Drug Delivery Systems based on Microneedles for Dermatological Diseases and Aesthetic Enhancement

Page: [3473 - 3487] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Microneedle (MN) devices comprise of micron-sized structures that circumvent biological barriers in a minimally invasive manner. MN research continues to grow and evolve; the technology was recently identified as one of the top ten overall emerging technologies of 2020. There is a growing interest in using such devices in cosmetology and dermatological conditions where the MNs mechanically disrupt the outer skin barrier layer, creating transient pathways that allow the passage of materials to underlying skin layers. This review aims to appraise the application of microneedle technologies in skin science, provide information on potential clinical benefits, as well as indicate possible dermatological conditions that can benefit from this technology, including autoimmunemediated inflammatory skin diseases, skin aging, hyperpigmentation, and skin tumors. A literature review was carried out to select studies that evaluated the use of microneedles to enhance drug delivery for dermatologic purposes. MN patches create temporary pathways that allow the passage of therapeutic material to deeper layers of the skin. Given their demonstrable promise in therapeutic applications it will be essential for healthcare professionals to engage with these new delivery systems as they transition to the clinic.

[1]
Fenner, J.; Clark, R.A.F. Anatomy, physiology, histology, and immunohistochemistry of human skin. In: Skin Tissue Engineering and Regenerative Medicine; Elsevier, 2016; pp. 1-17.
[http://dx.doi.org/10.1016/B978-0-12-801654-1.00001-2]
[2]
Norlén, L. Current understanding of skin barrier morphology. Skin Pharmacol. Physiol., 2013, 26(4-6), 213-216.
[http://dx.doi.org/10.1159/000351930] [PMID: 23921107]
[3]
Alkilani, A.; McCrudden, M.T.; Donnelly, R. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4), 438-470.
[http://dx.doi.org/10.3390/pharmaceutics7040438] [PMID: 26506371]
[4]
El Maghraby, G.M.; Barry, B.W.; Williams, A.C. Liposomes and skin: From drug delivery to model membranes. Eur. J. Pharm. Sci., 2008, 34(4-5), 203-222.
[http://dx.doi.org/10.1016/j.ejps.2008.05.002] [PMID: 18572392]
[5]
Yang, R.; Wei, T.; Goldberg, H.; Wang, W.; Cullion, K.; Kohane, D.S. Getting drugs across biological barriers. Adv. Mater., 2017, 29(37), 1606596.
[http://dx.doi.org/10.1002/adma.201606596] [PMID: 28752600]
[6]
Bos, J.D.; Meinardi, M.M.H.M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol., 2000, 9(3), 165-169.
[http://dx.doi.org/10.1034/j.1600-0625.2000.009003165.x] [PMID: 10839713]
[7]
Pathan, I.B.; Setty, C.M. Chemical penetration enhancers for transdermal drug delivery systems. Trop. J. Pharm. Res., 2009, 8(2)
[http://dx.doi.org/10.4314/tjpr.v8i2.44527]
[8]
Brown, M.B.; Martin, G.P.; Jones, S.A.; Akomeah, F.K. Dermal and transdermal drug delivery systems: Current and future prospects. Drug Deliv., 2006, 13(3), 175-187.
[http://dx.doi.org/10.1080/10717540500455975] [PMID: 16556569]
[9]
Morrow, D.I.J.; McCarron, P.A.; Woolfson, A.D.; Donnelly, R.F. Innovative strategies for enhancing topical and transdermal drug delivery. Drug Deliv., 2007, 1(1), 36-59.
[http://dx.doi.org/10.2174/1874126600701010036]
[10]
Tran, T.N.T. Cutaneous drug delivery: An update. J. Investig. Dermatol. Symp. Proc., 2013, 16(1), S67-S69.
[http://dx.doi.org/10.1038/jidsymp.2013.28] [PMID: 24326566]
[11]
Wokovich, A.; Prodduturi, S.; Doub, W.; Hussain, A.; Buhse, L. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur. J. Pharm. Biopharm., 2006, 64(1), 1-8.
[http://dx.doi.org/10.1016/j.ejpb.2006.03.009] [PMID: 16797171]
[12]
Donnelly, R.F.; Singh, T.R.R. Novel Delivery Systems for Transdermal and Intradermal Drug Delivery; John Wiley & Sons, Ltd: Chichester, UK, 2015.
