CNS & Neurological Disorders - Drug Targets

Author(s): Rishabh Chaudhary* and Randhir Singh*

DOI: 10.2174/1871527322666230518111323

Therapeutic Viewpoint on Rat Models of Locomotion Abnormalities and Neurobiological Indicators in Parkinson's Disease

Page: [488 - 503] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Locomotion problems in Parkinson's syndrome are still a research and treatment difficulty. With the recent introduction of brain stimulation or neuromodulation equipment that is sufficient to monitor activity in the brain using electrodes placed on the scalp, new locomotion investigations in patients having the capacity to move freely have sprung up.

Objective: This study aimed to find rat models and locomotion-connected neuronal indicators and use them all over a closed-loop system to enhance the future and present treatment options available for Parkinson’s disease.

Methods: Various publications on locomotor abnormalities, Parkinson's disease, animal models, and other topics have been searched using several search engines, such as Google Scholar, Web of Science, Research Gate, and PubMed.

Results: Based on the literature, we can conclude that animal models are used for further investigating the locomotion connectivity deficiencies of many biological measuring devices and attempting to address unanswered concerns from clinical and non-clinical research. However, translational validity is required for rat models to contribute to the improvement of upcoming neurostimulation-based medicines. This review discusses the most successful methods for modelling Parkinson’s locomotion in rats.

Conclusion: This review article has examined how scientific clinical experiments lead to localised central nervous system injuries in rats, as well as how the associated motor deficits and connection oscillations reflect this. This evolutionary process of therapeutic interventions may help to improve locomotion- based treatment and management of Parkinson's syndrome in the upcoming years.

Graphical Abstract

[1]
Laviola G, Hannan AJ, Macrì S, Solinas M, Jaber M. Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis 2008; 31(2): 159-68.
[http://dx.doi.org/10.1016/j.nbd.2008.05.001] [PMID: 18585920]
[2]
Udovin L, Quarracino C, Herrera M I, Capani F, Otero-Losada M, Perez-Lloret S. Role of astrocytic dysfunction in the pathogenesis of Parkinson’s disease animal models from a molecular signaling perspective. J Neural Transplant Plast 2020; 2020
[http://dx.doi.org/10.1155/2020/1859431]
[3]
Blesa J, Przedborski S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 2014; 8: 155.
[http://dx.doi.org/10.3389/fnana.2014.00155] [PMID: 25565980]
[4]
Liu M, Bing G. Lipopolysaccharide animal models for Parkinson's disease. Parkinson’s Dis 2011; 2011.
[http://dx.doi.org/10.4061/2011/327089]
[5]
Taguchi T, Ikuno M, Yamakado H, Takahashi R. Animal model for prodromal Parkinson’s disease. Int J Mol Sci 2020; 21(6): 1961.
[http://dx.doi.org/10.3390/ijms21061961] [PMID: 32183024]
[6]
Zinkstok JR, Boot E, Bassett AS, et al. Neurobiological perspective of 22q11.2 deletion syndrome. Lancet Psychiatry 2019; 6(11): 951-60.
[http://dx.doi.org/10.1016/S2215-0366(19)30076-8] [PMID: 31395526]
[7]
Devos D, Moreau C, Devedjian JC, et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 2014; 21(2): 195-210.
[http://dx.doi.org/10.1089/ars.2013.5593] [PMID: 24251381]
[8]
Prediger RDS, Matheus FC, Schwarzbold ML, Lima MMS, Vital MABF. Anxiety in Parkinson’s disease: A critical review of experimental and clinical studies. Neuropharmacology 2012; 62(1): 115-24.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.039] [PMID: 21903105]
[9]
Cenci MA, Lindgren HS. Advances in understanding l-DOPA-induced dyskinesia. Curr Opin Neurobiol 2007; 17(6): 665-71.
[http://dx.doi.org/10.1016/j.conb.2008.01.004] [PMID: 18308560]
[10]
Castrioto A, Thobois S, Carnicella S, Maillet A, Krack P. Emotional manifestations of PD: Neurobiological basis. Mov Disord 2016; 31(8): 1103-13.
