Current Pharmaceutical Analysis

Author(s): Mukul Sharma and Afraim Koty*

DOI: 10.2174/1573412919666230524140341

Determination of Antithyroid Drug Propylthiouracil with Ru (III) in Pharmaceutical Formulations and its Characterization

Page: [413 - 422] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Sulfur serves as a versatile element and an essential constituent of pharmaceutical industries, natural compounds, proteins, and biological systems. One of the fundamental constituents of sulfur is thiouracil, which forms several derivatives, including 6- methylthiouracil, 6-methyl-2-thiouracil, and 6-propylthiouracil. These derivatives act as effective chelating agents and can form complexes with metal ions.

Compared with other metals, ruthenium possesses unique chemical properties that make it an ideal therapeutic agent. Therefore, this study reports on the propylthiouracil: Ru(III) complex, considering these essential facts.

Methods: An equimolar amount of ruthenium trichloride 3.34 x 10-5 M was added to various aliquots ranging from 0.4 mL to 8.8 mL of 3.26 x 10−5 M propylthiouracil. The volume was adjusted to 10 mL with double distilled water. After letting the solution stand for 10 min, we recorded the absorbance of different sets at λmax 376 nm. The Beer-Lambert's law graph demonstrated linearity in the concentration range of 3.18 x101 μgmL-1 to 7.96 x102 μgmL-1, with a linear regression equation of Y = 0.0354 + 0.1109 X. We determined the effective molar absorptivity (ε) to be 6.609 x 102 Lmole-1 cm-1, and the relative standard deviation (RSD %) was ± 0.34%.

Results: At room temperature, a yellow-colored complex of propylthiouracil: Ru(III) was formed within 10 min, with a λmax of 376 nm and constant color intensity for 24 h. We confirmed and characterized the formed complex using FTIR, ESR, 1HNMR, thermal analysis, magnetic susceptibility, and powder X-ray.

Conclusion: This approach is notable for its precision, accuracy, rapidity, cost-effectiveness, and applicability in tablet form. The novel propylthiouracil: Ru(III) complex offers several advantages, including stability, low absorbance, and no interference with water-soluble ions, eliminating the need for an organic solvent to extract the reaction product. Therefore, this approach could be recommended for quality control in the pharmaceutical industry.

