MIR-29A-3P, MIR-29C-3P, MIR-146B-5P AND MIR-150-5P, Their Target Genes and lncrnas in HIV Infection: A Bioinformatic Study

Page: [128 - 139] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Increasing evidence suggests that microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have emerged as attractive targets in viral infections, including Human immunodeficiency virus (HIV).

Objective: To deepen the understanding of the molecular mechanisms that lead to HIV and provide potential targets for the future development of molecular therapies for its treatment.

Methods: Four miRNAs were selected as candidates based on a previous systematic review. A combination of bioinformatic analyses was performed to identify their target genes, lncRNAs and biological processes that regulate them.

Results: In the constructed miRNA–mRNA network, 193 gene targets are identified. These miRNAs potentially control genes from several important processes, including signal transduction and cancer. LncRNA-XIST, lncRNA-NEAT1 and lncRNA-HCG18 interact with all four miRNAs.

Conclusion: This preliminary result forms the basis for improving reliability in future studies to fully understand the role these molecules and their interactions play in HIV.

Graphical Abstract

[1]
Langebeek N, Kooij KW, Wit FW, et al. Impact of comorbidity and ageing on health-related quality of life in HIV-positive and HIV-negative individuals. AIDS 2017; 31(10): 1471-81.
[http://dx.doi.org/10.1097/QAD.0000000000001511] [PMID: 28574965]
[2]
Vidya Vijayan KK, Karthigeyan KP, Tripathi SP, Hanna LE. Pathophysiology of CD4+ T-cell depletion in HIV-1 and HIV-2 infections. Front Immunol 2017; 8: 580.
[http://dx.doi.org/10.3389/fimmu.2017.00580] [PMID: 28588579]
[4]
Highly Active Antiretroviral Therapy (HAART). Treasure Island, FL: StatPearls Publishing 2022.
[5]
Van Lint C, Bouchat S, Marcello A. HIV-1 transcription and latency: An update. Retrovirology 2013; 10(1): 67.
[http://dx.doi.org/10.1186/1742-4690-10-67] [PMID: 23803414]
[6]
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV cure: The latent reservoir. AIDS Res Hum Retroviruses 2018; 34(9): 739-59.
[http://dx.doi.org/10.1089/aid.2018.0118] [PMID: 30056745]
[7]
Zhang P, Wu W, Chen Q, Chen M. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform 2019; 16(3): 20190027.
[http://dx.doi.org/10.1515/jib-2019-0027] [PMID: 31301674]
[8]
Ghafouri-fard S, Mahmud Hussen B, Abak A, Taheri M, Abdulmajid Ayatollahi S. Emerging role of non-coding RNAs in the course of HIV infection. Int Immunopharmacol 2022; 103: 108460.
[http://dx.doi.org/10.1016/j.intimp.2021.108460] [PMID: 34942460]
[9]
Ramirez PW, Pantoja C, Beliakova-Bethell N. An evaluation on the role of non-coding RNA in HIV transcription and latency: A review. HIV AIDS 2023; 15: 115-34.
[http://dx.doi.org/10.2147/HIV.S383347] [PMID: 36942082]
[10]
Chen L, Zhang YH, Pan X, et al. Tissue expression difference between mRNAs and lncRNAs. Int J Mol Sci 2018; 19(11): 3416.
[http://dx.doi.org/10.3390/ijms19113416] [PMID: 30384456]
[11]
Tüfekci KU, Meuwissen RLJ. Genç Ş. The role of microRNAs in biological processes. Methods Mol Biol 2014; 1107: 15-31.
[http://dx.doi.org/10.1007/978-1-62703-748-8_2] [PMID: 24272429]
[12]
Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA 2019; 25(1): 1-16.
[http://dx.doi.org/10.1261/rna.068692.118] [PMID: 30333195]
[13]
Panico A, Tumolo MR, Leo CG, et al. The influence of lifestyle factors on miRNA expression and signal pathways: A review. Epigenomics 2021; 13(2): 145-64.
[http://dx.doi.org/10.2217/epi-2020-0289] [PMID: 33355508]
[14]
Tumolo MR, Panico A, De Donno A, et al. The expression of microRNAs and exposure to environmental contaminants related to human health: A review. Int J Environ Health Res 2022; 32(2): 332-54.
[http://dx.doi.org/10.1080/09603123.2020.1757043] [PMID: 32393046]
[15]
Flatmark K, Høye E, Fromm B. microRNAs as cancer biomarkers.Scand J Clin Lab Invest 2016; 76 ((sup245)): 80-3.
