Zingiber officinale Roscoe (Ginger) and its Bioactive Compounds in Diabetes: A Systematic Review of Clinical Studies and Insight of Mechanism of Action

Page: [887 - 903] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Zingiber officinale Roscoe (Ginger) belongs to the Zingiberaceae family, which is renowned for its rich nutritional and phytochemical composition, and has been validated for its anti-diabetic and anti-inflammatory properties via in vitro, in vivo, and clinical studies. Nonetheless, a comprehensive review of these pharmacological studies, especially clinical studies, together with an analysis of the mechanism of action of the bioactive compounds is still lacking. This review provided a comprehensive and updated analysis of the anti-diabetic efficacy of Z. officinale and its compounds ginger enone, gingerol, paradol, shogaol, and zingerone.

Methods: The present systematic review was conducted using the PRISMA guidelines. Scopus, ScienceDirect, Google Scholar, and PubMed were the main databases used for retrieving information from inception to March 2022.

Results: From the findings obtained, Z. officinale can be regarded as a therapeutic species showing significant improvement in clinical studies on glycemic parameters (Fasting blood glucose (FBG), hemoglobin A1C (HbA1c), and insulin resistance). In addition, the bioactive compounds of Z. officinale act via several mechanisms as revealed by in vitro and in vivo studies. Overall, these mechanisms were by increasing glucose-stimulated insulin secretion, sensitising insulin receptors and raising glucose uptake, translocation of GLUT4, inhibition of advanced glycation end product-induced increase of reactive oxygen species, regulation of hepatic gene expression of enzymes associated with glucose metabolism, regulation of the level of pro-inflammatory cytokines, amelioration of the pathological injuries of kidneys, protective effect on the morphology of β-cells as well as its antioxidant mechanisms, among others.

Conclusion: Z. officinale and its bioactive compounds displayed promising results in in vitro and in vivo systems, nevertheless, it is highly recommended that human trials be conducted on these compounds since clinical studies are the core of medical research and considered the final stages of the drug development process.

[1]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[2]
Althobaiti, F.M.; Alsanosi, S.M.; Falemban, A.H.; Alzahrani, A.R.; Fataha, S.A.; Salih, S.O.; Alrumaih, A.M.; Alotaibi, K.N.; Althobaiti, H.M.; Al-Ghamdi, S.S.; Ayoub, N. Efficacy and safety of empagliflozin in type 2 diabetes mellitus Saudi patients as add-on to antidiabetic therapy: A prospective, open-label, observational study. J. Clin. Med., 2022, 11(16), 4769.
[http://dx.doi.org/10.3390/jcm11164769] [PMID: 36013008]
[3]
Alkhudhayri, S.; Sajini, R.; Alharbi, B.; Qabbani, J.; Al-Hindi, Y.; Fairaq, A.; Yousef, A. Investigating the beneficial effect of aliskiren in attenuating neuropathic pain in diabetic Sprague-Dawley rats. Endocrinol Diabetes Metab. 2020 Nov 25; 4(2):e00209.
[http://dx.doi.org/10.1002/edm2.209]
[4]
Sanlier, N.; Gencer, F. Role of spices in the treatment of diabetes mellitus: A mini review. Trends Food Sci. Technol., 2020, 99, 441-449.
[5]
Alharbi, A.; Alduribi, A.; Alghthami, A.; Elnaem, M.; Alsenani, F.S.; Haseeb, A.; Ahmed, N.J.; Elrggal, M. Coping with diabetes during the COVID-19 lockdown in Saudi Arabia: Lessons learned in the post-pandemic Era. Cureus. 2022, 14(11), e31522.
[http://dx.doi.org/10.7759/cureus.31522]
[6]
[7]
Mahomoodally, M.; Aumeeruddy, M.Z.; Rengasamy, K.R.R.; Roshan, S.; HammadRoshan, S.; Pandohee, J.; Hu, X.; Zengin, G. Ginger and its active compounds in cancer therapy: From folk uses to nano-therapeutic applications. Semin Cancer Biol, 2021, 69, 140-149.
