Entrapment of Digoxin-KLH Conjugate in Alginate/Chitosan Nanoparticles: A New Antigen Delivery System For Production of Anti-digoxin Antibodies

Page: [68 - 78] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Nanoparticles have received more and more attention in the vaccine and drug delivery systems field due to their specific properties. In particular, alginate and chitosan have been known as the most promising nano-carries. Digoxin-specific antibodies effectively manage acute and chronic digitalis poisoning using sheep antiserum.

Objectives: The present study aimed to develop alginate/chitosan nanoparticles as a carrier of Digoxin- KLH to promote the immune response by improving the hyper-immunization of animals.

Methods: The nanoparticles were produced by the ionic gelation method in mild conditions and the aqueous environment, which leads to the production of particles with favorable size, shape, high entrapment efficiency, and controlled release characteristics.

Results: The synthesized nanoparticles of 52 nm in diameter, 0.19 in PDI, and -33mv in zeta potential were considerably unparalleled and characterized by SEM, FTIR, and DSC. Nanoparticles resembled a spherical shell, smooth morphology, and homogeneous structure shown by SEM images. FTIR and DSC analyses confirmed conformational changes. Entrapment efficiency and loading capacity were 96% and 50%, respectively, via direct and indirect methods. The in vitro conjugate release profile, release kinetics, and mechanism of conjugate release from the nanoparticles were studied under simulated physiological conditions for various incubation periods. An initial burst effect revealed the release profile, followed by a continuous and controlled release phase. The compound release mechanism from the polymer was due to Fickian diffusion.

Conclusion: Our results indicated the prepared nanoparticles could be appropriate for the convenient delivery of the desired conjugate.