[http://dx.doi.org/10.1002/9781118734506]
[13]
Ingrole, R.S.J.; Azizoglu, E.; Dul, M.; Birchall, J.C.; Gill, H.S.; Prausnitz, M.R. Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity. Biomaterials, 2021, 267, 120491.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120491] [PMID: 33217629]
[14]
Gerstel, M.S.; Place, V.A. Place, Drug delivery device. US Patent 3964482 A, , 1976.
[15]
Han, T.; Das, D.B. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. Eur. J. Pharm. Biopharm., 2015, 89, 312-328.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.020] [PMID: 25541440]
[16]
World Economic Forum Top 10 Emerging Technologies of 2020. World Econ. Forum., 2020, 1-25. Available from: http://www3.weforum.org/docs/WEF_Top_10_Emerging_Technologies_2020.pdf
[17]
Arikat, F.; Hanna, S.J.; Singh, R.K.; Vilela, L.; Wong, F.S.; Dayan, C.M.; Coulman, S.A.; Birchall, J.C. Targeting proinsulin to local immune cells using an intradermal microneedle delivery system; a potential antigen-specific immunotherapy for type 1 diabetes. J. Control. Release, 2020, 322, 593-601.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.031] [PMID: 32087298]
[18]
Davies, L.B.; Gateley, C.; Holland, P.; Coulman, S.A.; Birchall, J.C. Accelerating topical anaesthesia using microneedles. Skin Pharmacol. Physiol., 2017, 30(6), 277-283.
[http://dx.doi.org/10.1159/000479530] [PMID: 28881348]
[19]
Kim, E.; Erdos, G.; Huang, S.; Kenniston, T.W.; Balmert, S.C.; Carey, C.D.; Raj, V.S.; Epperly, M.W.; Klimstra, W.B.; Haagmans, B.L.; Korkmaz, E.; Falo, L.D., Jr; Gambotto, A. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine, 2020, 55, 102743.
[http://dx.doi.org/10.1016/j.ebiom.2020.102743] [PMID: 32249203]
[20]
Li, B.; Wang, J.; Yang, S.Y.; Zhou, C.; Wu, M.X. Sample-free quantification of blood biomarkers via laser-treated skin. Biomaterials, 2015, 59, 30-38.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.040] [PMID: 25950985]
[21]
Davis, S.P.; Martanto, W.; Allen, M.G.; Prausnitz, M.R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng., 2005, 52(5), 909-915.
[http://dx.doi.org/10.1109/TBME.2005.845240] [PMID: 15887540]
[22]
Hu, Z.; Meduri, C.S.; Ingrole, R.S.J.; Gill, H.S.; Kumar, G. Solid and hollow metallic glass microneedles for transdermal drug-delivery. Appl. Phys. Lett., 2020, 116(20), 203703.
[http://dx.doi.org/10.1063/5.0008983]
[23]
Donnelly, R.F.; Morrow, D.I.J.; Singh, T.R.R.; Migalska, K.; McCarron, P.A.; O’Mahony, C.; Woolfson, A.D. Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev. Ind. Pharm., 2009, 35(10), 1242-1254.
[http://dx.doi.org/10.1080/03639040902882280] [PMID: 19555249]
[24]
Bolton, C.J.W.; Howells, O.; Blayney, G.J.; Eng, P.F.; Birchall, J.C.; Gualeni, B.; Roberts, K.; Ashraf, H.; Guy, O.J. Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab Chip, 2020, 20(15), 2788-2795.
[http://dx.doi.org/10.1039/D0LC00567C] [PMID: 32632424]
[25]
Chen, Y.; Chen, B.Z.; Wang, Q.L.; Jin, X.; Guo, X.D. Fabrication of coated polymer microneedles for transdermal drug delivery. J. Control. Release, 2017, 265, 14-21.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.383] [PMID: 28344014]
[26]
Rzhevskiy, A.S.; Singh, T.R.R.; Donnelly, R.F.; Anissimov, Y.G. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J. Control. Release, 2018, 270, 184-202.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.048] [PMID: 29203415]
[27]
Al-Qallaf, B.; Das, D.B. Optimization of square microneedle arrays for increasing drug permeability in skin. Chem. Eng. Sci., 2008, 63(9), 2523-2535.
[http://dx.doi.org/10.1016/j.ces.2008.02.007]
[28]
Al-Qallaf, B.; Das, D.B.; Mori, D.; Cui, Z. Modelling transdermal delivery of high molecular weight drugs from microneedle systems. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2007, 365(1861), 2951-2967.