[8]
Bhandari, U.; kanojia, R.; Pillai, K.K. Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats. J. Ethnopharmacol., 2005, 97(2), 227-230.
[http://dx.doi.org/10.1016/j.jep.2004.11.011] [PMID: 15707757]
[9]
Althaqafi, A.; Ali, M.; Alzahrani, Y.; Ming, L.C.; Hussain, Z. How safe are fluoroquinolones for diabetic patients? a systematic review of dysglycemic and neuropathic effects of fluoroquinolones. Therapeutics and Clinical Risk Management. 2021, 17, 1083-1090.
[http://dx.doi.org/10.2147/TCRM.S284171]
[10]
Ojewole, J.A.O. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (roscoe) rhizomes (zingiberaceae) in mice and rats. Phytother. Res., 2006, 20(9), 764-772.
[http://dx.doi.org/10.1002/ptr.1952] [PMID: 16807883]
[11]
Ali, A.M.; El-Nour, M.E.; Yagi, S.M.; Qahtan, A.A.; Alatar, A.A.; Abdel-Salam, E.M.; Zengin, G. Cytotoxicity, phytochemical screening and genetic analysis of ginger (Zingiber officinale Rosc.) callus and rhizome. S. Afr. J. Bot., 2021.
[12]
Azzi, R.; Djaziri, R.; Lahfa, F.; Sekkal, F.Z.; Benmehdi, H.; Belkacem, N. Ethnopharmacological survey of medicinal plants used in the traditional treatment of diabetes mellitus in the North Western and South Western Algeria. J. Med. Plants Res., 2012, 6(10), 2041-2050.
[13]
Telli, A.; Esnault, M.A.; Ould El Hadj Khelil, A. An ethnopharmacological survey of plants used in traditional diabetes treatment in south-eastern Algeria (Ouargla province). J. Arid Environ., 2016, 127, 82-92.
[http://dx.doi.org/10.1016/j.jaridenv.2015.11.005]
[14]
Kadir, M.F.; Bin Sayeed, M.S.; Shams, T.; Mia, M.M.K. Ethnobotanical survey of medicinal plants used by Bangladeshi traditional health practitioners in the management of diabetes mellitus. J. Ethnopharmacol., 2012, 144(3), 605-611.
[http://dx.doi.org/10.1016/j.jep.2012.09.050] [PMID: 23063956]
[15]
Lawin, I.; Lalèyè, F.; Agbani, O.; Assogbadjo, A. Ethnobotanical assessment of the plant species used in the treatment of diabetes in the Sudano-Guinean zone of Benin. J. Anim. Plant Sci., 2015, 26(1), 4108-4123.
[16]
Özkum, D.; Aki, Ö.; Toklu, H. Herbal medicine use among diabetes mellitus patients in Northern Cyprus. J. Med. Plants Res., 2013, 7, 1652-1664.
[17]
Demoz, M.; Gachoki, K.; Mungai, K.; Negusse, B. Ethnobotanical survey and preliminary phytochemical studies of plants traditionally used for diabetes in Eritrea. European J. Med. Plants, 2015, 9(2), 1-11.
[http://dx.doi.org/10.9734/EJMP/2015/18777]
[18]
Bading Taika, B.; Bouckandou, M.; Souza, A.; Bourobou Bourobou, H.P.; MacKenzie, L.S.; Lione, L. An overview of anti-diabetic plants used in Gabon: Pharmacology and toxicology. J. Ethnopharmacol., 2018, 216, 203-228.
[http://dx.doi.org/10.1016/j.jep.2017.12.036] [PMID: 29305175]
[19]
Pieroni, A.; Muenz, H.; Akbulut, M.; Başer, K.H.C.; Durmuşkahya, C. Traditional phytotherapy and trans-cultural pharmacy among Turkish migrants living in Cologne, Germany. J. Ethnopharmacol., 2005, 102(1), 69-88.