[http://dx.doi.org/10.1002/mds.26587] [PMID: 27041545]
[11]
Kin K, Yasuhara T, Kameda M, Date I. Animal models for Parkinson’s disease research: trends in the 2000s. Int J Mol Sci 2019; 20(21): 5402.
[http://dx.doi.org/10.3390/ijms20215402] [PMID: 31671557]
[12]
Fifel K, Piggins H, Deboer T. Modeling sleep alterations in Parkinson’s disease: How close are we to valid translational animal models? Sleep Med Rev 2016; 25: 95-111.
[http://dx.doi.org/10.1016/j.smrv.2015.02.005] [PMID: 26163055]
[13]
Lindenbach D, Bishop C. Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson’s disease. Neurosci Biobehav Rev 2013; 37(10): 2737-50.
[http://dx.doi.org/10.1016/j.neubiorev.2013.09.008] [PMID: 24113323]
[14]
Nadjar A, Gerfen CR, Bezard E. Priming for l-dopa-induced dyskinesia in Parkinson’s disease: A feature inherent to the treatment or the disease? Prog Neurobiol 2009; 87(1): 1-9.
[http://dx.doi.org/10.1016/j.pneurobio.2008.09.013] [PMID: 18938208]
[15]
Gao HM, Zhang F, Zhou H, Kam W, Wilson B, Hong JS. Neuroinflammation and α-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health Perspect 2011; 119(6): 807-14.
[http://dx.doi.org/10.1289/ehp.1003013] [PMID: 21245015]
[16]
Yeung PKK, Lai AKW, Son HJ, et al. Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson’s disease. Neurobiol Aging 2017; 50: 119-33.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.11.008] [PMID: 27960106]
[17]
Ekstrom AD, Watrous AJ. Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory. Neuroimage 2014; 85(0 2): 667-77.
[http://dx.doi.org/10.1016/j.neuroimage.2013.06.049] [PMID: 23792985]
[18]
Sakai K, Yamamoto A, Matsubara K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 2012; 122(1): 80-90.
[PMID: 22133879]
[19]
Kabbaj M, Devine DP, Savage VR, Akil H. Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: differential expression of stress-related molecules. J Neurosci 2000; 20(18): 6983-8.
[http://dx.doi.org/10.1523/JNEUROSCI.20-18-06983.2000] [PMID: 10995843]
[20]
Biewener AA, Blickhan R, Perry AK, Heglund NC, Taylor CR. Muscle forces during locomotion in kangaroo rats: force platform and tendon buckle measurements compared. J Exp Biol 1988; 137(1): 191-205.
[http://dx.doi.org/10.1242/jeb.137.1.191] [PMID: 3209966]
[21]
Dominici N, Ivanenko YP, Cappellini G, et al. Locomotor primitives in newborn babies and their development. Science 2011; 334(6058): 997-9.
[http://dx.doi.org/10.1126/science.1210617] [PMID: 22096202]
[22]
Guillem K, Vouillac C, Azar MR, et al. Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J Neurosci 2005; 25(38): 8593-600.
[http://dx.doi.org/10.1523/JNEUROSCI.2139-05.2005] [PMID: 16177026]
[23]
Young JW, Minassian A, Paulus MP, Geyer MA, Perry W. A reverse-translational approach to bipolar disorder: Rodent and human studies in the Behavioral Pattern Monitor. Neurosci Biobehav Rev 2007; 31(6): 882-96.
[http://dx.doi.org/10.1016/j.neubiorev.2007.05.009] [PMID: 17706782]
[24]
Lenczowski MJ, Bluthé R-M, Roth J, et al. Central administration of rat IL-6 induces HPA activation and fever but not sickness behavior in rats. Am J Physiol 1999; 276(3): R652-8.
[PMID: 10070124]
[25]
Schachter S. Some extraordinary facts about obese humans and rats. Am Psychol 1971; 26(2): 129-44.