[http://dx.doi.org/10.1098/rsta.2007.0003] [PMID: 17890186]
[29]
Al-Qallaf, B.; Das, D.B. Optimizing microneedle arrays for transdermal drug delivery: Extension to non-square distribution of microneedles. J. Drug Target., 2009, 17(2), 108-122.
[http://dx.doi.org/10.1080/10611860802472370] [PMID: 19016071]
[30]
Olatunji, O.; Das, D.B.; Garland, M.J.; Belaid, L.; Donnelly, R.F. Influence of array interspacing on the force required for successful microneedle skin penetration: Theoretical and practical approaches. J. Pharm. Sci., 2013, 102(4), 1209-1221.
[http://dx.doi.org/10.1002/jps.23439] [PMID: 23359221]
[31]
Yan, G.; Warner, K.S.; Zhang, J.; Sharma, S.; Gale, B.K. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int. J. Pharm., 2010, 391(1-2), 7-12.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.007] [PMID: 20188808]
[32]
Alimardani, V.; Abolmaali, S.S.; Tamaddon, A.M.; Ashfaq, M. Recent advances on microneedle arrays-mediated technology in cancer diagnosis and therapy. Drug Deliv. Transl. Res., 2021, 11(3), 788-816.
[http://dx.doi.org/10.1007/s13346-020-00819-z] [PMID: 32740799]
[33]
Kim, M.; Yang, H.; Kim, H.; Jung, H.; Jung, H. Novel cosmetic patches for wrinkle improvement: retinyl retinoate- and ascorbic acid-loaded dissolving microneedles. Int. J. Cosmet. Sci., 2014, 36(3), 207-212.
[http://dx.doi.org/10.1111/ics.12115] [PMID: 24910870]
[34]
Ita, K. Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics, 2015, 7(3), 90-105.
[http://dx.doi.org/10.3390/pharmaceutics7030090] [PMID: 26131647]
[35]
Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R Reports, 2016, 104, 1-32.
[http://dx.doi.org/10.1016/j.mser.2016.03.001]
[36]
Liang, L.; Fei, W.M.; Zhao, Z.Q.; Hao, Y.Y.; Zhang, C.; Cui, Y.; Guo, X.D. Improved imiquimod-induced psoriasis like dermatitis using microneedles in mice. Eur. J. Pharm. Biopharm., 2021, 164, 20-27.
[http://dx.doi.org/10.1016/j.ejpb.2021.04.016] [PMID: 33895291]
[37]
Mohammed, Y.H.; Yamada, M.; Lin, L.L.; Grice, J.E.; Roberts, M.S.; Raphael, A.P.; Benson, H.A.E.; Prow, T.W. Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin. PLoS One, 2014, 9(7), e101956.
[http://dx.doi.org/10.1371/journal.pone.0101956] [PMID: 25033398]
[38]
Cárcamo-Martínez, Á.; Mallon, B.; Anjani, Q.K.; Domínguez-Robles, J.; Utomo, E.; Vora, L.K.; Tekko, I.A.; Larrañeta, E.; Donnelly, R.F. Enhancing intradermal delivery of tofacitinib citrate: Comparison between powder-loaded hollow microneedle arrays and dissolving microneedle arrays. Int. J. Pharm., 2021, 593, 120152.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120152] [PMID: 33301867]
[39]
Ingrole, R.S.J.; Gill, H.S. Microneedle coating methods: A review with a perspective. J. Pharmacol. Exp. Ther., 2019, 370(3), 555-569.
[http://dx.doi.org/10.1124/jpet.119.258707] [PMID: 31175217]
[40]
Tomono, T. A new way to control the internal structure of microneedles: A case of chitosan lactate. Mater. Today Chem., 2019, 13, 79-87.
[http://dx.doi.org/10.1016/j.mtchem.2019.04.009]
[41]
Zhao, X.; Coulman, S.A.; Hanna, S.J.; Wong, F.S.; Dayan, C.M.; Birchall, J.C. Formulation of hydrophobic peptides for skin delivery via coated microneedles. J. Control. Release, 2017, 265, 2-13.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.015] [PMID: 28286315]
[42]
Gill, H.S.; Prausnitz, M.R. Coated microneedles for transdermal delivery. J. Control. Release, 2007, 117(2), 227-237.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.017] [PMID: 17169459]
[43]
Ullah, A.; Khan, H.; Choi, H.J.; Kim, G.M. Smart microneedles with porous polymer coatings for pH-responsive drug delivery. Polymers, 2019, 11(11), 1834.