[http://dx.doi.org/10.1016/j.jep.2005.05.018] [PMID: 16002248]
[20]
Diallo, A.; Traore, M.S.; Keita, S.M.; Balde, M.A.; Keita, A.; Camara, M.; Miert, S.V.; Pieters, L.; Balde, A.M. Management of diabetes in Guinean traditional medicine: An ethnobotanical investigation in the coastal lowlands. J. Ethnopharmacol., 2012, 144(2), 353-361.
[http://dx.doi.org/10.1016/j.jep.2012.09.020] [PMID: 23006605]
[21]
Chhetri, D.R.; Parajuli, P.; Subba, G.C. Antidiabetic plants used by Sikkim and Darjeeling Himalayan tribes, India. J. Ethnopharmacol., 2005, 99(2), 199-202.
[http://dx.doi.org/10.1016/j.jep.2005.01.058] [PMID: 15894127]
[22]
Mall, T.; Sahani, S. Diversity of ethnomedicinal plants for diabetes from Bahraich (UP) India. Int J Interdiscip Multidiscip Stud, 2013, 1, 13-23.
[23]
Aadhan, K.; Anand, S. Survey of medicinal plants used for the treatment of diabetes by the Paliyar’s Tribe in Sadhuragiri hills, Tamil Nadu, India. Int. J. Herb. Med., 2017, 5(3), 17-25.
[24]
Silalahi, M. Medicinal plants used by the Batak Toba Tribe in Peadundung Village, North Sumatra, Indonesia. Biodiversitas (Surak.), 2019, 20(2), 510-525.
[http://dx.doi.org/10.13057/biodiv/d200230]
[25]
Nasution, B.R.; Aththorick, T.A.; Rahayu, S. IOP Conference Series: Earth and Environmental Science, 2018, Vol. 130, pp. 012038
[26]
Salehi Nowbandegani, A.; Kiumarcy, S.; Rahmani, F.; Dokouhaki, M.; Khademian, S.; Zarshenas, M.M.; Faridi, P. Ethnopharmacological knowledge of Shiraz and Fasa in Fars region of Iran for diabetes mellitus. J. Ethnopharmacol., 2015, 172, 281-287.
[http://dx.doi.org/10.1016/j.jep.2015.06.017] [PMID: 26113181]
[27]
Mati, E.; de Boer, H. Ethnobotany and trade of medicinal plants in the Qaysari market, Kurdish autonomous region, Iraq. J. Ethnopharmacol., 2011, 133(2), 490-510.
[http://dx.doi.org/10.1016/j.jep.2010.10.023] [PMID: 20965241]
[28]
Ahmed, H.M. Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah Province, Kurdistan, Iraq. J. Ethnobiol. Ethnomed., 2016, 12(1), 8.
[http://dx.doi.org/10.1186/s13002-016-0081-3] [PMID: 26821541]
[29]
Skalli, S.; Hassikou, R.; Arahou, M. An ethnobotanical survey of medicinal plants used for diabetes treatment in Rabat, Morocco. Heliyon, 2019, 5(3), e01421.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01421] [PMID: 30976694]
[30]
Kadiri, M.; Ojewumi, A.W.; Agboola, D.A.; Adekunle, M.F. Ethnobotanical survey of plants used in the management of diabetes mellitus in Abeokuta, Nigeria. J. Drug Deliv. Ther., 2015, 5(3), 13-23.
[http://dx.doi.org/10.22270/jddt.v5i3.1142]
[31]
Negbenebor, H.; Shehu, K.; Mairami, F.; Adeiza, Z.; Nura, S.; Fagwalawa, L. Ethno botanical survey of medicinal plants used by Hausa people in the management of diabetes mellitus in Kano metropolis, northern Nigeria. European J. Med. Plants, 2017, 18(2), 1-10.