Graphical Abstract

[1]
Currò D. The role of gut microbiota in the modulation of drug action: A focus on some clinically significant issues. Expert Rev Clin Pharmacol 2018; 11(2): 171-83.
[http://dx.doi.org/10.1080/17512433.2018.1414598] [PMID: 29210311]
[2]
Morrill P. Pharmacotherapeutics of positive inotropes. AORN J 2000; 71(1): 171-85.
[http://dx.doi.org/10.1016/S0001-2092(06)62180-7] [PMID: 10686650]
[3]
Felicilda-Reynaldo RF. Cardiac glycosides, digoxin toxicity, and the antidote. Medsurg Nurs 2013; 22(4): 258-61.
[PMID: 24147325]
[4]
England TN. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 1997; 336(8): 525-33.
[http://dx.doi.org/10.1056/NEJM199702203360801] [PMID: 9036306]
[5]
Vamos M, Erath JW, Hohnloser SH. Digoxin-associated mortality: A systematic review and meta-analysis of the literature. Eur Heart J 2015; 36(28): 1831-8.
[http://dx.doi.org/10.1093/eurheartj/ehv143] [PMID: 25939649]
[6]
Hauptman PJ, Blume SW, Lewis EF, Ward S. Digoxin toxicity and use of digoxin immune fab. JACC Heart Fail 2016; 4(5): 357-64.
[http://dx.doi.org/10.1016/j.jchf.2016.01.011] [PMID: 27039127]
[7]
Chan BSH, Buckley NA. Digoxin-specific antibody fragments in the treatment of digoxin toxicity. Clin Toxicol 2014; 52(8): 824-36.
[http://dx.doi.org/10.3109/15563650.2014.943907] [PMID: 25089630]
[8]
Ehle M, Patel C, Giugliano RP. Digoxin: Clinical highlights. Crit Pathw Cardiol 2011; 10(2): 93-8.
[http://dx.doi.org/10.1097/HPC.0b013e318221e7dd] [PMID: 21988950]
[9]
Lam GK, Hopoate-Sitake M, Adair CD, et al. Digoxin antibody fragment, antigen binding (Fab), treatment of preeclampsia in women with endogenous digitalis-like factor: A secondary analysis of the DEEP Trial. Am J Obstet Gynecol 2013; 209(2): 119.e1-6.
[http://dx.doi.org/10.1016/j.ajog.2013.04.010] [PMID: 23583219]
[10]
Pullen MA, Brooks DP, Edwards RM. Characterization of the neutralizing activity of digoxin-specific Fab toward ouabain-like steroids. J Pharmacol Exp Ther 2004; 310(1): 319-25.
[http://dx.doi.org/10.1124/jpet.104.065250] [PMID: 14982968]
[11]
Mohammadpourdounighi N, Behfar A, Ezabadi A, Zolfagharian H, Heydari M. Preparation of chitosan nanoparticles containing Naja naja oxiana snake venom. Nanomedicine 2010; 6(1): 137-43.
[http://dx.doi.org/10.1016/j.nano.2009.06.002] [PMID: 19616121]
[12]
Mohammadpour Dounighi N, Eskandari R, Avadi MR, Zolfagharian H, Mir Mohammad Sadeghi A, Rezayat M. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J Venom Anim Toxins Incl Trop Dis 2012; 18(1): 44-52.
[http://dx.doi.org/10.1590/S1678-91992012000100006]
[13]
Mohammadpour Dounighi N, Damavandi M, Zolfagharian H, Moradi S. Preparing and characterizing chitosan nanoparticles containing hemiscorpius lepturus scorpion venom as an antigen delivery system. Arch Razi Inst 2012; 67(2): 145-53.
[14]
Saraei F, Mohamadpour Dounighi N, Zolfagharian H, Moradi Bidhendi S, Khaki P, Inanlou F. Design and evaluate alginate nanoparticles as a protein delivery system. Arch Razi Inst 2013; 68(2): 139-46.
[15]
Rami A, Kazemi-Lomedasht F, Mirjalili A, Noofeli M, Shahcheraghi F, Dounighi NM. Outer membrane vesicles of bordetella pertussis encapsulated into sodium alginate nanoparticles as novel vaccine delivery system. Curr Pharm Des 2021; 27(42): 4341-54.
[http://dx.doi.org/10.2174/1381612827666210907154715] [PMID: 34493192]
[16]
Moradhaseli S, Mirakabadi AZ, Sarzaeem A. dounighi NM, Soheily S, Borumand MR. Preparation and characterization of sodium alginate nanoparticles containing ICD-85 (Venom Derived Peptides). Int J Innov Appl Stud 2013; 4(3): 534-42.
[17]
Friedman AJ, Phan J, Schairer DO, et al. Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: A targeted therapy for cutaneous pathogens. J Invest Dermatol 2013; 133(5): 1231-9.
[http://dx.doi.org/10.1038/jid.2012.399] [PMID: 23190896]
[18]
Farhadian A, Dounighi NM, Avadi M. Enteric trimethyl chitosan nanoparticles containing hepatitis B surface antigen for oral delivery. Hum Vaccin Immunother 2015; 11(12): 2811-8.
[http://dx.doi.org/10.1080/21645515.2015.1053663] [PMID: 26158754]
[19]
Mohammadpour Dounighi N, Mehrabi M, Avadi MR, Zolfagharian H, Rezayat M. Preparation, characterization and stability investigation of chitosan nanoparticles loaded with the Echis carinatus snake venom as a novel delivery system. Arch Razi Inst 2015; 70(4): 269-77.
[20]
