Local Anesthetics, Clinical Uses, and Toxicity: Recognition and Management

Page: [1414 - 1420] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Local anesthetic (LA) compounds decrease the permeability of the ion channels to sodium, which in turn, reduces the rate of depolarization. These agents (a.k.a. -caines) are also used to depress mucosal sensations, e.g., gag reflex in the form of topical anesthetics. Overdose of LA can lead to local anesthetic systemic toxicity (LAST), which is the precursor of potentially lethal consequences on clinical grounds. There is a wide array of possible presentations of LAST, from mild findings, such as temporary hypertensive events, to serious conditions, including refractory cardiac dysfunction, dysrhythmias and prearrest situations. Lidocaine, prilocaine, mepivacaine, ropivacaine, and bupivacaine are among the most commonly used members of the family. The agents’ dosages should be adjusted in children, elderly and fragile individuals and those with organ failures, as the metabolism of the compounds will be impaired. The ideal body weight, along with hepatic and renal functional reserves, will have an impact on elimination kinetics. Systemic absorption is an untoward consequence of LA administration which deserves every means of prevention. Intravenous lipid emulsion is an important life-saving treatment in severe, life-threatening cases. This narrative review article is designed to cover the clinical uses of LA in children, recognition, and management of untoward effects of the agents, with special emphasis on the LAST.

[1]
Challapalli V, Tremont-Lukats IW, McNicol ED, Lau J, Carr DB. Systemic administration of local anesthetic agents to relieve neuropathic pain. Cochrane Database Syst Rev 2019; 2019: 10.
[http://dx.doi.org/10.1002/14651858.CD003345.pub2] [PMID: 31684682]
[2]
Torp KD, Metheny E, Simon LV. Lidocaine Toxicity. Treasure Island (FL): StatPearl 2021.
[PMID: 29494086]
[3]
Casati A, Fanelli G, Borghi B, Torri G. Ropivacaine or 2% mepivacaine for lower limb peripheral nerve blocks. Study group on orthopedic anesthesia of the Italian society of anesthesia, analgesia, and intensive care. Anesthesiology 1999; 90(4): 1047-52.
[http://dx.doi.org/10.1097/00000542-199904000-00018] [PMID: 10201676]
[4]
Mei W, Li M, Wan L, Tian Y. Update on the clinical utility and practical use of ropivacaine in Chinese patients. Drug Des Devel Ther 2014; 8: 1269-76.
[http://dx.doi.org/10.2147/DDDT.S57258] [PMID: 25246768]
[5]
Eng HC, Ghosh SM, Chin KJ. Practical use of local anesthetics in regional anesthesia. Curr Opin Anaesthesiol 2014; 27(4): 382-7.
[http://dx.doi.org/10.1097/ACO.0000000000000091] [PMID: 24824828]
[6]
Ortega B, Stramiello JA, Brigger M, Nation J. Anesthetic injections and analgesia use in pediatric post-tonsillectomy patients: A meta-analysis and systematic review. Int J Pediatr Otorhinolaryngol 2022; 152: 110976.
[http://dx.doi.org/10.1016/j.ijporl.2021.110976] [PMID: 34799188]
[7]
Williams DJ, Walker JD. A nomogram for calculating the maximum dose of local anaesthetic. Anaesthesia 2014; 69(8): 847-53.
[http://dx.doi.org/10.1111/anae.12679] [PMID: 24820093]
[8]
Walker JD, Williams N, Williams DJ. The accuracy of timed maximum local anaesthetic dose calculations with an electronic calculator, nomogram, and pen and paper. Anaesthesia 2017; 72(6): 760-4.
[http://dx.doi.org/10.1111/anae.13810] [PMID: 28236300]
[9]
Blair HA. Bupivacaine/meloxicam prolonged release: A review in postoperative pain. Drugs 2021; 81(10): 1203-11.
[http://dx.doi.org/10.1007/s40265-021-01551-9] [PMID: 34228280]
[10]
Safety Committee of Japanese Society of Anesthesiologists. Practical guide for the management of systemic toxicity caused by local anesthetics. J Anesth 2019; 33(1): 1-8.
[http://dx.doi.org/10.1007/s00540-018-2542-4] [PMID: 30417244]
[11]
Karcioglu O. Local anesthetic overdose: Diagnosis and treatment. In: Berhardt LV, Ed. Advances in Medicine and Biology. NY 11788 USA: Nova Science Publishers 2020.
[12]
Neal JM, Woodward CM, Harrison TK. The American society of regional anesthesia and pain medicine checklist for managing local anesthetic systemic toxicity. Reg Anesth Pain Med 2018; 43(2): 150-3.