[http://dx.doi.org/10.1037/h0030817] [PMID: 5541215]
[26]
Lu J, Féron F, Mackay-Sim A, Waite PME. Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain 2002; 125(1): 14-21.
[http://dx.doi.org/10.1093/brain/awf014] [PMID: 11834589]
[27]
Bezard E, Przedborski S. A tale on animal models of Parkinson’s disease. Mov Disord 2011; 26(6): 993-1002.
[http://dx.doi.org/10.1002/mds.23696] [PMID: 21626544]
[28]
Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J 2000; 14(10): 1432-8.
[http://dx.doi.org/10.1096/fasebj.14.10.1432] [PMID: 10877836]
[29]
Betarbet R, Sherer TB, Greenamyre JT. Animal models of Parkinson’s disease. BioEssays 2002; 24(4): 308-18.
[http://dx.doi.org/10.1002/bies.10067] [PMID: 11948617]
[30]
Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson’s disease: Limits and relevance to neuroprotection studies. Mov Disord 2013; 28(1): 61-70.
[http://dx.doi.org/10.1002/mds.25108] [PMID: 22753348]
[31]
Tieu K. A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb Perspect Med 2011; 1(1): a009316.
[http://dx.doi.org/10.1101/cshperspect.a009316] [PMID: 22229125]
[32]
Paillé V, Henry V, Lescaudron L, Brachet P, Damier P. Rat model of Parkinson’s disease with bilateral motor abnormalities, reversible with levodopa, and dyskinesias. Mov Disord 2007; 22(4): 533-9.
[http://dx.doi.org/10.1002/mds.21308] [PMID: 17230470]
[33]
Perese DA, Ulman J, Viola J, Ewing SE, Bankiewicz KSA. 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res 1989; 494(2): 285-93.
[http://dx.doi.org/10.1016/0006-8993(89)90597-0] [PMID: 2528389]
[34]
Grünblatt E, Mandel S, Youdim MBH. Neuroprotective strategies in Parkinson’s disease using the models of 6-hydroxydopamine and MPTP. Ann N Y Acad Sci 2000; 899(1): 262-73.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06192.x] [PMID: 10863545]
[35]
Baluchnejadmojarad T, Roghani M, Nadoushan MRJ, Bagheri M. Neuroprotective effect of genistein in 6-hydroxydopamine Hemi-parkinsonian rat model. Phytother Res 2009; 23(1): 132-5.
[http://dx.doi.org/10.1002/ptr.2564] [PMID: 18693302]
[36]
Schwarting RKW, Bonatz AE, Carey RJ, Huston JP. Relationships between indices of behavioral asymmetries and neurochemical changes following mesencephalic 6-hydroxydopamine injections. Brain Res 1991; 554(1-2): 46-55.
[http://dx.doi.org/10.1016/0006-8993(91)90170-Z] [PMID: 1933318]
[37]
Borlongan CV, Sanberg PR. Elevated body swing test: a new behavioral parameter for rats with 6- hydroxydopamine-induced hemiparkinsonism. J Neurosci 1995; 15(7): 5372-8.
[http://dx.doi.org/10.1523/JNEUROSCI.15-07-05372.1995] [PMID: 7623159]
[38]
Roghani M, Niknam A, Jalali-Nadoushan MR, Kiasalari Z, Khalili M, Baluchnejadmojarad T. Oral pelargonidin exerts dose-dependent neuroprotection in 6-hydroxydopamine rat model of hemi-parkinsonism. Brain Res Bull 2010; 82(5-6): 279-83.
[http://dx.doi.org/10.1016/j.brainresbull.2010.06.004] [PMID: 20558255]
[39]
Rezaei M, Nasri S, Roughani M, Niknami Z, Ziai SA. Peganum Harmala L. extract reduces oxidative stress and improves symptoms in 6-Hydroxydopamine-induced Parkinson’s disease in rats. Iran J Pharm Res 2016; 15(1): 275-81.