[http://dx.doi.org/ 10.1080/00365513.2016.1210330] [PMID: 27542003]
[16]
Covino DA, Kaczor-Urbanowicz KE, Lu J, et al. Transcriptome profiling of human monocyte-derived macrophages upon CCL2 neutralization reveals an association between activation of innate immune pathways and restriction of HIV-1 gene expression. Front Immunol 2020; 11: 2129.
[http://dx.doi.org/10.3389/fimmu.2020.02129] [PMID: 33072075]
[17]
Lodge R, Bellini N, Laporte M, et al. Interleukin-1β triggers p53-mediated downmodulation of CCR5 and HIV-1 entry in macrophages through microRNAs 103 and 107. MBio 2020; 11(5): e02314-20.
[http://dx.doi.org/10.1128/mBio.02314-20] [PMID: 32994328]
[18]
Salviano-Silva A, Lobo-Alves S, Almeida R, Malheiros D, Petzl-Erler M. Besides pathology: Long non-coding RNA in cell and tissue homeostasis. Noncoding RNA 2018; 4(1): 3.
[http://dx.doi.org/10.3390/ncrna4010003] [PMID: 29657300]
[19]
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell 2011; 146(3): 353-8.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[20]
Zhou X, Zhang W, Jin M, Chen J, Xu W, Kong X. lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. Cell Death Dis 2017; 8(7): e2929.
[http://dx.doi.org/10.1038/cddis.2017.321] [PMID: 28703801]
[21]
Chen L, Chen L, Zuo L, et al. Short communication: Long noncoding RNA GAS5 inhibits HIV-1 replication through interaction with miR-873. AIDS Res Hum Retroviruses 2018; 34(6): 544-9.
[http://dx.doi.org/10.1089/aid.2017.0177] [PMID: 29620929]
[22]
Chen YG, Satpathy AT, Chang HY. Gene regulation in the immune system by long noncoding RNAs. Nat Immunol 2017; 18(9): 962-72.
[http://dx.doi.org/10.1038/ni.3771] [PMID: 28829444]
[23]
Trypsteen W, Mohammadi P, Van Hecke C, et al. Differential expression of lncRNAs during the HIV replication cycle: An underestimated layer in the HIV-host interplay. Sci Rep 2016; 6(1): 36111.
[http://dx.doi.org/10.1038/srep36111] [PMID: 27782208]
[24]
Trypsteen W, White CH, Mukim A, et al. Long non-coding RNAs and latent HIV – A search for novel targets for latency reversal. PLoS One 2019; 14(11): e0224879.
[http://dx.doi.org/10.1371/journal.pone.0224879] [PMID: 31710657]
[25]
Chen C, Lu X, Wu N. RNA sequencing of CD4 T-cells reveals the relationships between lncRNA-mRNA co-expression in elite controller vs. HIV-positive infected patients. PeerJ 2020; 8: e8911.
[http://dx.doi.org/10.7717/peerj.8911] [PMID: 32341894]
[26]
Chu M, Chen Y, Qin G, et al. Identification of novel lncRNAs associated with sensitivity of HIV antiretroviral therapy: A two-stage matched case-control study. J Infect Public Health 2022; 15(12): 1446-54.
[http://dx.doi.org/10.1016/j.jiph.2022.10.027] [PMID: 36395669]
[27]
Chen L, Zhou Y, Li H. LncRNA, miRNA and lncRNA-miRNA interaction in viral infection. Virus Res 2018; 257: 25-32.
[http://dx.doi.org/10.1016/j.virusres.2018.08.018] [PMID: 30165080]
[28]
Leo CG, Mincarone P, Tumolo MR, et al. MiRNA expression profiling in HIV pathogenesis, disease progression and response to treatment: A systematic review. Epigenomics 2021; 13(20): 1653-71.
[http://dx.doi.org/10.2217/epi-2021-0237] [PMID: 34693727]
[29]
TargetScanHuman 8.0. 2019. Available From: https://www.targetscan.org/vert_80/
[30]
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4: e05005.
[http://dx.doi.org/10.7554/eLife.05005] [PMID: 26267216]
[31]
miRDB - MicroRNA target prediction database. 2020. Available From: https://mirdb.org/
[32]
Wong N, Wang X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 2015; 43(D1): D146-52.
[http://dx.doi.org/10.1093/nar/gku1104] [PMID: 25378301]
[33]
miRBase. 2023. Available From: https://www.mirbase.org/
[34]
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): D155-62.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[35]
miRNet. 2022. Available From: https://www.mirnet.ca/
[36]
Chang L, Xia J. MicroRNA regulatory network analysis using miRNet 2.0. Methods Mol Biol 2023; 2594: 185-204.