[http://dx.doi.org/10.9734/EJMP/2017/28562]
[32]
Abo, K.A.; Fred-Jaiyesimi, A.A.; Jaiyesimi, A.E.A. Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. J. Ethnopharmacol., 2008, 115(1), 67-71.
[http://dx.doi.org/10.1016/j.jep.2007.09.005] [PMID: 17950547]
[33]
Amal, M.F.; Masarrat, M. Ethnobotanical survey of plants used in the treatment of diabetes mellitus in Tabuk region, Saudi Arabia Int. J. Curr. Microbiol. Appl. Sci., 2016, 5(6), 258-270.
[http://dx.doi.org/10.20546/ijcmas.2016.506.029]
[34]
Singh, G.; Kapoor, I.P.S.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A.N. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food Chem. Toxicol., 2008, 46(10), 3295-3302.
[http://dx.doi.org/10.1016/j.fct.2008.07.017] [PMID: 18706468]
[35]
Murugesan, S.; Venkateswaran, M.R.; Jayabal, S.; Periyasamy, S. Evaluation of the antioxidant and anti-arthritic potential of Zingiber officinale Rosc. by in vitro and in silico analysis. S. Afr. J. Bot., 2020, 130, 45-53.
[http://dx.doi.org/10.1016/j.sajb.2019.12.019]
[36]
Talebi, M.; İlgün, S.; Ebrahimi, V.; Talebi, M.; Farkhondeh, T.; Ebrahimi, H.; Samarghandian, S. Zingiber officinale ameliorates Alzheimer’s disease and Cognitive Impairments: Lessons from preclinical studies. Biomed. Pharmacother., 2021, 133, 111088.
[http://dx.doi.org/10.1016/j.biopha.2020.111088] [PMID: 33378982]
[37]
Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.M.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials, 1996, 17(1), 1-12.
[http://dx.doi.org/10.1016/0197-2456(95)00134-4] [PMID: 8721797]
[38]
Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem., 2016, 1, 168-182.
[39]
Nagendra Chari, K.L.; Manasa, D.; Srinivas, P.; Sowbhagya, H.B. Enzyme-assisted extraction of bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chem., 2013, 139(1), 509-514.
[PMID: 23265518]
[40]
Swapna Sonale, R.; Kadimi, U.S. Characterization of gingerol analogues in supercritical carbon dioxide (SC CO2) extract of ginger (Zingiber officinale, R.,). J. Food Sci. Technol., 2014, 51(11), 3383-3389.
[http://dx.doi.org/10.1007/s13197-012-0851-4] [PMID: 26396335]
[41]
Choudhari, S.; Kareppa, B. Identification of bioactive compounds of Zingiber officinale Roscoe rhizomes through gas chromatography and mass spectrometry. Int J Pharm Res Dev, 2013, 5, 16-20.
[42]
Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules, 2010, 15(6), 4324-4333.
[http://dx.doi.org/10.3390/molecules15064324] [PMID: 20657444]
[43]
Hasan, H.A.; Raauf, A.M.R.; Razik, B.; Hassan, B.R. Chemical composition and antimicrobial activity of the crude extracts isolated from Zingiber officinale by different solvents. Pharm. Anal. Acta, 2012, 3(9), 1-5.
[44]
Hiserodt, R.D.; Franzblau, S.G.; Rosen, R.T. Isolation of 6-, 8-, and 10-Gingerol from Ginger Rhizome by HPLC and Preliminary Evaluation of Inhibition of Mycobacterium avium and Mycobacterium tuberculosis. J. Agric. Food Chem., 1998, 46(7), 2504-2508.
[http://dx.doi.org/10.1021/jf970948l]
[45]
Tohma, H.; Gülçin, İ.; Bursal, E.; Gören, A.C.; Alwasel, S.H.; Köksal, E. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas. Charact., 2017, 11(2), 556-566.