Mehrabi M. Development and physicochemical, toxicity and immunogenicity assessments of recombinant hepatitis B surface antigen (rHBsAg) entrapped in chitosan and mannosylated chitosan nanoparticles: as a novel vaccine delivery system and adjuvant. Artif Cells Nanomed Biotechnol 2017; 0(0): 1-11.
[PMID: 29260901]
[21]
Mirzaei F, Mohammadpour Dounighi N, Avadi MR, Rezayat M. A new approach to antivenom preparation using chitosan nanoparticles containing echiscarinatus venom as a novel antigen delivery system. Iran J Pharm Res 2017; 16(3): 858-67.
[PMID: 29201077]
[22]
Mikola H. Hedlِf E. Syntheses of europium-labeled digoxin derivatives and their use in time-resolved fluoroimmunoassay. Steroids 1994; 59(8): 472-8.
[http://dx.doi.org/10.1016/0039-128X(94)90060-4] [PMID: 7985208]
[23]
Erlanger BF. Principles and methods for the preparation of drug protein conjugates for immunological studies. Pharmacol Rev 1973; 25(2): 271-80.
[PMID: 4581044]
[24]
Sarmento B, Ribeiro AJ, Veiga F, Ferreira DC, Neufeld RJ. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol 2007; 7(8): 2833-41.
[http://dx.doi.org/10.1166/jnn.2007.609] [PMID: 17685304]
[25]
Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int J Pept Res Ther 2006; 12(2): 131-8.
[http://dx.doi.org/10.1007/s10989-005-9010-3]
[26]
Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB. Reversed chitosan–alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization. Eur J Pharm Biopharm 2007; 65(2): 215-32.
[http://dx.doi.org/10.1016/j.ejpb.2006.07.014] [PMID: 16982178]
[27]
Mehrabi M, Sadeghi-Soureh S, Mohammadpour Dounighi N, et al. Development and optimisation of hepatitis B recombinant antigen loaded chitosan nanoparticles as an adjuvant using the response surface methodology. Micro & Nano Lett 2020; 15(11): 736-41.
[http://dx.doi.org/10.1049/mnl.2019.0355]
[28]
Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[29]
Paulzagade O, Borkar A. Simultaneous estimation of drug digoxin in tablet dosage form by UV spectrophotometric method. Int J Pharma Bio Sci 2021; 11(2): 195-203.
[30]
Naser M, Rezvan Y, Hossein Z. A new antigen delivery vehicle candidate: Orthochirus iranus scorpion venom entrapped in chitosan nanoparticles. Br J Pharm Res 2015; 7(4): 264-75.
[http://dx.doi.org/10.9734/BJPR/2015/16667]
[31]
Emami J, Boushehri MSS, Varshosaz J. Preparation, characterization and optimization of glipizide controlled release nanoparticles Res Pharm Sci 2014; 9(5): 301-14.
[32]
Borges O, Borchard G, Verhoef JC, de Sousa A, Junginger HE. Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm 2005; 299(1-2): 155-66.
[http://dx.doi.org/10.1016/j.ijpharm.2005.04.037] [PMID: 15998569]
[33]
Avadi MR, Sadeghi AMM, Dounighi NM, Dinarvand R, Atyabi F. Ex Vivo Evaluation of Insulin Nanoparticles Using Chitosan and Arabic Gum. ISRN Pharm 2011; 2011: 1-7.
[34]
Singh M, Pilani S. Review: In vitro drug release characterization models. Int J Pharm Stud Res 2021; 2: 77-84.
[35]
Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 2007; 24(12): 2198-206.
[http://dx.doi.org/10.1007/s11095-007-9367-4] [PMID: 17577641]
[36]
Li X, Qi J, Xie Y, et al. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: Preparation, characterization, and hypoglycemic effect in rats. Int J Nanomedicine 2013; 8: 23-32.
[PMID: 23293517]
[37]
Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int J Biol Macromol 2014; 71: 141-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.036] [PMID: 24863916]
[38]
Loquercio A, Castell-Perez E, Gomes C, Moreira RG. Preparation of chitosan-alginate nanoparticles for Trans -cinnamaldehyde entrapment. J Food Sci 2015; 80(10): N2305-15.
[http://dx.doi.org/10.1111/1750-3841.12997] [PMID: 26375302]
[39]
Zhao Z, Hu Y, Harmon T, Pentel P, Ehrich M, Zhang C. Rationalization of a nanoparticle-based nicotine nanovaccine as an effective next-generation nicotine vaccine: A focus on hapten localization. Biomaterials 2017; 138: 46-56.
[40]
Khan SI, Chillawar RR, Tadi KK, Motghare RV. Molecular Imprinted Polymer Based Impedimetric Sensor for Trace Level Determination of Digoxin in Biological and Pharmaceutical Samples. Curr Anal Chem 2018; 14(5): 474-82.
[http://dx.doi.org/10.2174/1573411013666171117163609]
[41]
Gazori T, Khoshayand MR, Azizi E, Yazdizade P, Nomani A, Haririan I. Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector: Formulation, optimization and in vitro characterization. Carbohydr Polym 2009; 77(3): 599-606.
[http://dx.doi.org/10.1016/j.carbpol.2009.02.019]