Hypothesizing the Green Synthesis of Tamoxifen Loaded Magnetic Nanoparticles for the Treatment of Breast Cancer

Page: [537 - 546] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Breast cancer is the second leading cause of death all over the world and is not only limited to females but also affects males. For estrogen receptor-positive breast cancer, tamoxifen has been considered the gold-line therapy for many decades. However, due to the side effects associated with the use of tamoxifen, its use is only limited to individuals in high-risk groups and limits its clinical application to moderate and/or lower-risk groups. Thus, there is a necessity to decrease the dose of tamoxifen, which can be achieved by targeting the drug to breast cancer cells and limiting its absorption to other body parts.

Artificial antioxidants used in the formulation preparation are assumed to upsurge the risk of cancer and liver damage in humans. The need of the hour is to explore bioefficient antioxidants from natural plant sources as they are safer and additionally possess antiviral, anti-inflammatory, and anticancer properties.

The objective of this hypothesis is to prepare tamoxifen-loaded PEGylated NiO nanoparticles using green chemistry, tumbling the toxic effects of the conventional method of synthesis for targeted delivery to breast cancer cells.

The significance of the work is to hypothesize a green method for the synthesis of NiO nanoparticles that are eco-friendly, cost-effective, decrease multidrug resistance, and can be used for targeted therapy. Garlic extract contains an organosulfur compound (Allicin) which has drug-metabolizing, anti-oxidant, and tumour growth inhibition effects. In breast cancer, allicin sensitizes estrogen receptors, increasing the anticancer efficacy of tamoxifen and reducing offsite toxicity. Thus, this garlic extract would act as a reducing agent and a capping agent. The use of nickel salt can help in targeted delivery to breast cancer cells and, in turn, reduces drug toxicity in different organs.

This novel strategy may aim for cancer management with less toxic agents acting as an apt therapeutic modality.

[1]
Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol 2018; 9: 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[2]
Laskar YB, Lourembam RM, Mazumder PB. Herbal remedies for breast cancer prevention and treatment. In: Medicinal Plants-Use in Prevention and Treatment of Diseases. London, UK: IntechOpen 2020.
[3]
Tang Y, Wang Y, Kiani MF, Wang B. Classification, treatment strategy, and associated drug resistance in breast cancer. Clin Breast Cancer 2016; 16(5): 335-43.
[http://dx.doi.org/10.1016/j.clbc.2016.05.012] [PMID: 27268750]
[4]
Neel J-C, Humbert L, Lebrun J-J. The dual role of TGFβ in human cancer: From tumor suppression to cancer metastasis. ISRN molecular biology 2012; 2012: 1-28.
[5]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[6]
Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol 2014; 740: 364-78.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[7]
Shagufta Ahmad I. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem 2018; 143: 515-31.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.056] [PMID: 29207335]
[8]
Hortobagyi GN. Treatment of breast cancer. N Engl J Med 1998; 339(14): 974-84.
[http://dx.doi.org/10.1056/NEJM199810013391407] [PMID: 9753714]
[9]
Mangla B, Neupane YR, Singh A, Kohli K. Tamoxifen and Sulphoraphane for the breast cancer management: A synergistic nanomedicine approach. Med Hypotheses 2019; 132: 109379.
[http://dx.doi.org/10.1016/j.mehy.2019.109379] [PMID: 31454641]
[10]
Jordan VC. Tamoxifen: A most unlikely pioneering medicine. Nat Rev Drug Discov 2003; 2(3): 205-13.
[http://dx.doi.org/10.1038/nrd1031] [PMID: 12612646]
[12]
SreeHarsha N, Jagadeesh G, Hiremath , et al. An approach to enhance dissolution rate of tamoxifen citrate. BioMed research international 2019; 2019: 2161348.
[13]
Kumar Teli M, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: Going small means aiming big. Curr Pharm Des 2010; 16(16): 1882-92.
[http://dx.doi.org/10.2174/138161210791208992] [PMID: 20222866]
[14]
Wang B, Yang Q, Wang Y, Li Z. The toolbox of designing nanoparticles for tumors. Mini Rev Med Chem 2014; 14(9): 707-16.