[PMID: 27610168]
[40]
Thomas J, Wang J, Takubo H, Sheng J, de Jesus S, Bankiewicz KSA. 6-hydroxydopamine-induced selective parkinsonian rat model: further biochemical and behavioral characterization. Exp Neurol 1994; 126(2): 159-67.
[http://dx.doi.org/10.1006/exnr.1994.1054] [PMID: 7925817]
[41]
Khan MM, Ahmad A, Ishrat T, et al. Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 2010; 1328: 139-51.
[http://dx.doi.org/10.1016/j.brainres.2010.02.031] [PMID: 20167206]
[42]
Blandini F, Armentero MT, Martignoni E. The 6-hydroxydopamine model: News from the past. Parkinsonism Relat Disord 2008; 14 (Suppl. 2): S124-9.
[http://dx.doi.org/10.1016/j.parkreldis.2008.04.015] [PMID: 18595767]
[43]
Lundblad M, Picconi B, Lindgren H, Cenci MA. A model of l-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 2004; 16(1): 110-23.
[http://dx.doi.org/10.1016/j.nbd.2004.01.007] [PMID: 15207268]
[44]
Aguiar LMV, Nobre HV Jr, Macêdo DS, et al. Neuroprotective effects of caffeine in the model of 6-hydroxydopamine lesion in rats. Pharmacol Biochem Behav 2006; 84(3): 415-9.
[http://dx.doi.org/10.1016/j.pbb.2006.05.027] [PMID: 16844208]
[45]
Winkler C, Kirik D, Björklund A, Cenci MA. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 2002; 10(2): 165-86.
[http://dx.doi.org/10.1006/nbdi.2002.0499] [PMID: 12127155]
[46]
Zhou M, Zhang W, Chang J, et al. Gait analysis in three different 6-hydroxydopamine rat models of Parkinson’s disease. Neurosci 2015; 584: 184-9.
[PMID: 25449863]
[47]
Park HJ, Lim S, Joo WS, et al. Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson’s disease model. Exp Neurol 2003; 180(1): 93-8.
[http://dx.doi.org/10.1016/S0014-4886(02)00031-6] [PMID: 12668152]
[48]
Smith MP, Cass WA. GDNF reduces oxidative stress in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett 2007; 412(3): 259-63.
[http://dx.doi.org/10.1016/j.neulet.2006.11.017] [PMID: 17125923]
[49]
Przedbroski S, Leviver M, Jiang H, et al. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by instrastriatal injection of 6-hydroxydopamine. Neuroscience 1995; 67(3): 631-47.
[http://dx.doi.org/10.1016/0306-4522(95)00066-R] [PMID: 7675192]
[50]
Grealish S, Mattsson B, Draxler P, Björklund A. Characterisation of behavioural and neurodegenerative changes induced by intranigral 6-hydroxydopamine lesions in a mouse model of Parkinson’s disease. Eur J Neurosci 2010; 31(12): 2266-78.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07265.x] [PMID: 20529122]
[51]
Smith MP, Cass WA. Oxidative stress and dopamine depletion in an intrastriatal 6-hydroxydopamine model of Parkinson’s disease. Neuroscience 2007; 144(3): 1057-66.
[http://dx.doi.org/10.1016/j.neuroscience.2006.10.004] [PMID: 17110046]
[52]
Henry B, Crossman AR, Brotchie JM. Characterization of enhanced behavioral responses to L-DOPA following repeated administration in the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Exp Neurol 1998; 151(2): 334-42.
[http://dx.doi.org/10.1006/exnr.1998.6819] [PMID: 9628768]
[53]
Chotibut T, Meadows S, Kasanga EA, et al. Ceftriaxone reduces L -dopa-induced dyskinesia severity in 6-hydroxydopamine parkinson’s disease model. Mov Disord 2017; 32(11): 1547-56.
[http://dx.doi.org/10.1002/mds.27077] [PMID: 28631864]
[54]
Ding J, Guzman JN, Tkatch T, et al. RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci 2006; 9(6): 832-42.