[http://dx.doi.org/10.3390/polym11111834] [PMID: 31703443]
[44]
Ma, Y.; Tao, W.; Krebs, S.J.; Sutton, W.F.; Haigwood, N.L.; Gill, H.S. Vaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunity. Pharm. Res., 2014, 31(9), 2393-2403.
[http://dx.doi.org/10.1007/s11095-014-1335-1] [PMID: 24623480]
[45]
Jiang, J.; Gill, H.S.; Ghate, D.; McCarey, B.E.; Patel, S.R.; Edelhauser, H.F.; Prausnitz, M.R. Coated microneedles for drug delivery to the eye. Invest. Ophthalmol. Vis. Sci., 2007, 48(9), 4038-4043.
[http://dx.doi.org/10.1167/iovs.07-0066] [PMID: 17724185]
[46]
Haj-Ahmad, R.; Khan, H.; Arshad, M.; Rasekh, M.; Hussain, A.; Walsh, S.; Li, X.; Chang, M.W.; Ahmad, Z. Microneedle coating techniques for transdermal drug delivery. Pharmaceutics, 2015, 7(4), 486-502.
[http://dx.doi.org/10.3390/pharmaceutics7040486] [PMID: 26556364]
[47]
Tarbox, T.N.; Watts, A.B.; Cui, Z.; Williams, R.O., III An update on coating/manufacturing techniques of microneedles. Drug Deliv. Transl. Res., 2018, 8(6), 1828-1843.
[http://dx.doi.org/10.1007/s13346-017-0466-4] [PMID: 29288358]
[48]
Gao, Y.; Zhang, W.; Cheng, Y.F.; Cao, Y.; Xu, Z.; Xu, L.Q.; Kang, Y.; Xue, P. Intradermal administration of green synthesized nanosilver (NS) through film-coated PEGDA microneedles for potential antibacterial applications. Biomater. Sci., 2021, 9(6), 2244-2254.
[http://dx.doi.org/10.1039/D0BM02136A] [PMID: 33514957]
[49]
Hao, Y.; Dong, M.; Zhang, T.; Peng, J.; Jia, Y.; Cao, Y.; Qian, Z. Novel approach of using near-infrared responsive pegylated gold nanorod coated poly(L-lactide) microneedles to enhance the antitumor efficiency of docetaxel-loaded MPEG-PDLLA micelles for treating an A431 tumor. ACS Appl. Mater. Interfaces, 2017, 9(18), 15317-15327.
[http://dx.doi.org/10.1021/acsami.7b03604] [PMID: 28418236]
[50]
Ruan, W.; Zhai, Y.; Yu, K.; Wu, C.; Xu, Y. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment. Int. J. Pharm., 2018, 553(1-2), 298-309.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.043] [PMID: 30347273]
[51]
Chong, R.H.E.; Gonzalez-Gonzalez, E.; Lara, M.F.; Speaker, T.J.; Contag, C.H.; Kaspar, R.L.; Coulman, S.A.; Hargest, R.; Birchall, J.C. Gene silencing following siRNA delivery to skin via coated steel microneedles: In vitro and in vivo proof-of-concept. J. Control. Release, 2013, 166(3), 211-219.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.030] [PMID: 23313112]
[52]
Jain, A.K.; Lee, C.H.; Gill, H.S. 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J. Control. Release, 2016, 239, 72-81.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.015] [PMID: 27543445]
[53]
Uddin, M.J.; Scoutaris, N.; Economidou, S.N.; Giraud, C.; Chowdhry, B.Z.; Donnelly, R.F.; Douroumis, D. 3D printed microneedles for anticancer therapy of skin tumours. Mater. Sci. Eng. C, 2020, 107, 110248.
[http://dx.doi.org/10.1016/j.msec.2019.110248] [PMID: 31761175]
[54]
Lee, H.S.; Ryu, H.R.; Roh, J.Y.; Park, J.H. Bleomycin- coated microneedles for treatment of warts. Pharm. Res., 2017, 34(1), 101-112.
[http://dx.doi.org/10.1007/s11095-016-2042-x] [PMID: 27858218]
[55]
Ryu, H.R.; Jeong, H.R.; Seon-Woo, H.S.; Kim, J.S.; Lee, S.K.; Kim, H.J.; Baek, J.O.; Park, J.H.; Roh, J.Y. Efficacy of a bleomycin microneedle patch for the treatment of warts. Drug Deliv. Transl. Res., 2018, 8(1), 273-280.