[http://dx.doi.org/10.1007/s11694-016-9423-z]
[46]
Jiang, H.; Sólyom, A.M.; Timmermann, B.N.; Gang, D.R. Characterization of gingerol-related compounds in ginger rhizome (Zingiber officinale Rosc.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom., 2005, 19(20), 2957-2964.
[http://dx.doi.org/10.1002/rcm.2140] [PMID: 16189817]
[47]
Onyenekwe, P.C.; Hashimoto, S. The composition of the essential oil of dried Nigerian ginger (Zingiber officinale Roscoe). Eur. Food Res. Technol., 1999, 209(6), 407-410.
[http://dx.doi.org/10.1007/s002170050517]
[48]
Pino, J.A.; Marbot, R.; Rosado, A.; Batista, A. Chemical composition of the essential oil of Zingiber officinale Roscoe L. from Cuba. J. Essent. Oil Res., 2004, 16(3), 186-188.
[http://dx.doi.org/10.1080/10412905.2004.9698692]
[49]
Kumar Sharma, P.; Singh, V.; Ali, M. Chemical composition and antimicrobial activity of fresh rhizome essential oil of Zingiber officinale Roscoe. Pharmacogn. J., 2016, 8(3), 185-190.
[http://dx.doi.org/10.5530/pj.2016.3.3]
[50]
Yeh, H.; Chuang, C.; Chen, H.; Wan, C.; Chen, T.; Lin, L. Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. Lebensm. Wiss. Technol., 2014, 55(1), 329-334.
[http://dx.doi.org/10.1016/j.lwt.2013.08.003]
[51]
Salmon, C.N.A.; Bailey-Shaw, Y.A.; Hibbert, S.; Green, C.; Smith, A.M.; Williams, L.A.D. Characterisation of cultivars of Jamaican ginger (Zingiber officinale Roscoe) by HPTLC and HPLC. Food Chem., 2012, 131(4), 1517-1522.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.115]
[52]
Song, Z.M.; Zhang, X.J.; Yuan, P.P.; Wang, Y.Z.; Li, M.Q.; Liu, Y.F.; Hu, X.Y.; Miao, J.J.; Fang, H.B.; Feng, W.S. Diarylheptanoid glycosides from Zingiber officinale peel and their anti-apoptotic activity. Fitoterapia, 2022, 157, 105109.
[http://dx.doi.org/10.1016/j.fitote.2021.105109] [PMID: 34954262]
[53]
Khandouzi, N.; Shidfar, F.; Rajab, A.; Rahideh, T.; Hosseini, P.; Taheri, M.M. The effects of ginger on fasting blood sugar, hemoglobin A1c, apolipoprotein B, apolipoprotein AI and malondialdehyde in type 2 diabetic patients. IJPR, 2015, 14(1), 131.
[PMID: 25561919]
[54]
Mozaffari-Khosravi, H.; Talaei, B.; Jalali, B.A.; Najarzadeh, A.; Mozayan, M.R. The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Complement. Ther. Med., 2014, 22(1), 9-16.
[http://dx.doi.org/10.1016/j.ctim.2013.12.017] [PMID: 24559810]
[55]
Ebrahimzadeh Attari, V.; Mahluji, S.; Asghari Jafarabadi, M.; Ostadrahimi, A. Effects of supplementation with ginger (Zingiber officinale roscoe) on serum glucose, lipid profile and oxidative stress in obese women: A randomized, placebo-controlled clinical trial. Pharm. Sci., 2015, 21(4), 184-191.
[http://dx.doi.org/10.15171/PS.2015.35]
[56]
Arablou, T.; Aryaeian, N.; Valizadeh, M.; Sharifi, F.; Hosseini, A.; Djalali, M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int. J. Food Sci. Nutr., 2014, 65(4), 515-520.
