[19]
Zadeh, M.T.; Mosaffa, N.; Khamesipour, A.; Haji, M.H.M.; Ebrahimi, S.H.; Shafiee, A.M. A novel nanoformulation for reducing the toxicity and increasing the efficacy of betulinic acid using anionic globular dendrimer. J Nanostruct., 2020, 11(1), 143-152.
[20]
Mangla, S. Engineering PEGylated Antibody Fragments for Enhanced Properties and Cancer Detection; The Ohio State University, 2016.
[30]
Scott, M.D.; Nakane, N. Maurer-Spurej, E Cryoprotection of Platelets by Grafted Polymers. Cryopreservation-Current Advances and Evaluations; IntechOpen, 2019.
[32]
Maurer, E.; Scott, M.D.; Kitamura, N. Cold storage of pegylated platelets at about or below 0°C. Patent US8067151B2, 2011.
[33]
Tarrand, J.; Andersson, B. Compositions and methods for prolonged cell storage. Patent US20180070581A1, 2021.
[40]
Zadeh, M.T.; Shafiee, A.M.; Mirzaei, M.J. review study on the application of polymeric-based nanoparticles as a novel approach for enhancing the stability of albumins. Nanomed. J., 2022, 9(4), 261-272.
[41]
Belousov, A; Malygon, E; Yavorskiy, V; Belousova, E Stabilization of molecular structure membranes of preserved rbcs by means nanotechnology. Ann Med & Surg Case Rep: AMSCR., 2019, 2019(100001)
[48]
Webster, K.D. Development of” inside-out” PEGylated crosslinked hemoglobin polymers: Novel hemoglobin-based oxygen carriers (HBOC); Loyola University Chicago, 2016.
[59]
Haghdoost, S.; Hashemi-Najafabadi, S.; Soleimani, M. Investigating the stability of polymer coating of methoxy polyethylene glycol activated by succinimidyl valerate on the surface of red blood cells under in vitro and in vivo conditions. Pathobiology Research., 2015, 18(2), 13-26.
[61]
Abuchowski, A. PEGylated bovine carboxyhemoglobin (SANGUINATE™): results of clinical safety testing and use in patients. Oxygen transport to tissue XXXVII; Springer, 2016, pp. 461-467.
[87]
Hill, JA. Characterization of Multi-Albumin Pegylated Complexes Synthesized Using" Click" Chemistry as Drug Delivery Systems; Loyola University Chicago, 2017.
[89]
Hoorang, M.; Tamaddon, A.; Yousefi, G. Synthesis of PEGylated human serum albumin by maleimide-thiol chemistry and histopathological evaluation in a mice model of carrageenan-induced inflammation. Trends Pharmacol. Sci., 2019, 5(1), 47-56.
[93]
Acharya, S.A.; Intaglietta, M. Method of enhancing efficacy of blood transfusions. Patent US9498537B2, 2014.
[98]
Di Minno, M.N.D.; Di Minno, A.; Calcaterra, I.; Cimino, E.; Dell’Aquila, F.; Franchini, M. Eds. Enhanced half-life recombinant factor VIII concentrates for hemophilia A: insights from pivotal and extension studies. Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers, Inc., 2020.
[104]
Chowdary, P. N8‐GP: A new extended half‐life recombinant factor VIII product for hemophilia A; Wiley Online Library, 2020.
[113]
Schermeyer, M-T.; Wöll, A.K.; Kokke, B.; Eppink, M.; Hubbuch, J. Eds. Characterization of highly concentrated antibody solution-A toolbox for the description of protein long-term solution stability. MAbs; Taylor & Francis, 2017.
[114]
Heywood, S.P.; Humphreys, D.P. Polymer Fusions to Increase Antibody Half-Lives: PEGylation and Other Modifications; Recombinant Antibodies for Immunotherapy, 2009, p. 275.
[116]
Jevševar, S.; Kusterle, M.; Kenig, M. PEGylation of antibody fragments for half-life extension. Antibody methods and protocols; Springer, 2012, pp. 233-246.
[126]
Storage stability studies of anti-VEGF FpF antibody mimetics. Khalili, H.; Brocchini, S.; Khaw, P.T.; Filippov, S., Eds.; 2016 AAPS Annual Meeting and Exposition, 2016.