A Problem-solving Bionic Design Methodology for Structural Applications (BREED)

Page: [276 - 286] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Nature-inspired designs, which have evolved from proven strategies of nature, have been a constant source of inspiration for designers and engineers to solve real-life problems.

Methods: Current bionic design methods are theoretical and are discordant with the design engineering workflow. A proposed methodology suggests suitable bionic forms for a given design space. This procedure consists of the following stages: bionic representation, relation, emulation, engineering specifications, design verification, optimisation (BREED), and finally, realisation.

Results: This methodology aims to function as a systematic problem-solving approach to retrieve structural inspirations from nature and mimic its form.

Conclusion: The inspiration and validation phases of the bionic structure are represented as a Vmodel. The designer can leverage this framework to develop novel bionic design concepts.

[1]
De Pauw, I.; Kandachar, P. Nature inspired design: Strategies towards sustainability. In: Knowledge Collaboration & Learning for Sustainable Innovation; Delft; The Netherlands, 2010.
[2]
Ayala, F. Darwin’s greatest discovery: Design without designer. Proc. Natl. Acad. Sci., 2007, 104(Suppl. 1), 8567-8573.
[3]
Chakrabarti, A.; Chakrabarti, D. Idea inspire 3.0—A tool for analogical design amaresh. Res. Design Communit., 2017, 66, 1037-1047.
[4]
Deldin, J.; Schuknecht, M. The AskNature database: Enabling solutions in biomimetic design. In: Biologically Inspired Design; , 2014; pp. 17-27.
[5]
Siddharth, L.; Chakrabarti, A. Evaluating the impact of Idea-Inspire 4.0 on analogical transfer of concepts. Artif. Intell. Eng. Des. Anal. Manuf., 2018, 32(4), 431-448.
[http://dx.doi.org/10.1017/S0890060418000136]
[6]
Coelho, D.A.; Versos, C.A.M. A comparative analysis of six bionic design methods. Int. J. Design Engin., 2011, 4(2), 114.
[http://dx.doi.org/10.1504/IJDE.2011.045131]
[7]
Fu, K.; Moreno, D.; Yang, M.; Wood, K.L. Bio-inspired design: An overview investigating open questions from the broader field of design-by-analogy. J. Mech. Des., 2014, 136(11), 111102.
[http://dx.doi.org/10.1115/1.4028289]
[8]
Chakrabarti, A.; Shea, K.; Stone, R.; Cagan, J.; Campbell, M.; Hernandez, N.V.; Wood, K.L. Computer-based design synthesis research: An overview. J. Comput. Inf. Sci. Eng., 2011, 11(2), 021003.
[http://dx.doi.org/10.1115/1.3593409]
[9]
Colombo, B. Bionic design, as an innovation tool in pedagogic process. In: DS 46: Proceedings of E and PDE 2008, the 10th International Conference on Engineering and Product Design Education, 2008.
[10]
Forniés, I.L.; Muro, L.B. A top-down biomimetic design process for product concept generation. Int. J. Des. Nat. Ecodyn., 2012, 7(1), 27-48.
[http://dx.doi.org/10.2495/DNE-V7-N1-27-48]
[11]
Rossin, K.J. Biomimicry: Nature’s design process versus the designer’s process. WIT Trans. Ecol. Environ., 2010, 138, 559-570.
[http://dx.doi.org/10.2495/DN100501]
[12]
Shu, L.H. A natural-language approach to biomimetic design. Artif. Intell. Eng. Des. Anal. Manuf., 2010, 24(4), 507-519.
[http://dx.doi.org/10.1017/S0890060410000363]
[13]
Helms, M.; Vattam, S.S.; Goel, A.K. Biologically inspired design: Process and products. Des. Stud., 2009, 30(5), 606-622.
[http://dx.doi.org/10.1016/j.destud.2009.04.003]
[14]
Vincent, J.F.V.; Bogatyreva, O.A.; Bogatyrev, N.R.; Bowyer, A.; Pahl, A.K. Biomimetics: Its practice and theory. J. R. Soc. Interface, 2006, 3(9), 471-482.
[http://dx.doi.org/10.1098/rsif.2006.0127] [PMID: 16849244]
[15]
Maier, M.; Hamm, C. ELISE 3D-a database-driven engineering and design tool. In: ICED 11 - 18th International Conference on Engineering Design-impacting society through engineering design, 2011, 9, pp. 132-142.