[http://dx.doi.org/10.3109/09637486.2014.880671] [PMID: 24490949]
[57]
Makhdoomi Arzati, M.; Mohammadzadeh Honarvar, N.; Saedisomeolia, A.; Anvari, S.; Effatpanah, M.; Makhdoomi Arzati, R.; Yekaninejad, M.S.; Hashemi, R.; Djalali, M. The effects of ginger on fasting blood sugar, hemoglobin A1c, and lipid profiles in patients with type 2 diabetes. Int. J. Endocrinol. Metab., 2017, In Press(In Press), e57927.
[http://dx.doi.org/10.5812/ijem.57927] [PMID: 29344037]
[58]
Shidfar, F.; Rajab, A.; Rahideh, T.; Khandouzi, N.; Hosseini, S.; Shidfar, S. The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J. Complement. Integr. Med., 2015, 12(2), 165-170.
[http://dx.doi.org/10.1515/jcim-2014-0021] [PMID: 25719344]
[59]
Mahluji, S.; Attari, V.E.; Mobasseri, M.; Payahoo, L.; Ostadrahimi, A.; Golzari, S.E.J. Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. Int. J. Food Sci. Nutr., 2013, 64(6), 682-686.
[http://dx.doi.org/10.3109/09637486.2013.775223] [PMID: 23496212]
[60]
Nakanekar, A.; Kohli, K.; Tatke, P. Ayurvedic polyherbal combination (PDBT) for prediabetes: A randomized double blind placebo controlled study. J. Ayurveda Integr. Med., 2019, 10(4), 284-289.
[http://dx.doi.org/10.1016/j.jaim.2018.05.004] [PMID: 30661947]
[61]
Human Metabolome Database, Version 5.0.. 2022. Available from: https://hmdb.ca/
[62]
Chen, J.; Sun, J.; Prinz, R.A.; Li, Y.; Xu, X. Gingerenone A sensitizes the insulin receptor and increases glucose uptake by inhibiting the activity of p70 S6 kinase. Mol. Nutr. Food Res., 2018, 62(23), 1800709.
[http://dx.doi.org/10.1002/mnfr.201800709] [PMID: 30296358]
[63]
Son, M.J.; Miura, Y.; Yagasaki, K. Mechanisms for antidiabetic effect of gingerol in cultured cells and obese diabetic model mice. Cytotechnology, 2015, 67(4), 641-652.
[http://dx.doi.org/10.1007/s10616-014-9730-3] [PMID: 24794903]
[64]
Yu, L-Y.; Shi, W-L.; Guo, X.G. Cardio-protective role of gingerol along with prominent anti-diabetic cardiomyopathy action in a streptozotocin-induced diabetes mellitus rat model. Cell J., 2017, 19(3), 469-475.
[PMID: 28836409]
[65]
Song, S.; Dang, M.; Kumar, M. Anti-inflammatory and renal protective effect of gingerol in high-fat diet/streptozotocin-induced diabetic rats via inflammatory mechanism. Inflammopharmacology, 2019, 27(6), 1243-1254.
[http://dx.doi.org/10.1007/s10787-019-00569-6] [PMID: 30826930]
[66]
Ghareib, S.A.; El-Bassossy, H.M.; Elberry, A.A.; Azhar, A.; Watson, M.L.; Banjar, Z.M. 6-Gingerol alleviates exaggerated vasoconstriction in diabetic rat aorta through direct vasodilation and nitric oxide generation. Drug Des. Devel. Ther., 2015, 9, 6019-6026.
[PMID: 26609223]
[67]
Almatroodi, S.A.; Alnuqaydan, A.M.; Babiker, A.Y.; Almogbel, M.A.; Khan, A.A.; Husain Rahmani, A. 6-Gingerol, a bioactive compound of ginger attenuates renal damage in streptozotocin-induced diabetic rats by regulating the oxidative stress and inflammation. Pharmaceutics, 2021, 13(3), 317.