Graphical Abstract

[1]
Mustafa, M.; Winum, J.Y. The importance of sulfur-containing motifs in drug design and discovery. Expert Opin. Drug Discov., 2022, 17(5), 501-512.
[http://dx.doi.org/10.1080/17460441.2022.2044783] [PMID: 35193437]
[2]
Khalil, N.Y.; Al Rabiah, H.K.; Almousa, M.S.; Bari, A.; Alkahtani, H.M. Thiouracil. Profiles Drug Subst. Excip. Relat. Methodol., 2019, 44, 293-331.
[http://dx.doi.org/10.1016/bs.podrm.2018.11.006] [PMID: 31029221]
[3]
Manna, D.; Roy, G.; Mugesh, G. Antithyroid drugs and their analogues: Synthesis, structure and mechanism of action. Acc. Chem. Res., 2013, 46(11), 2706-2715.
[http://dx.doi.org/10.1021/ar4001229]
[4]
Griswold, W.R.; Mendoza, S.A.; Johnston, W. Vasculitis associated with propylthiouracil. Evidence for immune complex pathogenesis and response to therapy. West. J. Med., 1978, 128(6), 543-546.
[PMID: 566489]
[5]
Norouzi, P.; Ganjali, M.R.; Sehat, A.A.; Mirahmadi, S.; Larijani, B. Determination of propylthiouracil at a nanomolar level using Fast Fourier transformation continuous cyclic voltammetry under flow conditions. Chem. Anal., 2007, 52(3), 399-410.
[6]
Jovanović, T.; Korićanac, Z.; Stanković, B. Silver electrode in direct potentiometric determination of propylthiouracil in pharmaceutical dosage form. J. Pharm. Biomed. Anal., 1995, 13(4-5), 679-681.
[http://dx.doi.org/10.1016/0731-7085(95)01334-H] [PMID: 9696588]
[7]
Kreutzkamp, N. Book Review: Handbuch der Arzneimittel- Analytik(Handbook of Drug Analysis. S. Ebel., ed. Angewandte Chemie: Weinham, Germany. 16(12), 1977, 882-883.
[http://dx.doi.org/10.1002/anie.197708822]
[8]
Hilp, M. Determination of propylthiouracil using 1,3-dibromo-5,5-dimethylhydantoin (DBH). J. Pharm. Biomed. Anal., 2002, 28(2), 303-309.
[http://dx.doi.org/10.1016/S0731-7085(01)00589-1] [PMID: 11929673]
[9]
Wei, Y.; Zhang, Z.J.; Zhang, Y.T.; Sun, Y.H. Determination of propylthiouracil and methylthiouracil in human serum using high-performance liquid chromatography with chemiluminescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 854(1-2), 239-244.
[http://dx.doi.org/10.1016/j.jchromb.2007.04.028] [PMID: 17521973]
[10]
Li, M.; He, Q.; Yao, L.; Wang, X.; Tang, Z.; Zhu, X.; Lin, H.S.; Xiang, X. Simultaneous quantification of propylthiouracil and its N- β-D glucuronide by HPLC-MS/MS: Application to a metabolic study. Pharmaceuticals, 2021, 14(11), 1194-1201.
[http://dx.doi.org/10.3390/ph14111194] [PMID: 34832976]
[11]
Hao, B.; Wu, J.; Ding, Y.; Zhang, L.; Zhao, B.; Tian, Y. Rapid determination of propylthiouracil and methimazole by surface-enhanced Raman scattering based on sodium alginate-protected silver nanoparticles. Anal. Bioanal. Chem., 2020, 412(28), 7827-7836.
[http://dx.doi.org/10.1007/s00216-020-02912-1] [PMID: 32964253]
[12]
Urquiza, N.M.; Naso, L.G.; Martínez Medina, J.J.; Moyano, M.A.; Lezama, L.; Williams, P.A.M.; Ferrer, E.G. Pharmacological activities of a propylthiouracil compound structurally modified by coordination with copper(II). J. Coord. Chem., 2016, 69(8), 1293-1312.
[http://dx.doi.org/10.1080/00958972.2016.1167885]
[13]
Clarke, M.J.; Zhu, F.; Frasca, D.R. Non-platinum chemotherapeutic metallopharmaceuticals. Chem. Rev., 1999, 99(9), 2511-2534.
[http://dx.doi.org/10.1021/cr9804238] [PMID: 11749489]
[14]
Dyson, P.J. Systematic design of a targeted organometallic antitumour drug in pre-clinical development. Chimia. Int. J. Chem., 2007, 61(11), 698-703.
[15]
Dragutan, I.; Dragutan, V.; Demonceau, A. Editorial of special issue ruthenium complex: The expanding chemistry of the ruthenium complexes. Molecules, 2015, 20(9), 17244-17274.
[http://dx.doi.org/10.3390/molecules200917244] [PMID: 26393560]
[16]
Yadav, S.; Vijayan, P.; Gupta, R. Ruthenium complexes of N/O/S based multidentate ligands: Structural diversities and catalysis perspectives. J. Organomet. Chem., 2021, 954-955, 122081.
[http://dx.doi.org/10.1016/j.jorganchem.2021.122081]
[17]
Mahalingam, V.; Chitrapriya, N.; Zeller, M.; Natarajan, K. Ru(II)-DMSO complexes containing aromatic and heterocyclic acid hydrazides: Structure, electrochemistry and biological activity. Polyhedron, 2009, 28(8), 1532-1540.
[http://dx.doi.org/10.1016/j.poly.2009.03.023]
[18]
Yu, H.J.; Chao, H.; Jiang, L.; Li, L.Y.; Huang, S.M.; Nian, L. Single oxygen-mediated DNA photocleavage of a di-bithiazolyl ruthenium(II) complex [Ru(btz) 2(dppz)] 2+. Inorg. Chem. Commun., 2008, 11(5), 553.
[http://dx.doi.org/10.1016/j.inoche.2008.02.008] [PMID: 18330711]
[19]
Sharma, M.; Koty, A.; Al-Rajab, A.J. A simple and effective method for determination of the antithyroid drug carbimazole using ruthenium trichloride. Turk. J. Chem., 2017, 41(6), 995-1012.
[http://dx.doi.org/10.3906/kim-1701-38]
[20]
Sharma, M.; Koty, A.; Al-Rajab, A.J. Analysis of the Antiallergenic Drug Promethazine with Ruthenium (III). Curr. Pharm. Anal., 2017, 13(6), 525-531.
[http://dx.doi.org/10.2174/1573412912666160805124142]