[http://dx.doi.org/10.2174/1389557514666140820122307] [PMID: 25138086]
[15]
Younis NK, Yassine HM, Eid AH. Nanomedicine for Cancer. Curr Med Chem 2022; 30(23): 2592-4.
[16]
Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007; 9(2): E128-47.
[http://dx.doi.org/10.1208/aapsj0902015] [PMID: 17614355]
[17]
Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm J 2016; 24(4): 473-84.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[18]
Nour KY, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: Attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86(Pt 2): 1-13.
[19]
Younis NK, Ghoubaira JA, Bassil EP, Tantawi HN, Eid AH. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine 2021; 36: 102433.
[20]
M JF. P L. Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Prog Biomater 2015; 4(2-4): 113-21.
[http://dx.doi.org/10.1007/s40204-015-0042-2] [PMID: 26566469]
[21]
Azizi M, Ghourchian H, Yazdian F, Alizadehzeinabad H. Albumin coated cadmium nanoparticles as chemotherapeutic agent against MDA-MB 231 human breast cancer cell line. Artificial cells, nanomedicine, and biotechnology 2018; 46(sup1): 787-97.
[http://dx.doi.org/10.1080/21691401.2018.1436064]
[22]
Fagundes DA, Leonel LV, Fernandez-Outon LE, Ardisson JD, Dos Santos RG. Radiosensitizing effects of citrate coated cobalt and nickel ferrite nanoparticles on breast cancer cells. Nanomedicine 2020; 15(29): 2823-36.
[http://dx.doi.org/10.2217/nnm-2020-0313]
[23]
Sundram S, Baskar S, Subramanian AJET. Green synthesized nickel doped cobalt ferrite nanoparticles exhibit antibacterial activity and induce reactive oxygen species mediated apoptosis in MCF-7 breast cancer cells through inhibition of PI3K/Akt/mTOR pathway. Environ Toxicol 2022; 37(12): 2877-88.
[24]
Kargar PG, Noorian M, Chamani E, Bagherzade G, Kiani Z. Synthesis, characterization and cytotoxicity evaluation of a novel magnetic nanocomposite with iron oxide deposited on cellulose nanofibers with nickel (Fe3O4@NFC@ ONSM-Ni). RSC Adv 2021; 11: 17413-30.
[25]
Mirabello V, Calatayud DG, Arrowsmith RL, Ge H, Pascu SI. Metallic nanoparticles as synthetic building blocks for cancer diagnostics: From materials design to molecular imaging applications. J Mater Chem B Mater Biol Med 2015; 3(28): 5657-72.
[http://dx.doi.org/10.1039/C5TB00841G] [PMID: 32262561]
[26]
van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery. Pharm Res 2007; 24(8): 1405-14.
[http://dx.doi.org/10.1007/s11095-007-9284-6] [PMID: 17393074]
[27]
Heidari Majd M, Akbarzadeh A, Sargazi A. Evaluation of host–guest system to enhance the tamoxifen efficiency. Artif Cells Nanomed Biotechnol 2017; 45(3): 441-7.
[http://dx.doi.org/10.3109/21691401.2016.1160916] [PMID: 27012732]
[28]
Heidari Majd M, Asgari D, Barar J, et al. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf B Biointerfaces 2013; 106: 117-25.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.051] [PMID: 23434700]
[29]
Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 2014; 4(4): 385-92.
[http://dx.doi.org/10.1007/s13204-013-0216-y]
[30]
Nosrati H, Rashidi N, Danafar H, Manjili HK. Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3O4 magnetic nanoparticles against breast cancer cell lines. J Inorg Organomet Polym Mater 2018; 28(3): 1178-86.
[http://dx.doi.org/10.1007/s10904-017-0758-7]
[31]
Ada K, Turk M, Oguztuzun S, et al. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells. Folia Histochem Cytobiol 2010; 48(4): 524-9.
[PMID: 21478093]
[32]
Jaji N-D, Lee HL, Hussin MH, Akil H. Md, Zakaria MR, Othman MBH. Advanced nickel nanoparticles technology: From synthesis to applications. Nanotechnol Reviews 2020; 9(1): 1456-80.