[http://dx.doi.org/10.3390/pharmaceutics13030317] [PMID: 33670981]
[68]
Shao, Y.; Yu, Y.; Li, C.; Yu, J.; Zong, R.; Pei, C. Synergistic effect of quercetin and 6-gingerol treatment in streptozotocin induced type 2 diabetic rats and poloxamer P-407 induced hyperlipidemia. RSC Advances, 2016, 6(15), 12235-12242.
[http://dx.doi.org/10.1039/C5RA16493A]
[69]
Sampath, C.; Sang, S.; Ahmedna, M. In vitro and in vivo inhibition of aldose reductase and advanced glycation end products by phloretin, epigallocatechin 3-gallate and [6]-gingerol. Biomed. Pharmacother., 2016, 84, 502-513.
[http://dx.doi.org/10.1016/j.biopha.2016.09.073] [PMID: 27685794]
[70]
Samad, M.B.; Mohsin, M.N.A.B.; Razu, B.A.; Hossain, M.T.; Mahzabeen, S.; Unnoor, N.; Muna, I.A.; Akhter, F.; Kabir, A.U.; Hannan, J.M.A. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice. BMC Complement. Altern. Med., 2017, 17(1), 395.
[http://dx.doi.org/10.1186/s12906-017-1903-0] [PMID: 28049463]
[71]
Li, Y.; Tran, V.; Duke, C.; Roufogalis, B. Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes. Planta Med., 2012, 78(14), 1549-1555.
[http://dx.doi.org/10.1055/s-0032-1315041] [PMID: 22828920]
[72]
Chakraborty, D.; Mukherjee, A.; Sikdar, S.; Paul, A.; Ghosh, S.; Khuda-Bukhsh, A.R. [6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice. Toxicol. Lett., 2012, 210(1), 34-43.
[http://dx.doi.org/10.1016/j.toxlet.2012.01.002] [PMID: 22285432]
[73]
Lee, J.O.; Kim, N.; Lee, H.J.; Moon, J.W.; Lee, S.K.; Kim, S.J.; Kim, J.K.; Park, S.H.; Kim, H.S. [6]-gingerol affects glucose metabolism by dual regulation via the AMPKα2-mediated AS160-Rab5 pathway and AMPK-mediated insulin sensitizing effects. J. Cell. Biochem., 2015, 116(7), 1401-1410.
[http://dx.doi.org/10.1002/jcb.25100] [PMID: 25694332]
[74]
Kim, H.J.; Kim, I.S.; Rehman, S.U.; Ha, S.K.; Nakamura, K.; Yoo, H.H. Effects of 6-paradol, an unsaturated ketone from gingers, on cytochrome P450-mediated drug metabolism. Bioorg. Med. Chem. Lett., 2017, 27(8), 1826-1830.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.047] [PMID: 28274629]
[75]
Wei, C.K.; Tsai, Y.H.; Korinek, M.; Hung, P.H.; El-Shazly, M.; Cheng, Y.B.; Wu, Y.C.; Hsieh, T.J.; Chang, F.R. 6-paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. Int. J. Mol. Sci., 2017, 18(1), 168.
[http://dx.doi.org/10.3390/ijms18010168] [PMID: 28106738]
[76]
Fajrin, F.A.; Rahmayanti, F.; Pratoko, D.K. The binding prediction of 6-paradol and its derivatives on TRPV1 agonist as a new compound for treating painful diabetic neuropathy. Jurnal ILMU DASAR, 2020, 21(2), 133-138.
[http://dx.doi.org/10.19184/jid.v21i2.15501]
[77]
Fajrin, F.A.; Nugroho, A.E.; Nurrochmad, A.; Susilowati, R. Ginger extract and its compound, 6-shogaol, attenuates painful diabetic neuropathy in mice via reducing TRPV1 and NMDAR2B expressions in the spinal cord. J. Ethnopharmacol., 2020, 249, 112396.