[http://dx.doi.org/10.1007/978-1-0716-2815-7_14] [PMID: 36264497]
[37]
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 2015; 16(1): 169.
[http://dx.doi.org/10.1186/s12859-015-0611-3] [PMID: 25994840]
[38]
Su G, Morris JH, Demchak B, Bader GD. Biological network exploration with Cytoscape 3. Nucleic Acids Res 2014; 47(1): 1-8.
[http://dx.doi.org/10.1002/0471250953.bi0813s47]
[39]
DAVID functional annotation bioinformatics microarray analysis 2023. Available from : https://david.ncifcrf.gov/
[40]
Sherman BT, Hao M, Qiu J, et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022; 50(W1): W216-21.
[http://dx.doi.org/10.1093/nar/gkac194] [PMID: 35325185]
[41]
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: Tool for the unification of biology. Nat Genet 2000; 25(1): 25-9.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[42]
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[43]
ENCORI The encyclopedia of RNA interactomes. 2021. Available from : [https://starbase.sysu.edu.cn/
[44]
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(D1): D92-7.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[45]
LncRNADisease database. 2017. Available from : http://www.cuilab.cn/lncrnadisease
[46]
Chen G, Wang Z, Wang D, et al. LncRNADisease: A database for long-non-coding RNA-associated diseases. Nucleic Acids Res 2012; 41(D1): D983-6.
[http://dx.doi.org/10.1093/nar/gks1099] [PMID: 23175614]
[47]
Moranguinho I, Valente ST. Block-And-Lock: New horizons for a cure for HIV-1. Viruses 2020; 12(12): 1443.
[http://dx.doi.org/10.3390/v12121443] [PMID: 33334019]
[48]
Chinniah R, Adimulam T, Nandlal L, Arumugam T, Ramsuran V. The effect of miRNA gene regulation on HIV disease. Front Genet 2022; 13: 862642.
[http://dx.doi.org/10.3389/fgene.2022.862642] [PMID: 35601502]
[49]
Sung JM, Margolis DM. HIV persistence on antiretroviral therapy and barriers to a cure. Adv Exp Med Biol 2018; 1075: 165-85.
[http://dx.doi.org/10.1007/978-981-13-0484-2_7] [PMID: 30030793]
[50]
Li D, Bao P, Yin Z, et al. Exploration of the involvement of LncRNA in HIV-associated encephalitis using bioinformatics. PeerJ 2018; 6: e5721.
[http://dx.doi.org/10.7717/peerj.5721] [PMID: 30345171]
[51]
Bai R, Li Z, Hou Y, et al. Identification of diagnostic markers correlated with HIV+ immune non-response based on bioinformatics analysis. Front Mol Biosci 2021; 8: 809085.
[http://dx.doi.org/10.3389/fmolb.2021.809085] [PMID: 35004856]
[52]
Ahluwalia JK, Khan SZ, Soni K, et al. Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology 2008; 5(1): 117.
[http://dx.doi.org/10.1186/1742-4690-5-117] [PMID: 19102781]
[53]
Nathans R, Chu C, Serquina AK, Lu CC, Cao H, Rana TM. Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell 2009; 34(6): 696-709.
[http://dx.doi.org/10.1016/j.molcel.2009.06.003] [PMID: 19560422]
[54]
Ortega PAS, Saulle I, Mercurio V, et al. Interleukin 21 (IL-21)/microRNA-29 (miR-29) axis is associated with natural resistance to HIV-1 infection. AIDS 2018; 32(17): 2453-61.
[http://dx.doi.org/10.1097/QAD.0000000000001938] [PMID: 30005016]
[55]
Liu MQ, Zhao M, Kong WH, et al. Antiretroviral therapy fails to restore levels of HIV-1 restriction miRNAs in PBMCs of HIV-1-infected MSM. Medicine 2015; 94(46): e2116.
[http://dx.doi.org/10.1097/MD.0000000000002116] [PMID: 26579828]
[56]
Chiang K, Sung TL, Rice AP. Regulation of cyclin T1 and HIV-1 Replication by microRNAs in resting CD4+ T lymphocytes. J Virol 2012; 86(6): 3244-52.
[http://dx.doi.org/10.1128/JVI.05065-11] [PMID: 22205749]
[57]
Munshi SU, Panda H, Holla P, Rewari BB, Jameel S. MicroRNA-150 is a potential biomarker of HIV/AIDS disease progression and therapy. PLoS One 2014; 9(5): e95920.