[http://dx.doi.org/10.1007/s13346-017-0458-4] [PMID: 29204924]
[56]
Chiu, T.M.; Hsu, P.C.; Khan, M.Y.; Lin, C.A.J.; Lee, C.H.; Hsu, T.C.; Chen, M.H.; Hanagata, N. A perspective on imiquimod microneedles for treating warts. Pharmaceutics, 2021, 13(5), 607.
[http://dx.doi.org/10.3390/pharmaceutics13050607] [PMID: 33922157]
[57]
Donnelly, R.F.; Singh, T.R.R.; Morrow, D.I.J.; Woolfson, A.D. Microneedle-mediated Transdermal and Intradermal Drug Delivery; John Wiley & Sons, Ltd: Chichester, UK, 2012.
[http://dx.doi.org/10.1002/9781119959687]
[58]
Prausnitz, M.R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev., 2004, 56(5), 581-587.
[http://dx.doi.org/10.1016/j.addr.2003.10.023] [PMID: 15019747]
[59]
Quinn, H.L.; Bonham, L.; Hughes, C.M.; Donnelly, R.F. Design of a dissolving microneedle platform for transdermal delivery of a fixed-dose combination of cardiovascular drugs. J. Pharm. Sci., 2015, 104(10), 3490-3500.
[http://dx.doi.org/10.1002/jps.24563] [PMID: 26149914]
[60]
Tuan-Mahmood, T.M.; McCrudden, M.T.C.; Torrisi, B.M.; McAlister, E.; Garland, M.J.; Singh, T.R.R.; Donnelly, R.F. Microneedles for intradermal and transdermal drug delivery. Eur. J. Pharm. Sci., 2013, 50(5), 623-637.
[http://dx.doi.org/10.1016/j.ejps.2013.05.005] [PMID: 23680534]
[61]
Lee, K.; Lee, C.Y.; Jung, H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials, 2011, 32(11), 3134-3140.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.014] [PMID: 21292317]
[62]
Park, J.H.; Allen, M.G.; Prausnitz, M.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release, 2005, 104(1), 51-66.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.002] [PMID: 15866334]
[63]
Sullivan, S.P.; Koutsonanos, D.G.; del Pilar Martin, M.; Lee, J.W.; Zarnitsyn, V.; Choi, S.O.; Murthy, N.; Compans, R.W.; Skountzou, I.; Prausnitz, M.R. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med., 2010, 16(8), 915-920.
[http://dx.doi.org/10.1038/nm.2182] [PMID: 20639891]
[64]
Aoyagi, S.; Izumi, H.; Isono, Y.; Fukuda, M.; Ogawa, H. Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle. Sens. Actuators A Phys., 2007, 139(1-2), 293-302.
[http://dx.doi.org/10.1016/j.sna.2006.11.022]
[65]
Lee, J.W.; Park, J.H.; Prausnitz, M.R. Dissolving microneedles for transdermal drug delivery. Biomaterials, 2008, 29(13), 2113-2124.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.048] [PMID: 18261792]
[66]
Han, M.; Kim, D.K.; Kang, S.H.; Yoon, H.R.; Kim, B.Y.; Lee, S.S.; Kim, K.D.; Lee, H.G. Improvement in antigen-delivery using fabrication of a grooves-embedded microneedle array. Sens. Actuators B Chem., 2009, 137(1), 274-280.
[http://dx.doi.org/10.1016/j.snb.2008.11.017]
[67]
Lippmann, J.M.; Geiger, E.J.; Pisano, A.P. Polymer investment molding: Method for fabricating hollow, microscale parts. Sens. Actuators A Phys., 2007, 134(1), 2-10.
[http://dx.doi.org/10.1016/j.sna.2006.05.009]
[68]
Pérennès, F.; Marmiroli, B.; Matteucci, M.; Tormen, M.; Vaccari, L.; Fabrizio, E.D. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J. Micromech. Microeng., 2006, 16(3), 473-479.
[http://dx.doi.org/10.1088/0960-1317/16/3/001]
[69]
Sammoura, F.; Kang, J.; Heo, Y.M.; Jung, T.; Lin, L. Polymeric microneedle fabrication using a microinjection molding technique. Microsyst. Technol., 2007, 13(5-6), 517-522.