[33]
Nasrollahzadeh M, Atarod M, Sajjadi M, Issaabadi Z. Plant-mediated green synthesis of nanostructures: Mechanisms, characterization, and applications. Interface Sci Technol 2019; 28: 199-322.
[34]
Ai J, Biazar E, Jafarpour M, et al. Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomed 2011; 6: 1117-27.
[PMID: 21698080]
[35]
Abdul Salam H, Sivaraj R, Venckatesh R. Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater Lett 2014; 131: 16-8.
[http://dx.doi.org/10.1016/j.matlet.2014.05.033]
[36]
Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev 2015; 44(16): 5778-92.
[http://dx.doi.org/10.1039/C4CS00363B] [PMID: 25615873]
[37]
Abd Gani SS, Azahar NF, Mokhtar NF. Response surface optimization of high antioxidative extraction from Curcuma zedoaria leaves. J Adv Res Fluid Mech Therm Sci 2018; 43(1): 90-103.
[38]
Muhammad N, Rahim NFA, Abdullah N, Talip BA, Dusuki NJS. Optimization of the antioxidant properties of the polyherbal formulations. J Advanc Res Fluid Mech Therm Sci 2018; 50(1): 16-25.
[39]
Muhammad N, Rahim NFA, Putra TNMT, et al. Antioxidant activity and its interaction effect on polyherbal formulations of nephrodium inophyllum, polygonum minus Annona squamosal L. and Stevia rebaudiana. J Adv Res Fluid Mech Therm Sci 2019; 61(1): 1-9.
[40]
Abd Manan E, Abd Gani SS, Zaidan UH, Halm M. Characterization of antioxidant activities in red dragon fruit (Hylocereus polyrhizus) pulp water-based extract. J Adv Res Fluid Mechanic Thermal Sci 2019; 61(2): 170-80.
[41]
Rahim NA, Zakaria N, Dzulkarnain SMH. Antioxidant activity of Alstonia Angustifolia ethanolic leaf extract. AIP Conference ProceedingsKedah, Malaysia 2017.
[http://dx.doi.org/10.1063/1.5005345]]
[42]
Bakar MFA, Akhir RAM, Sanusi SB. Antioxidant and antimicrobial potential of stingless bee (Heterotrigona itama) by-products. J Adv Res Fluid Mech Therm Sci 2018; 42(1): 72-9.
[43]
Bayan L, Koulivand PH, Gorji A. Garlic: A review of potential therapeutic effects. Avicenna J Phytomed 2014; 4(1): 1-14.
[PMID: 25050296]
[44]
Yun HM, Ban JO, Park KR, et al. Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol Ther 2014; 142(2): 183-95.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.005] [PMID: 24333688]
[45]
Hodge G, Hodge S, Han P. Allium sativum (garlic) suppresses leukocyte inflammatory cytokine production in vitro: Potential therapeutic use in the treatment of inflammatory bowel disease. Cytometry 2002; 48(4): 209-15.
[http://dx.doi.org/10.1002/cyto.10133] [PMID: 12210145]
[46]
Sobenin IA, Myasoedova VA, Iltchuk MI, Zhang DW, Orekhov AN. Therapeutic effects of garlic in cardiovascular atherosclerotic disease. Chin J Nat Med 2019; 17(10): 721-8.
[http://dx.doi.org/10.1016/S1875-5364(19)30088-3] [PMID: 31703752]
[47]
Ribeiro M, Alvarenga L, Cardozo LFMF, et al. From the distinctive smell to therapeutic effects: Garlic for cardiovascular, hepatic, gut, diabetes and chronic kidney disease. Clin Nutr 2021; 40(7): 4807-19.
[http://dx.doi.org/10.1016/j.clnu.2021.03.005] [PMID: 34147285]
[48]
Gebreyohannes G, Gebreyohannes M. Medicinal values of garlic: A review. Int J Med Med Sci 2013; 5(9): 401-8.
[49]
Thomson M, Ali M. Garlic [Allium sativum]: A review of its potential use as an anti-cancer agent. Curr Cancer Drug Targets 2003; 3(1): 67-81.
[http://dx.doi.org/10.2174/1568009033333736] [PMID: 12570662]
[50]
Doble M, Rollins K, Kumar A. Green chemistry and engineering. Cambridge, USA: Academic Press 2010.