[http://dx.doi.org/10.1038/nn1700] [PMID: 16699510]
[55]
Poetini MR, Araujo SM, Trindade de Paula M, et al. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem Biol Interact 2018; 279: 177-86.
[http://dx.doi.org/10.1016/j.cbi.2017.11.018] [PMID: 29191452]
[56]
Calabresi P, Picconi B, Parnetti L, Di Filippo M. A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine–acetylcholine synaptic balance. Lancet Neurol 2006; 5(11): 974-83.
[http://dx.doi.org/10.1016/S1474-4422(06)70600-7] [PMID: 17052664]
[57]
Branchi I, D’Andrea I, Armida M, et al. Nonmotor symptoms in Parkinson’s disease: Investigating early-phase onset of behavioral dysfunction in the 6-hydroxydopamine-lesioned rat model. J Neurosci Res 2008; 86(9): 2050-61.
[http://dx.doi.org/10.1002/jnr.21642] [PMID: 18335518]
[58]
Wenger N, Vogt A, Skrobot M, et al. Rodent models for gait network disorders in Parkinson’s disease - a translational perspective. Exp Neurol 2022; 352114011.
[PMID: 35176273]
[59]
Bowers MB Jr, Van Woert MH. 6-Hydroxydopamine, noradrenergic reward, and schizophrenia. Science 1972; 175(4024): 920-1.
[http://dx.doi.org/10.1126/science.175.4024.920]
[60]
Zheng LF, Song J, Fan RF, et al. The role of the vagal pathway and gastric dopamine in the gastroparesis of rats after a 6-hydroxydopamine microinjection in the substantia nigra. Acta Physiol (Oxf) 2014; 211(2): 434-46.
[http://dx.doi.org/10.1111/apha.12229] [PMID: 24410908]
[61]
Pienaar IS, Kellaway LA, Russell VA, et al. Maternal separation exaggerates the toxic effects of 6-hydroxydopamine in rats: Implications for neurodegenerative disorders. Stress 2008; 11(6): 448-56.
[http://dx.doi.org/10.1080/10253890801890721] [PMID: 18609296]
[62]
Hudson JL, van Horne CG, Strömberg I, et al. Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats. Brain Res 1993; 626(1-2): 167-74.
[http://dx.doi.org/10.1016/0006-8993(93)90576-9] [PMID: 8281427]
[63]
Willis GL, Smith GC. Anorexic properties of three monoamine oxidase inhibitors. Pharmacol Biochem Behav 1982; 17(6): 1135-9.
[http://dx.doi.org/10.1016/0091-3057(82)90108-3] [PMID: 7163347]
[64]
Sauer H, Rosenblad C, Björklund A. Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc Natl Acad Sci USA 1995; 92(19): 8935-9.
[http://dx.doi.org/10.1073/pnas.92.19.8935] [PMID: 7568047]
[65]
Lippa AS, Antelman SM, Fisher AE, Canfield DR. Neurochemical mediation of reward: A significant role for dopamine? Pharmacol Biochem Behav 1973; 1(1): 23-8.
[http://dx.doi.org/10.1016/0091-3057(73)90050-6] [PMID: 4590600]
[66]
Carey RJ. An examination of parkinsonian versus anhedonia contributions to self-stimulation impairments induced by dopamine dysfunction. Behav Brain Res 1986; 22(2): 117-25.
[http://dx.doi.org/10.1016/0166-4328(86)90033-1] [PMID: 3024663]
[67]
Lindgren HS, Lelos MJ, Dunnett SB, Do . α-synuclein vector injections provide a better model of Parkinson’s disease than the classic 6-hydroxydopamine model? Exp Neurol 2012; 237(1): 36-42.
[http://dx.doi.org/10.1016/j.expneurol.2012.05.022] [PMID: 22727767]
[68]
Bowenkamp KE, Lapchak PA, Hoffer BJ, Miller PJ, Bickford PC. Intracerebroventricular glial cell line-derived neurotrophic factor improves motor function and supports nigrostriatal dopamine neurons in bilaterally 6-hydroxydopamine lesioned rats. Exp Neurol 1997; 145(1): 104-17.