[http://dx.doi.org/10.1007/s00542-006-0204-1]
[70]
Choi, S.Y.; Kwon, H.J.; Ahn, G.R.; Ko, E.J.; Yoo, K.H.; Kim, B.J.; Lee, C.; Kim, D. Hyaluronic acid microneedle patch for the improvement of crow’s feet wrinkles. Dermatol. Ther., 2017, 30(6), e12546.
[http://dx.doi.org/10.1111/dth.12546] [PMID: 28892233]
[71]
Moon, S.J.; Lee, S.S. A novel fabrication method of a microneedle array using inclined deep x-ray exposure. J. Micromech. Microeng., 2005, 15(5), 903-911.
[http://dx.doi.org/10.1088/0960-1317/15/5/002]
[72]
Ovsianikov, A.; Chichkov, B.; Mente, P.; Monteiro-Riviere, N.A.; Doraiswamy, A.; Narayan, R.J. Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int. J. Appl. Ceram. Technol., 2007, 4(1), 22-29.
[http://dx.doi.org/10.1111/j.1744-7402.2007.02115.x]
[73]
Sullivan, S.P.; Murthy, N.; Prausnitz, M.R. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv. Mater., 2008, 20(5), 933-938.
[http://dx.doi.org/10.1002/adma.200701205] [PMID: 23239904]
[74]
Kolli, C.S.; Banga, A.K. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm. Res., 2008, 25(1), 104-113.
[http://dx.doi.org/10.1007/s11095-007-9350-0] [PMID: 17597381]
[75]
Miyano, T.; Tobinaga, Y.; Kanno, T.; Matsuzaki, Y.; Takeda, H.; Wakui, M.; Hanada, K. Sugar micro needles as transdermic drug delivery system. Biomed. Microdevices, 2005, 7(3), 185-188.
[http://dx.doi.org/10.1007/s10544-005-3024-7] [PMID: 16133805]
[76]
Martin, C.J.; Allender, C.J.; Brain, K.R.; Morrissey, A; Birchall, J.C. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications, J. Control. Release, 2012, 158(1), 93-101
[http://dx.doi.org/10.1016/j.jconrel.2011.1]
[77]
Du, H.; Liu, P.; Zhu, J.; Lan, J.; Li, Y.; Zhang, L.; Zhu, J.; Tao, J. Hyaluronic acid-based dissolving microneedle patch loaded with methotrexate for improved treatment of psoriasis. ACS Appl. Mater. Interfaces, 2019, 11(46), 43588-43598.
[http://dx.doi.org/10.1021/acsami.9b15668] [PMID: 31651148]
[78]
Jang, M.; Kang, B.M.; Yang, H.; Ohn, J.; Kwon, O.; Jung, H. High-dose steroid dissolving microneedle for relieving atopic dermatitis. Adv. Healthc. Mater., 2021, 10(7), 2001691.
[http://dx.doi.org/10.1002/adhm.202001691] [PMID: 33586358]
[79]
Xing, M.; Wang, X.; Zhao, L.; Zhou, Z.; Liu, H.; Wang, B.; Cheng, A.; Zhang, S.; Gao, Y. Novel dissolving microneedles preparation for synergistic melasma therapy: Combined effects of tranexamic acid and licorice extract. Int. J. Pharm., 2021, 600, 120406.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120406] [PMID: 33711468]
[80]
Aung, N.N.; Ngawhirunpat, T.; Rojanarata, T.; Patrojanasophon, P.; Opanasopit, P.; Pamornpathomkul, B. HPMC/PVP dissolving microneedles: A promising delivery platform to promote trans-epidermal delivery of alpha-arbutin for skin lightening. AAPS PharmSciTech, 2020, 21(1), 25.
[http://dx.doi.org/10.1208/s12249-019-1599-1] [PMID: 31848807]
[81]
Zhang, L.Q.; Zhang, X.P.; Hao, Y.Y.; Zhang, B.L.; Guo, X.D. Codelivery of hydrophilic and hydrophobic drugs in a microneedle patch for the treatment of skin pigmentation. J. Ind. Eng. Chem., 2020, 88, 241-250.
[http://dx.doi.org/10.1016/j.jiec.2020.04.019]
[82]
Avcil, M.; Akman, G.; Klokkers, J.; Jeong, D.; Çelik, A. Clinical efficacy of dissolvable microneedles armed with anti-melanogenic compounds to counter hyperpigmentation. J. Cosmet. Dermatol., 2021, 20(2), 605-614.