[16]
Blessing, L.T.M.; Chakrabarti, A. DRM, a design research methodology. In: DRM, a Design Research Methodology, 1st ed; Springer-Verlag London, 2009; pp. 1-397.
[17]
Lenau, T.A.; Metze, A-L.; Hesselberg, T. Paradigms for biologically inspired design. Proc. SPIE, 2018, 10593, 1.
[18]
Baldussu, A.; Cascini, G. About integration opportunities between TRIZ and biomimetics for inventive design. Procedia Eng., 2015, 131, 3-13.
[http://dx.doi.org/10.1016/j.proeng.2015.12.342]
[19]
Yu, S.; Dong, H.; Wang, P.; Wu, C.; Guo, Y. Generative creativity: Adversarial learning for bionic design. In: Computer Science; , 2019; pp. 525-536.
[20]
Wen, H.I.; Zhang, S.; Hapeshi, K.; Wang, X. An innovative methodology of product design from nature. J. Bionics Eng., 2008, 5(1), 75-84.
[http://dx.doi.org/10.1016/S1672-6529(08)60009-8]
[21]
du Plessis, A.; Broeckhoven, C.; Yadroitsava, I.; Yadroitsev, I.; Hands, C.H.; Kunju, R.; Bhate, D. Beautiful and functional: A review of biomimetic design in additive manufacturing. Addit. Manuf., 2019, 27, 408-427.
[http://dx.doi.org/10.1016/j.addma.2019.03.033]
[22]
Kazhdan, M. Shape Representations and Algorithms for 3D Model Retrieval. PhD Thesis, Princeton University 2004.
[23]
Veltkamp, R.C. Shape matching: Similarity measures and algorithms. In Proceedings-International Conference on Shape Modeling and Applications, SMI 2001, pp. 188-197.
[24]
Lippert, R.B.; Lachmayer, R. Bionic inspired infill structures for a light-weight design by using SLM. Proceedings of International Design Conference, DESIGN, 2016, pp. 331-340.
[25]
Schulgasser, K.; Witztum, A. On the strength, stiffness and stability of tubular plant stems and leaves. J. Theor. Biol., 1992, 155(4), 497-515.
[http://dx.doi.org/10.1016/S0022-5193(05)80632-0]
[26]
Vaidyanathan, R.; Fattepur, G.; Guttal, R.C. Method to retrieve bionic morphologies by spectral matching for the design space. Int. J. Des. Nat. Ecodyn., 2020, 15(5), 677-684.
[http://dx.doi.org/10.18280/ijdne.150509]
[27]
Fish, F.E. Biomimetics: Determining engineering opportunities from nature. Biomimetics and Bioinspiration, 2009, 7401, 740109.
[http://dx.doi.org/10.1117/12.824106]
[28]
Jones, M. 3D distance from a point to a triangle. Department of Computer Science, University of Wales. 1995. Available from: http://www-compsci.swan.ac.uk/~csmark/PDFS/dist.pdf
[29]
Mccormack, J.; Dorin, A.; Innocent, T. Generative design: A paradigm for design research. In: Proceedings of Futureground; , 2004; p. 8.
[30]
Emmelmann, C.; Sander, P.; Kranz, J.; Wycisk, E. Laser additive manufacturing and bionics: Redefining lightweight design. Phys. Procedia, 2011, 12(PART 1), 364-368.
[http://dx.doi.org/10.1016/j.phpro.2011.03.046]
[31]
Emmelmann, C.; Petersen, M.; Kranz, J.; Wycisk, E. Bionic lightweight design by laser additive manufacturing (LAM) for aircraft industry. SPIE Eco-Photonics 2011. Sustainable Design, Manufacturing, and Engineering Workforce Education for a Green Future, 2011, 8065, 80650L.
[32]
Fratzl, P. Biomimetic materials research: What can we really learn from nature’s structural materials? J. R. Soc. Interface, 2007, 4(15), 637-642.
[http://dx.doi.org/10.1098/rsif.2007.0218] [PMID: 17341452]
[33]
Thompson, D.A.W. XXVII.—Morphology and mathematics. Trans. R. Soc. Edinb., 1916, 50(4), 857-895.
[http://dx.doi.org/10.1017/S0080456800017105]
[34]
Arena, P.; Bucolo, M.; Buscarino, A.; Fortuna, L.; Frasca, M. Reviewing bioinspired technologies for future trends: A complex systems point of view. Front. Phys., 2021, 9, 750090.
[http://dx.doi.org/10.3389/fphy.2021.750090]
[35]
Arena, P.; Fazzino, S.; Fortuna, L.; Maniscalco, P. Game theory and non-linear dynamics: The Parrondo Paradox case study. Chaos Solitons Fractals, 2003, 17(2-3), 545-555.
[http://dx.doi.org/10.1016/S0960-0779(02)00397-1]