[http://dx.doi.org/10.1006/exnr.1997.6436] [PMID: 9184114]
[69]
Zigmond MJ. Compensatory neurobiological changes after partial lesions with 6-hydroxydopamine. Trop Reg Bas Gang. 1994; pp. 503-16.
[70]
Haroutunian V, Kanof PD, Tsuboyama G, Davis KL. Restoration of cholinomimetic activity by clonidine in cholinergic plus noradrenergic lesioned rats. Brain Res 1990; 507(2): 261-6.
[http://dx.doi.org/10.1016/0006-8993(90)90280-O] [PMID: 2110845]
[71]
Carey RJ. Lateralized decrease in self-stimulation induced by haloperidol in rats with unilateral 6-hydroxydopamine lesions. Behav Brain Res 1985; 18(3): 215-22.
[http://dx.doi.org/10.1016/0166-4328(85)90029-4] [PMID: 3937541]
[72]
Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: A combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 1994; 59(2): 401-15.
[http://dx.doi.org/10.1016/0306-4522(94)90605-X] [PMID: 7516500]
[73]
Rauch F, Schwabe K, Krauss JK. Effect of deep brain stimulation in the pedunculopontine nucleus on motor function in the rat 6-hydroxydopamine Parkinson model. Behav Brain Res 2010; 210(1): 46-53.
[http://dx.doi.org/10.1016/j.bbr.2010.02.003] [PMID: 20138919]
[74]
Blandini F, Levandis G, Bazzini E, Nappi G, Armentero MT. Time-course of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6-hydroxydopamine in the rat: new clues from an old model. Eur J Neurosci 2007; 25(2): 397-405.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05285.x] [PMID: 17284180]
[75]
Saryyeva A, Nakamura M, Krauss JK, Schwabe K. c-Fos expression after deep brain stimulation of the pedunculopontine tegmental nucleus in the rat 6-hydroxydopamine Parkinson model. J Chem Neuroanat 2011; 42(3): 210-7.
[http://dx.doi.org/10.1016/j.jchemneu.2011.08.003] [PMID: 21855627]
[76]
Blanco L, Lorigados OS, Rocha L, et al. Increase in the extracellular concentration of amino acid neurotransmitters and cell death in pedunculopontine nucleus of hemiparkinsonian rats upon intracerebral injection of 6-hydroxydopamine. Biotecnol Apl 2007; 24(1): 41-8.
[77]
Hernandez-Baltazar D, Zavala-Flores LM, Villanueva-Olivo A. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurologia 2017; 32(8): 533-9.
[http://dx.doi.org/10.1016/j.nrl.2015.06.011] [PMID: 26304655]
[78]
Breit S, Martin A, Lessmann L, Cerkez D, Gasser T, Schulz JB. Bilateral changes in neuronal activity of the basal ganglia in the unilateral 6-hydroxydopamine rat model. J Neurosci Res 2008; 86(6): 1388-96.
[http://dx.doi.org/10.1002/jnr.21588] [PMID: 18061958]
[79]
Wen P, Li M, Xiao H, et al. Low-frequency stimulation of the pedunculopontine nucleus affects gait and the neurotransmitter level in the ventrolateral thalamic nucleus in 6-OHDA Parkinsonian rats. Neurosci 2015; 600: 62-8.
[PMID: 26054938]
[80]
Ozsoy O, Yildirim FB, Ogut E, et al. Melatonin is protective against 6-hydroxydopamine-induced oxidative stress in a hemiparkinsonian rat model. Free Radic Res 2015; 49(8): 1004-14.
[http://dx.doi.org/10.3109/10715762.2015.1027198] [PMID: 25791066]
[81]
Visanji NP, Brotchie JM, Kalia LV, et al. α-Synuclein-based animal models of Parkinson’s disease: challenges and opportunities in a new era. Trends Neurosci 2016; 39(11): 750-62.