[http://dx.doi.org/10.1111/jocd.13571] [PMID: 32692898]
[83]
Fakhraei Lahiji, S.; Seo, S.H.; Kim, S.; Dangol, M.; Shim, J.; Li, C.G.; Ma, Y.; Lee, C.; Kang, G.; Yang, H.; Choi, K.Y.; Jung, H. Transcutaneous implantation of valproic acid-encapsulated dissolving microneedles induces hair regrowth. Biomaterials, 2018, 167, 69-79.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.019] [PMID: 29554482]
[84]
Xing, M.; Yang, G.; Zhang, S.; Gao, Y. Acid-base combination principles for preparation of anti-acne dissolving microneedles loaded with azelaic acid and matrine. Eur. J. Pharm. Sci., 2021, 165, 105935.
[http://dx.doi.org/10.1016/j.ejps.2021.105935] [PMID: 34284096]
[85]
Tan, C.W.X.; Tan, W.D.; Srivastava, R.; Yow, A.P.; Wong, D.W.K.; Tey, H.L. Dissolving triamcinolone-embedded microneedles for the treatment of keloids: A single-blinded intra-individual controlled clinical trial. Dermatol. Ther., 2019, 9(3), 601-611.
[http://dx.doi.org/10.1007/s13555-019-00316-3] [PMID: 31376063]
[86]
Dong, L.; Li, Y.; Li, Z.; Xu, N.; Liu, P.; Du, H.; Zhang, Y.; Huang, Y.; Zhu, J.; Ren, G.; Xie, J.; Wang, K.; Zhou, Y.; Shen, C.; Zhu, J.; Tao, J. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl. Mater. Interfaces, 2018, 10(11), 9247-9256.
[http://dx.doi.org/10.1021/acsami.7b18293] [PMID: 29493217]
[87]
Requena, M.B.; Permana, A.D.; Vollet-Filho, J.D.; González-Vázquez, P.; Garcia, M.R.; De Faria, C.M.G.; Pratavieira, S.; Donnelly, R.F.; Bagnato, V.S. Dissolving microneedles containing aminolevulinic acid improves protoporphyrin IX distribution. J. Biophotonics, 2021, 14(1), e202000128.
[http://dx.doi.org/10.1002/jbio.202000128] [PMID: 32981235]
[88]
Qin, W.; Quan, G.; Sun, Y.; Chen, M.; Yang, P.; Feng, D.; Wen, T.; Hu, X.; Pan, X.; Wu, C. Dissolving microneedles with spatiotemporally controlled pulsatile release nanosystem for synergistic chemo-photothermal therapy of melanoma. Theranostics, 2020, 10(18), 8179-8196.
[http://dx.doi.org/10.7150/thno.44194] [PMID: 32724465]
[89]
Permana, A.D.; Mir, M.; Utomo, E.; Donnelly, R.F. Bacterially sensitive nanoparticle-based dissolving microneedles of doxycycline for enhanced treatment of bacterial biofilm skin infection: A proof of concept study. Int. J. Pharm. X, 2020, 2, 100047.
[http://dx.doi.org/10.1016/j.ijpx.2020.100047] [PMID: 32322819]
[90]
Permana, A.D.; Paredes, A.J.; Volpe-Zanutto, F.; Anjani, Q.K.; Utomo, E.; Donnelly, R.F. Dissolving microneedle- mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. Eur. J. Pharm. Biopharm., 2020, 154, 50-61.
[http://dx.doi.org/10.1016/j.ejpb.2020.06.025] [PMID: 32649991]
[91]
Ohn, J.; Jang, M.; Kang, B.M.; Yang, H.; Hong, J.T.; Kim, K.H.; Kwon, O.; Jung, H. Dissolving candlelit microneedle for chronic inflammatory skin diseases. Adv. Sci., 2021, 8, 2004873.
[http://dx.doi.org/10.1002/advs.202004873]
[92]
Lee, J.H.; Jung, Y.S.; Kim, G.M.; Bae, J.M. A hyaluronic acid-based microneedle patch to treat psoriatic plaques: a pilot open trial. Br. J. Dermatol., 2018, 178.
[http://dx.doi.org/10.1111/bjd.15779]
[93]
Akilov, O.; McCann, S.; Erdos, G.; Falo, L.D. Phase 1, single-arm, open-label, dose escalation trial of microneedle array-doxorubicin in patients with mycosis fungoides. Eur. J. Cancer, 2018, 101, S32.