[http://dx.doi.org/10.1097/AAP.0000000000000726] [PMID: 29356775]
[13]
Mowry JB, Spyker DA, Cantilena LR Jr, McMillan N, Ford M. 2013 annual report of the american association of poison control centers’ national poison data system (NPDS): 31st annual report. Clin Toxicol (Phila) 2014; 52(10): 1032-283.
[http://dx.doi.org/10.3109/15563650.2014.987397] [PMID: 25559822]
[14]
Mörwald EE, Zubizarreta N, Cozowicz C, Poeran J, Memtsoudis SG. Incidence of local anesthetic systemic toxicity in orthopedic patients receiving peripheral nerve blocks. Reg Anesth Pain Med 2017; 42(4): 442-5.
[http://dx.doi.org/10.1097/AAP.0000000000000544] [PMID: 28079735]
[15]
Gitman M, Barrington MJ. Local anesthetic systemic toxicity. Reg Anesth Pain Med 2018; 43(2): 1.
[http://dx.doi.org/10.1097/AAP.0000000000000721] [PMID: 29303925]
[16]
McMahon K, Paster J, Baker KA. Local anesthetic systemic toxicity in the pediatric patient. Am J Emerg Med 2022; 54: 325.e3-6.
[http://dx.doi.org/10.1016/j.ajem.2021.10.021] [PMID: 34742600]
[17]
Mahajan A, Derian A. Local anesthetic toxicity. Treasure Island, FL: StatPearls Publishing 2021.
[18]
Harvey M, Cave G. Lipid emulsion in local anesthetic toxicity. Curr Opin Anaesthesiol 2017; 30(5): 632-8.
[http://dx.doi.org/10.1097/ACO.0000000000000498] [PMID: 28692439]
[19]
El-Boghdadly K, Chin KJ. Local anesthetic systemic toxicity: Continuing professional development. Can J Anaesth 2016; 63(3): 330-49.
[http://dx.doi.org/10.1007/s12630-015-0564-z] [PMID: 26830640]
[20]
Neal JM, Bernards CM, Butterworth JF IV, et al. ASRA practice advisory on local anesthetic systemic toxicity. Reg Anesth Pain Med 2010; 35(2): 152-61.
[http://dx.doi.org/10.1097/AAP.0b013e3181d22fcd] [PMID: 20216033]
[21]
Neal JM, Mulroy MF, Weinberg GL. American Society of Regional Anesthesia and Pain Medicine. Checklist for managing local anesthetic systemic toxicity: treatment of local anesthetic systemic toxicity: 2012 version. Reg Anesth Pain Med 2012; 37(1): 16-8.
[http://dx.doi.org/10.1097/AAP.0b013e31822e0d8a] [PMID: 22189574]
[22]
Saraghi M, Moore PA, Hersh EV. Local anesthetic calculations: Avoiding trouble with pediatric patients. Gen Dent 2015; 63(1): 48-52.
[PMID: 25574719]
[23]
Ecoffey C, Lacroix F, Giaufré E, Orliaguet G, Courrèges P. Epidemiology and morbidity of regional anesthesia in children: a follow-up one-year prospective survey of the French-Language Society of Paediatric Anaesthesiologists (ADARPEF). Paediatr Anaesth 2010; 20(12): 1061-9.
[http://dx.doi.org/10.1111/j.1460-9592.2010.03448.x] [PMID: 21199114]
[24]
Singaravelu Ramesh A, Boretsky K. Local anesthetic systemic toxicity in children: A review of recent case reports and current literature. Reg Anesth Pain Med 2021; 46(10): 909-14.
[http://dx.doi.org/10.1136/rapm-2021-102529] [PMID: 34099573]
[25]
Neal JM, Barrington MJ, Fettiplace MR, et al. The third American society of regional anesthesia and pain medicine practice advisory on local anesthetic systemic toxicity. Reg Anesth Pain Med 2018; 43(2): 113-23.
[http://dx.doi.org/10.1097/AAP.0000000000000720] [PMID: 29356773]
[26]
Catalani B, Jones J Jr. Peripheral nerve block complications in children. Orthop Clin North Am 2022; 53(2): 179-86.
[http://dx.doi.org/10.1016/j.ocl.2021.11.004] [PMID: 35365262]
[27]
Ecoffey C, Bosenberg A, Lonnqvist PA, Suresh S, Delbos A, Ivani G. Practice advisory on the prevention and management of complications of pediatric regional anesthesia. J Clin Anesth 2022; 79: 110725.
[http://dx.doi.org/10.1016/j.jclinane.2022.110725] [PMID: 35313269]
[28]
Lin C, Darling C, Tsui BCH. Practical regional anesthesia guide for elderly patients. Drugs Aging 2019; 36(3): 213-34.
[http://dx.doi.org/10.1007/s40266-018-00631-y] [PMID: 30680678]
[29]
Waldinger R, Weinberg G, Gitman M. Local anesthetic toxicity in the geriatric population. Drugs Aging 2020; 37(1): 1-9.