[51]
Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 2018; 16(1): 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[52]
Lage H. An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci 2008; 65(20): 3145-67.
[http://dx.doi.org/10.1007/s00018-008-8111-5] [PMID: 18581055]
[53]
Li R, Xie Y. Nanodrug delivery systems for targeting the endogenous tumor microenvironment and simultaneously overcoming multidrug resistance properties. J Control Rel 2017; 251: 49-67.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.020] [PMID: 28232226]
[54]
Gautier J, Allard-Vannier E, Munnier E, Soucé M, Chourpa I. Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. J Control Rel 2013; 169(1-2): 48-61.
[http://dx.doi.org/10.1016/j.jconrel.2013.03.018] [PMID: 23567046]
[55]
Lazaro-Carrillo A, Calero M, Aires A, et al. Tailored functionalized magnetic nanoparticles to target breast cancer cells including cancer stem-like cells. Cancers 2020; 12(6): 1397.
[http://dx.doi.org/10.3390/cancers12061397] [PMID: 32485849]
[56]
Siddiqui MA, Ahamed M, Ahmad J, et al. Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food Chem Toxicol 2012; 50(3-4): 641-7.
[http://dx.doi.org/10.1016/j.fct.2012.01.017] [PMID: 22273695]
[57]
Khan S, Ansari AA, Malik A, Chaudhary AA, Syed JB, Khan AA. Preparation, characterizations and in vitro cytotoxic activity of nickel oxide nanoparticles on HT-29 and SW620 colon cancer cell lines. J Trace Elem Med Biol 2019; 52: 12-7.
[http://dx.doi.org/10.1016/j.jtemb.2018.11.003] [PMID: 30732872]
[58]
Cho YL, Tan HWS, Saquib Q, et al. Dual role of oxidative stress-JNK activation in autophagy and apoptosis induced by nickel oxide nanoparticles in human cancer cells. Free Radic Biol Med 2020; 153: 173-86.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.03.027] [PMID: 32353482]
[59]
Iqbal J, Abbasi BA, Mahmood T, Hameed S, Munir A, Kanwal S. Green synthesis and characterizations of Nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl Organomet Chem 2019; 33(8): e4950.
[http://dx.doi.org/10.1002/aoc.4950]
[60]
Habtemariam AB, Oumer MJMI. Plant extract mediated synthesis of nickel oxide nanoparticles. Mat Int 2020; 2: 0205-9.
[61]
Pandian CJ, Palanivel R, Dhanasekaran S. Screening antimicrobial activity of nickel nanoparticles synthesized using ocimum sanctum leaf extract. J Nanopart 2016; 2016: 1-3.
[62]
Sudhasree S, Shakila Banu A, Brindha P, Kurian GA. Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicological & Environmental Chemistry 2014; 96(5): 743-54.
[http://dx.doi.org/10.1080/02772248.2014.923148]
[63]
Chen H, Wang J, Huang D, et al. Plant-mediated synthesis of size-controllable Ni nanoparticles with alfalfa extract. Materials Letters 2014; 122: 166-9.
[http://dx.doi.org/10.1016/j.matlet.2014.02.028]
[64]
Uddin S, Safdar LB, Iqbal J, et al. Green synthesis of nickel oxide nanoparticles using leaf extract of Berberis balochistanica: Characterization, and diverse biological applications. Microsc Res Tech 2021; 84(9): 2004-16.
[http://dx.doi.org/10.1002/jemt.23756] [PMID: 33763916]
[65]
Angajala G, Ramya R, Subashini R. In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel nanoparticles phytofabricated from aqueous leaf extracts of Aegle marmelos Correa. Acta Trop 2014; 135: 19-26.
[http://dx.doi.org/10.1016/j.actatropica.2014.03.012] [PMID: 24681220]
[66]
Abbaszadeh N, Jaahbin N, Pouraei A, et al. Preparation of novel nickel oxide@ glutamic/thiosemicarbazide nanoparticles: Implications for cytotoxic and anti-cancer studies in MCF-7 breast cancer cells. J Cluster Sci 2020; 1-9.