[http://dx.doi.org/10.1016/j.ejca.2018.07.290]
[94]
Zvezdin, V.; Peno-Mazzarino, L.; Radionov, N.; Kasatkina, T.; Kasatkin, I. Microneedle patch based on dissolving, detachable microneedle technology for improved skin quality – Part 1: ex vivo safety evaluation. Int. J. Cosmet. Sci., 2020, 42, 369-376.
[http://dx.doi.org/10.1111/ics.12627]
[95]
Zvezdin, V.; Kasatkina, T.; Kasatkin, I.; Gavrilova, M.; Kazakova, O. Microneedle patch based on dissolving, detachable microneedle technology for improved skin quality of the periorbital region. Part 2: Clinical evaluation. Int. J. Cosmet. Sci., 2020, 42, 429-435.
[http://dx.doi.org/10.1111/ics.12636]
[96]
Jang, M.; Baek, S.; Kang, G.; Yang, H.; Kim, S.; Jung, H. Dissolving microneedle with high molecular weight hyaluronic acid to improve skin wrinkles, dermal density and elasticity. Int. J. Cosmet. Sci., 2020, 42, 302-309.
[http://dx.doi.org/10.1111/ics.12617]
[97]
Kang, G.; Kim, S.; Yang, H.; Jang, M.; Chiang, L.; Baek, J.H.; Ryu, J.H.; Choi, G.W.; Jung, H. Combinatorial application of dissolving microneedle patch and cream for improvement of skin wrinkles, dermal density, elasticity, and hydration. J. Cosmet. Dermatol., 2019, 18, 1083-1091.
[http://dx.doi.org/10.1111/jocd.12807]
[98]
Yang, H.; Kim, S.; Jang, M.; Kim, H.; Lee, S.; Kim, Y.; Eom, Y.A.; Kang, G.; Chiang, L.; Baek, J.H.; Ryu, J.H.; Lee, Y.E.; Koh, J.; Jung, H. Two-phase delivery using a horse oil and adenosine-loaded dissolving microneedle patch for skin barrier restoration, moisturization, and wrinkle improvement. J. Cosmet. Dermatol., 2019, 18, 936-943.
[http://dx.doi.org/10.1111/jocd.12768]
[99]
Choi, J-T.; Park, S-J.; Park, J-H. Microneedles containing cross-linked hyaluronic acid particulates for control of degradation and swelling behaviour after administration into skin. J. Drug Target., 2018, 26, 884-894.
[http://dx.doi.org/10.1080/1061186X.2018.1435664]
[100]
Donnelly, R.F.; Singh, T.R.R.; Garland, M.J.; Migalska, K.; Majithiya, R.; McCrudden, C.M.; Kole, P.L.; Mahmood, T.M.T.; McCarthy, H.O.; Woolfson, A.D. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater., 2012, 22.
[http://dx.doi.org/10.1002/adfm.201200864]
[101]
Pan, X.; Li, Y.; Pang, W.; Xue, Y.; Wang, Z.; Jiang, C.; Shen, C.; Liu, Q.; Liu, L. Preparation, characterisation and comparison of glabridin-loaded hydrogel-forming microneedles by chemical and physical cross-linking. Int. J. Pharm., 2022, 617, 121612.
[http://dx.doi.org/10.1016/J.IJPHARM.2022.121612]
[102]
Ranjan Yadav, P.; Iqbal Nasiri, M.; Vora, L.K.; Larrañeta, E.; Donnelly, R.F.; Pattanayek, S.K.; Bhusan Das, D. Super-swelling hydrogel-forming microneedle based transdermal drug delivery: Mathematical modelling, simulation and experimental validation. Int. J. Pharm., 2022, 622, 121835.
[http://dx.doi.org/10.1016/J.IJPHARM.2022.121835]
[103]
Aung, N.N.; Ngawhirunpat, T.; Rojanarata, T.; Patrojanasophon, P.; Pamornpathomkul, B.; Opanasopit, P. Fabrication, characterization and comparison of α-arbutin loaded dissolving and hydrogel forming microneedles. Int. J. Pharm., 2020, 586, 119508.
[http://dx.doi.org/10.1016/J.IJPHARM.2020.119508]
[104]
Donnelly, R.F.; McCrudden, M.T.C.; Alkilani, A.Z.; Larrañeta, E.; McAlister, E.; Courtenay, A.J.; Kearney, M.C.; Raj Singh, T.R.; McCarthy, H.O.; Kett, V.L.; Caffarel-Salvador, E.; Al-Zahrani, S.; Woolfson, A.D. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One, 2014, 9.
[http://dx.doi.org/10.1371/journal.pone.0111547]