[http://dx.doi.org/10.1371/journal.pone.0095920] [PMID: 24828336]
[58]
Balducci E, Leroyer AS, Lacroix R, et al. Extracellular vesicles from T cells overexpress miR-146b-5p in HIV-1 infection and repress endothelial activation. Sci Rep 2019; 9(1): 10299.
[http://dx.doi.org/10.1038/s41598-019-44743-w] [PMID: 31311940]
[59]
Nchioua R, Bosso M, Kmiec D, Kirchhoff F. Cellular factors targeting HIV-1 transcription and viral RNA transcripts. Viruses 2020; 12(5): 495.
[http://dx.doi.org/10.3390/v12050495] [PMID: 32365692]
[60]
Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-And-Lock strategies to cure HIV infection. Viruses 2020; 12(1): 84.
[http://dx.doi.org/10.3390/v12010084] [PMID: 31936859]
[61]
Chen X, Zeng K, Xu M, et al. SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis 2018; 9(10): 982.
[http://dx.doi.org/10.1038/s41419-018-0962-6] [PMID: 30250022]
[62]
Hu X, Chen Y, Zhao ZJ. Structure, regulation, and function of TET family proteins Epigenetic Gene Expression and Regulation. Massachusetts: Academic Press 2015; pp. 379-95.
[http://dx.doi.org/10.1016/B978-0-12-799958-6.00017-2]
[63]
Lv L, Wang Q, Xu Y, et al. Vpr targets TET2 for degradation by CRL4VprBP E3 ligase to sustain IL-6 expression and enhance HIV-1 replication. Mol Cell 2018; 70(5): 961-970.e5.
[http://dx.doi.org/10.1016/j.molcel.2018.05.007] [PMID: 29883611]
[64]
Simon V, Bloch N, Landau NR. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 2015; 16(6): 546-53.
[http://dx.doi.org/10.1038/ni.3156] [PMID: 25988886]
[65]
Hynes RO. The extracellular matrix: Not just pretty fibrils. Science 2009; 326(5957): 1216-9.
[http://dx.doi.org/10.1126/science.1176009] [PMID: 19965464]
[66]
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15(12): 786-801.
[http://dx.doi.org/10.1038/nrm3904] [PMID: 25415508]
[67]
Singh H, Nain S, Krishnaraj A, Lata S, Dhole TN. Genetic variation of matrix metalloproteinase enzyme in HIV-associated neurocognitive disorder. Gene 2019; 698: 41-9.
[http://dx.doi.org/10.1016/j.gene.2019.02.057] [PMID: 30825593]
[68]
Cassavaugh J, Lounsbury KM. Hypoxia-mediated biological control. J Cell Biochem 2011; 112(3): 735-44.
[http://dx.doi.org/10.1002/jcb.22956] [PMID: 21328446]
[69]
Deshmane SL, Amini S, Sen S, Khalili K, Sawaya BE. Regulation of the HIV-1 promoter by HIF-1α and Vpr proteins. Virol J 2011; 8(1): 477.
[http://dx.doi.org/10.1186/1743-422X-8-477] [PMID: 22023789]
[70]
Loisel-Meyer S, Swainson L, Craveiro M, et al. Glut1-mediated glucose transport regulates HIV infection. Proc Natl Acad Sci USA 2012; 109(7): 2549-54.
[http://dx.doi.org/10.1073/pnas.1121427109] [PMID: 22308487]
[71]
Zhuang X, Pedroza-Pacheco I, Nawroth I, et al. Hypoxic microenvironment shapes HIV-1 replication and latency. Commun Biol 2020; 3(1): 376.
[http://dx.doi.org/10.1038/s42003-020-1103-1] [PMID: 32665623]
[72]
Diehl N, Schaal H. Make yourself at home: Viral hijacking of the PI3K/Akt signaling pathway. Viruses 2013; 5(12): 3192-212.
[http://dx.doi.org/10.3390/v5123192] [PMID: 24351799]
[73]
Fayard E, Xue G, Parcellier A, Bozulic L, Hemmings BA. Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway. Curr Top Microbiol Immunol 2010; 346: 31-56.
[http://dx.doi.org/10.1007/82_2010_58] [PMID: 20517722]
[74]
Zhou H, Xu M, Huang Q, et al. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 2008; 4(5): 495-504.
[http://dx.doi.org/10.1016/j.chom.2008.10.004] [PMID: 18976975]
[75]
Fiorucci G, Chiantore MV, Mangino G, Romeo G. MicroRNAs in virus-induced tumorigenesis and IFN system. Cytokine Growth Factor Rev 2015; 26(2): 183-94.