[67]
Binu NM, Prema D, Prakash J, et al. Folic acid decorated pH sensitive polydopamine coated honeycomb structured nickel oxide nanoparticles for targeted delivery of quercetin to triple negative breast cancer cells. Colloids and Surfaces A: Physicochem Eng Aspects 2021; 630: 127609.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127609]
[68]
Bano S, Nazir S, Munir S, AlAjmi MF, Afzal M, Mazhar K. “Smart” nickel oxide based core–shell nanoparticles for combined chemo and photodynamic cancer therapy. Int J Nanomedicine 2016; 11: 3159-66.
[69]
Uddin S, Iqbal J, Safdar LB, et al. Green synthesis of BPL NiONPs using leaf extract of Berberis pachyacantha: characterization and multiple in vitro biological applications. Molecules 2022; 27(7): 2064.
[http://dx.doi.org/10.3390/molecules27072064]
[70]
Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Zhang X, Kennedy LJ. Green synthesis of nickel oxide nanoparticles using Solanum trilobatum extract for cytotoxicity, antibacterial and photocatalytic studies. Surf Interfaces 2020; 20: 100553.
[http://dx.doi.org/10.1016/j.surfin.2020.100553]
[71]
Abbasi BA, Iqbal J, Mahmood T, Ahmad R, Kanwal S, Afridi S. Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: characterization and different biological applications. Mater Res Express 2019; 6(8): 0850a7.
[72]
Rameshthangam P, Chitra JP. Synergistic anticancer effect of green synthesized nickel nanoparticles and quercetin extracted from Ocimum sanctum leaf extract. J Mater Sci Technol 2018; 34(3): 508-22.
[http://dx.doi.org/10.1016/j.jmst.2017.01.004]
[73]
Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Maaza M, Ayeshamariam A, Kennedy LJ. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobiol B 2016; 164: 352-60.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.10.003] [PMID: 27728880]
[74]
Cadena Castro D, Gatti G, Martín SE, Uberman PM, García MC. Promising tamoxifen-loaded biocompatible hybrid magnetic nanoplatforms against breast cancer cells: Synthesis, characterization and biological evaluation. New J Chem 2021; 45(8): 4032-45.
[http://dx.doi.org/10.1039/D0NJ04226A]
[75]
Varadharajaperumal P, Subramanian B, Santhanam A. Biopolymer mediated nanoparticles synthesized from Adenia hondala for enhanced tamoxifen drug delivery in breast cancer cell line. Advances in Natural Sciences: Nanosci Nanotechnol 2017; 8(3): 035011.
[http://dx.doi.org/10.1088/2043-6254/aa7253]
[76]
Rostami S, Tafvizi F, Manjili HRK. High efficacy of tamoxifen loaded L-lysine coated magnetic iron oxide nanoparticles in cell cycle arrest and anti-cancer activity for breast cancer therapy. Bioimpacts 2021.
[PMID: 35975200]
[77]
Hashemzadeh N, Dolatkhah M, Aghanejad A, et al. Folate receptor-mediated delivery of 1-MDT-loaded mesoporous silica magnetic nanoparticles to target breast cancer cells. Nanomedicine 2021; 16(24): 2137-54.
[http://dx.doi.org/10.2217/nnm-2021-0176] [PMID: 34530630]
[78]
Albert EL, Shirosaki Y, Abdullah CAC. Drug release and kinetic study of tamoxifen citrate conjugated with magnetite nanoparticle for drug delivery application. IJAER 2018; 13: 5360-9.
[79]
Mitra S, Das R, Emran T, et al. Diallyl Disulfide: A bioactive garlic compound with anticancer potential. Front Pharmacol 2022; 13: 943967.
[80]
Shouk R, Abdou A, Shetty K, Sarkar D, Eid AH. Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr Res 2014; 34(2): 106-5.
[http://dx.doi.org/10.1016/j.nutres.2013.12.005]
[81]
Alali F, Alali FQ, El-Elimat T, et al. Garlic for cardiovascular disease: Prevention or treatment? Curr Pharm Des 2017; 23(7): 1028-41.
[82]
Iciek M, Kwiecień I, Włodek L. Biological properties of garlic and garlic-derived organosulfur compounds. Environ Mol Mutagen 2009; 50(3): 247-65.