[http://dx.doi.org/10.1016/j.jep.2019.112396] [PMID: 31743763]
[78]
Yi, J.K.; Ryoo, Z.Y.; Ha, J.J.; Oh, D.Y.; Kim, M.O.; Kim, S.H. Beneficial effects of 6-shogaol on hyperglycemia, islet morphology and apoptosis in some tissues of streptozotocin-induced diabetic mice. Diabetol. Metab. Syndr., 2019, 11(1), 15.
[http://dx.doi.org/10.1186/s13098-019-0407-0] [PMID: 30805033]
[79]
Nonaka, K.; Bando, M.; Sakamoto, E.; Inagaki, Y.; Naruishi, K.; Yumoto, H.; Kido, J.I. 6-Shogaol inhibits advanced glycation end-products-induced IL-6 and ICAM-1 expression by regulating oxidative responses in human gingival fibroblasts. Molecules, 2019, 24(20), 3705.
[http://dx.doi.org/10.3390/molecules24203705] [PMID: 31619000]
[80]
Malakul, W.; Pengnet, S. Inhibitory effect of 6-shogaol on fructose-induced protein glycation and oxidation in vitro. Naresuan Univ J. Sci. Tech., 2017, 25(2), 1-9. [NUJST].
[81]
Ahmad, B.; Rehman, M.U.; Amin, I.; Mir, M.R.; Ahmad, S.B.; Farooq, A.; Muzamil, S.; Hussain, I.; Masoodi, M.; Fatima, B. Zingerone (4-(4-hydroxy-3-methylphenyl) butan-2-one) protects against alloxan-induced diabetes via alleviation of oxidative stress and inflammation: Probable role of NF-kB activation. Saudi Pharm. J., 2018, 26(8), 1137-1145.
[http://dx.doi.org/10.1016/j.jsps.2018.07.001] [PMID: 30532634]
[82]
Cui, Y.; Shi, Y.; Bao, Y.; Wang, S.; Hua, Q.; Liu, Y. Zingerone attenuates diabetic nephropathy through inhibition of nicotinamide adenine dinucleotide phosphate oxidase 4. Biomed. Pharmacother., 2018, 99, 422-430.
[http://dx.doi.org/10.1016/j.biopha.2018.01.051] [PMID: 29367111]
[83]
Rehman, M.U.; Rashid, S.M.; Rasool, S.; Shakeel, S.; Ahmad, B.; Ahmad, S.B.; Madkhali, H.; Ganaie, M.A.; Majid, S.; Bhat, S.A. Zingerone (4-(4-hydroxy-3-methylphenyl)butan-2-one) ameliorates renal function via controlling oxidative burst and inflammation in experimental diabetic nephropathy. Arch. Physiol. Biochem., 2019, 125(3), 201-209.
[http://dx.doi.org/10.1080/13813455.2018.1448422] [PMID: 29537332]
[84]
Anwer, T.; Alkarbi, Z.A.; Hassan Najmi, A.; Alshahrani, S.; Siddiqui, R.; Khan, G.; Firoz Alam, M. Modulatory effect of zingerone against STZ-nicotinamide induced type-2 diabetes mellitus in rats. Arch. Physiol. Biochem., 2021, 127(4), 304-310.
[http://dx.doi.org/10.1080/13813455.2019.1637436] [PMID: 31389247]
[85]
Singh, B.; Kumar, A.; Singh, H.; Kaur, S.; Kaur, S.; Singh Buttar, H.; Arora, S.; Singh, B. Zingerone produces antidiabetic effects and attenuates diabetic nephropathy by reducing oxidative stress and overexpression of NF-κB, TNF-α, and COX-2 proteins in rats. J. Funct. Foods, 2020, 74, 104199.
[http://dx.doi.org/10.1016/j.jff.2020.104199]
[86]
Jothi, M.A.; Parameswari, C.; Vincent, S. Enhanced glycemic control, pancreas protective, modulated carbohydrate metabolic enzyme activities by zingerone in streptozotocin-induced diabetic rats. World J. Pharm. Res., 2018, 7, 416-435.