pharmacol., 2015, 11(3), 243-247.
[http://dx.doi.org/10.3923/ijp.2015.243.247]
[150]
Elhefnawi, M.; ElGamacy, M.; Fares, M. Multiple virtual screening approaches for finding new hepatitis C virus RNA-Dependent RNA polymerase inhibitors: Structure-based screens and molecular dynamics for the pursue of new poly pharmacological inhibitors. BMC Bioinformatics, 2012, 13(S17), S5.
[http://dx.doi.org/10.1186/1471-2105-13-S17-S5]
[151]
Zhou, Z.; Khaliq, M.; Suk, J.E.; Patkar, C.; Li, L.; Kuhn, R.J.; Post, C.B. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein. ACS Chem. Biol., 2008, 3(12), 765-775.
[http://dx.doi.org/10.1021/cb800176t] [PMID: 19053243]
[152]
Raj, U.; Varadwaj, P.K. Flavonoids as Multi-target Inhibitors for Proteins Associated with Ebola Virus: In silico discovery using virtual screening and molecular docking studies. Interdiscip. Sci., 2016, 8(2), 132-141.
[http://dx.doi.org/10.1007/s12539-015-0109-8] [PMID: 26286008]