[http://dx.doi.org/10.1002/em.20474] [PMID: 19253339]
[83]
Anu K, Singaravelu G, Murugan K, Benelli G. Green synthesis of selenium nanoparticles using garlic cloves (Allium sativum): biophysical characterization and cytotoxicity on vero cells. J Cluster Sci 2017; 28(1): 551-63.
[http://dx.doi.org/10.1007/s10876-016-1123-7]
[84]
Von White G, Kerscher P, Brown RM, et al. Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. J Nanomater 2012; 2012: 730746.
[http://dx.doi.org/10.1155/2012/730746]
[85]
Vijayakumar S, Malaikozhundan B, Saravanakumar K, Durán-Lara EF, Wang MH, Vaseeharan B. Garlic clove extract assisted silver nanoparticle – Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J Photochem Photobiol B 2019; 198: 111558.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111558] [PMID: 31357173]
[86]
Meléndez-Villanueva MA, Morán-Santibañez K, Martínez-Sanmiguel JJ, et al. Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses 2019; 11(12): 1111.
[http://dx.doi.org/10.3390/v11121111] [PMID: 31801280]
[87]
Stan M, Popa A, Toloman D, Dehelean A, Lung I, Katona G. Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Mater Sci Semicond Process 2015; 39: 23-9.
[http://dx.doi.org/10.1016/j.mssp.2015.04.038]
[88]
Tsubura A, Lai Y-C, Kuwata M, Uehara N, Yoshizawa K. Anticancer effects of garlic and garlic-derived compounds for breast cancer control. Anti-Cancer Agents Med Chem 2011; 11(3): 249-53.
[http://dx.doi.org/10.2174/187152011795347441]
[89]
Kim KH, Cho SJ, Kim BO, Pyo S. Differential pro-apoptotic effect of allicin in oestrogen receptor-positive or -negative human breast cancer cells. J Funct Foods 2016; 25: 341-53.
[http://dx.doi.org/10.1016/j.jff.2016.06.019]
[90]
Sharma R, Sharma R, Khaket TP, Dutta C, Chakraborty B, Mukherjee TK. Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell Oncol 2017; 40(3): 199-208.
[http://dx.doi.org/10.1007/s13402-017-0324-x] [PMID: 28534212]
[91]
Lee CG, Lee HW, Kim BO, Rhee D-K, Pyo S. Allicin inhibits invasion and migration of breast cancer cells through the suppression of VCAM-1: Regulation of association between p65 and ER-α. J Funct Foods 2015; 15: 172-85.
[http://dx.doi.org/10.1016/j.jff.2015.03.017]
[92]
Molina MM, Seabra AB, de Oliveira MG, Itri R, Haddad PS. Nitric oxide donor superparamagnetic iron oxide nanoparticles. Mater Sci Eng C 2013; 33(2): 746-51.
[http://dx.doi.org/10.1016/j.msec.2012.10.027] [PMID: 25427482]
[93]
Hao J, Fang X, Zhou Y, et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int J Nanomed 2011; 6: 683-92.
[PMID: 21556343]
[94]
Angel Ezhilarasi A, Judith Vijaya J, Kaviyarasu K, John Kennedy L, Ramalingam RJ, Al-Lohedan HA. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photochem Photobiol B 2018; 180: 39-50.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.01.023] [PMID: 29413700]
[95]
Pham XN, Nguyen TP, Pham TN, Tran TTN, Tran TVT. Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery. Advances in Natural Sciences: Nanosci Nanotechnol 2016; 7(4): 045010.
[http://dx.doi.org/10.1088/2043-6262/7/4/045010]
[96]
Hachani R, Lowdell M, Birchall M, et al. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 2016; 8(6): 3278-87.
[http://dx.doi.org/10.1039/C5NR03867G] [PMID: 26460932]
[97]
Rath K, Sen S. Garlic extract based preparation of size controlled superparamagnetic hematite nanoparticles and their cytotoxic applications. Indian J Biotechnol 2019; 18: 108-18.
[98]
Hanini A, Schmitt A, Kacem K, Chau F, Ammar S, Gavard J. Evaluation of iron oxide nanoparticle biocompatibility. Int J Nanomed 2011; 6: 787-94.
[PMID: 21589646]