[http://dx.doi.org/10.1016/j.cytogfr.2014.11.002] [PMID: 25466647]
[76]
Owen KL, Brockwell NK, Parker BS. JAK-STAT signaling: A double-edged sword of immune regulation and cancer progression. Cancers 2019; 11(12): 2002.
[http://dx.doi.org/10.3390/cancers11122002] [PMID: 31842362]
[77]
Liu Z, Filip I, Gomez K, et al. Genomic characterization of HIV-associated plasmablastic lymphoma identifies pervasive mutations in the JAK-STAT pathway. Blood Cancer Discov 2020; 1(1): 112-25.
[http://dx.doi.org/10.1158/2643-3230.BCD-20-0051] [PMID: 33225311]
[78]
Liu X, Xu M, Li P, et al. Roles of lncRNAs in the transcription regulation of HIV-1. Biomed J 2022; 45(4): 580-93.
[http://dx.doi.org/10.1016/j.bj.2022.03.012] [PMID: 35364293]
[79]
Shen L, Wu C, Zhang J, et al. Roles and potential applications of lncRNAs in HIV infection. Int J Infect Dis 2020; 92: 97-104.
[http://dx.doi.org/10.1016/j.ijid.2020.01.006] [PMID: 31945493]
[80]
Liu H, Hu PW, Couturier J, Lewis DE, Rice AP. HIV-1 replication in CD4+ T cells exploits the down-regulation of antiviral NEAT1 long non-coding RNAs following T cell activation. Virology 2018; 522: 193-8.
[http://dx.doi.org/10.1016/j.virol.2018.07.020] [PMID: 30036787]
[81]
Zhang Q, Chen CY, Yedavalli VSRK, Jeang KT. NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio 2013; 4(1): e00596-12.
[http://dx.doi.org/10.1128/mBio.00596-12] [PMID: 23362321]
[82]
Jin C, Peng X, Xie T, et al. Detection of the long noncoding RNAs nuclear-enriched autosomal transcript 1 (NEAT1) and metastasis associated lung adenocarcinoma transcript 1 in the peripheral blood of HIV-1-infected patients. HIV Med 2016; 17(1): 68-72.
[http://dx.doi.org/10.1111/hiv.12276] [PMID: 26139386]
[83]
Wang W, Min L, Qiu X, et al. Biological function of long non-coding RNA (LncRNA) xist. Front Cell Dev Biol 2021; 9: 645647.
[http://dx.doi.org/10.3389/fcell.2021.645647] [PMID: 34178980]
[84]
Pinto DO, Scott TA, DeMarino C, et al. Effect of transcription inhibition and generation of suppressive viral non-coding RNAs. Retrovirology 2019; 16(1): 13.
[http://dx.doi.org/10.1186/s12977-019-0475-0] [PMID: 31036006]
[85]
Liu Y, Lin W, Dong Y, et al. Long noncoding RNA HCG18 up‐regulates the expression of WIPF1 and YAP/TAZ by inhibiting miR‐141‐3p in gastric cancer. Cancer Med 2020; 9(18): 6752-65.
[http://dx.doi.org/10.1002/cam4.3288] [PMID: 32725768]
[86]
Xi Y, Jiang T, Wang W, et al. Long non-coding HCG18 promotes intervertebral disc degeneration by sponging miR-146a-5p and regulating TRAF6 expression. Sci Rep 2017; 7(1): 13234.
[http://dx.doi.org/10.1038/s41598-017-13364-6] [PMID: 29038477]
[87]
López-Urrutia E, Bustamante Montes LP, Ladrón de Guevara Cervantes D, Pérez-Plasencia C, Campos-Parra AD. Crosstalk between long non-coding RNAs, Micro-RNAs and mRNAs: Deciphering molecular mechanisms of master regulators in cancer. Front Oncol 2019; 9: 669.
[http://dx.doi.org/10.3389/fonc.2019.00669] [PMID: 31404273]
[88]
Fernandes J, Acuña S, Aoki J, Floeter-Winter L, Muxel S. Long non-coding RNAs in the regulation of gene expression: Physiology and disease. Noncoding RNA 2019; 5(1): 17.
[http://dx.doi.org/10.3390/ncrna5010017] [PMID: 30781588]
[89]
Nguyen LNT, Nguyen LN, Zhao J, et al. Long non-coding RNA GAS5 regulates T cell functions via mir21-mediated signaling in people living with HIV. Front Immunol 2021; 12: 601298.
[http://dx.doi.org/10.3389/fimmu.2021.601298] [PMID: 33776993]