[http://dx.doi.org/10.1007/s40266-019-00718-0] [PMID: 31598909]
[30]
Baker SD, Lee JY, White RP, et al. Double-blind, randomized clinical trial comparing one percent buffered versus two percent unbuffered lidocaine injections in children. Pediatr Dent 2021; 43(2): 88-94.
[PMID: 33892831]
[31]
Gautier P, Vandepitte C, Ramquet C, DeCoopman M, Xu D, Hadzic A. The minimum effective anesthetic volume of 0.75% ropivacaine in ultrasound-guided interscalene brachial plexus block. Anesth Analg 2011; 113(4): 951-5.
[http://dx.doi.org/10.1213/ANE.0b013e31822b876f] [PMID: 21821517]
[32]
Winnie AP. Interscalene brachial plexus block. Anesth Analg 1970; 49(3): 455-66.
[http://dx.doi.org/10.1213/00000539-197005000-00029] [PMID: 5534420]
[33]
Barrington MJ, Kluger R. Ultrasound guidance reduces the risk of local anesthetic systemic toxicity following peripheral nerve blockade. Reg Anesth Pain Med 2013; 38(4): 289-97.
[http://dx.doi.org/10.1097/AAP.0b013e318292669b] [PMID: 23788067]
[34]
Sites BD, Taenzer AH, Herrick MD, et al. Incidence of local anesthetic systemic toxicity and postoperative neurologic symptoms associated with 12,668 ultrasound-guided nerve blocks: An analysis from a prospective clinical registry. Reg Anesth Pain Med 2012; 37(5): 478-82.
[http://dx.doi.org/10.1097/AAP.0b013e31825cb3d6] [PMID: 22705953]
[35]
Melnyk V, Ibinson JW, Kentor ML, Orebaugh SL. Updated retrospective single-center comparative analysis of peripheral nerve block complications using landmark peripheral nerve stimulation versus ultrasound guidance as a primary means of nerve localization. J Ultrasound Med 2018; 37(11): 2477-88.
[http://dx.doi.org/10.1002/jum.14603] [PMID: 29574861]
[36]
Weinberg G, Lin B, Zheng S, et al. Partitioning effect in lipid resuscitation: Further evidence for the lipid sink. Crit Care Med 2010; 38(11): 2268-9.
[http://dx.doi.org/10.1097/CCM.0b013e3181f17d85] [PMID: 20959762]
[37]
Samuels TL, Willers JW, Uncles DR, Monteiro R, Halloran C, Dai H. In vitro suppression of drug-induced methaemoglobin formation by Intralipid ® in whole human blood: observations relevant to the ‘lipid sink theory’. Anaesthesia 2012; 67(1): 23-32.
[http://dx.doi.org/10.1111/j.1365-2044.2011.06914.x] [PMID: 21999405]
[38]
Gueret G, Pennec JP, Arvieux CC. Hemodynamic effects of intralipid after verapamil intoxication may be due to a direct effect of fatty acids on myocardial calcium channels. Acad Emerg Med 2007; 14(8): 761.
[http://dx.doi.org/10.1197/j.aem.2007.04.006] [PMID: 17656613]
[39]
Presley JD, Chyka PA. Intravenous lipid emulsion to reverse acute drug toxicity in pediatric patients. Ann Pharmacother 2013; 47(5): 735-43.
[http://dx.doi.org/10.1345/aph.1R666] [PMID: 23613099]
[40]
Nouette-Gaulain K, Capdevila X, Robin F, Beloeil H. Intravenous lipid emulsion and local anesthetic-induced systemic toxicity: mechanisms and limits. Ann Fr Anesth Reanim 2014; 33(6): 411-7.
[http://dx.doi.org/10.1016/j.annfar.2014.03.012] [PMID: 24954124]
[41]
Rahman S, Li J, Bopassa JC, et al. Phosphorylation of GSK-3β mediates intralipid-induced cardioprotection against ischemia/reperfusion injury. Anesthesiology 2011; 115(2): 242-53.
[http://dx.doi.org/10.1097/ALN.0b013e318223b8b9] [PMID: 21691195]
[42]
Clemons J, Jandu A, Stein B, Chary M. Efficacy of lipid emulsion therapy in treating cardiotoxicity from diphenhydramine ingestion: A review and analysis of case reports. Clin Toxicol (Phila) 2022; 60(5): 550-8.
[http://dx.doi.org/10.1080/15563650.2022.2038187] [PMID: 35171053]
[43]
ACMT position statement: Interim guidance for the use of lipid resuscitation therapy. J Med Toxicol 2011; 7(1): 81-2.
[http://dx.doi.org/10.1007/s13181-010-0125-3] [PMID: 21327839]