[http://dx.doi.org/10.1016/j.tins.2016.09.003] [PMID: 27776749]
[82]
Dehay B, Vila M, Bezard E, Brundin P, Kordower JH. Alpha-synuclein propagation: New insights from animal models. Mov Disord 2016; 31(2): 161-8.
[http://dx.doi.org/10.1002/mds.26370] [PMID: 26347034]
[83]
Kahle PJ, Neumann M, Ozmen L, Haass C. Physiology and pathophysiology of α-synuclein. Cell culture and transgenic animal models based on a Parkinson’s disease-associated protein. Ann N Y Acad Sci 2000; 920(1): 33-41.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06902.x] [PMID: 11193173]
[84]
Decressac M, Mattsson B, Björklund A. Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson’s disease. Exp Neurol 2012; 235(1): 306-15.
[http://dx.doi.org/10.1016/j.expneurol.2012.02.012] [PMID: 22394547]
[85]
Van der Perren A, Toelen J, Casteels C, et al. Longitudinal follow-up and characterization of a robust rat model for Parkinson’s disease based on overexpression of alpha-synuclein with adeno-associated viral vectors. Neurobiol Aging 2015; 36(3): 1543-58.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.11.015] [PMID: 25599874]
[86]
Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K. The role of α-synuclein in Parkinson’s disease: insights from animal models. Nat Rev Neurosci 2003; 4(9): 727-38.
[http://dx.doi.org/10.1038/nrn1199] [PMID: 12951565]
[87]
Guo Y-J, Xiong H, Chen K, Zou J-J, Lei P. Brain regions susceptible to alpha-synuclein spreading. Mol Psychiatry 2021; 27(1): 758-70.
[PMID: 34561613]
[88]
Hoban DB, Shrigley S, Mattsson B, et al. Impact of α-synuclein pathology on transplanted hESC-derived dopaminergic neurons in a humanized α-synuclein rat model of PD. Proc Natl Acad Sci USA 2020; 117(26): 15209-20.
[http://dx.doi.org/10.1073/pnas.2001305117] [PMID: 32541058]
[89]
Recchia A, Rota D, Debetto P, et al. Generation of a α-synuclein-based rat model of Parkinson’s disease. Neurobiol Dis 2008; 30(1): 8-18.
[http://dx.doi.org/10.1016/j.nbd.2007.11.002] [PMID: 18313315]
[90]
Van der Perren A, Macchi F, Toelen J, et al. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinson’s disease. Neurobiol Aging 2015; 36(3): 1559-68.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.01.014] [PMID: 25660193]
[91]
Dwyer Z, Rudyk C, Farmer K, et al. Characterizing the protracted neurobiological and neuroanatomical effects of paraquat in a murine model of Parkinson’s disease. Neurobiol Aging 2021; 100: 11-21.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.11.013] [PMID: 33450723]
[92]
Sloviter RS. The neurobiology of temporal lobe epilepsy: too much information, not enough knowledge. C R Biol 2005; 328(2): 143-53.
[http://dx.doi.org/10.1016/j.crvi.2004.10.010] [PMID: 15771000]
[93]
Rideout HJ, Stefanis L. The neurobiology of LRRK2 and its role in the pathogenesis of Parkinson’s disease. Neurochem Res 2014; 39(3): 576-92.
[http://dx.doi.org/10.1007/s11064-013-1073-5] [PMID: 23729298]
[94]
Tamano H, Nishio R, Morioka H, Takeda A. Extracellular Zn2+ influx into nigral dopaminergic neurons plays a key role for pathogenesis of 6-hydroxydopamine-induced Parkinson’s disease in rats. Mol Neurobiol 2019; 56(1): 435-43.
[http://dx.doi.org/10.1007/s12035-018-1075-z] [PMID: 29705946]
[95]
Harrington ME. Neurobiological studies of fatigue. Prog Neurobiol 2012; 99(2): 93-105.
[http://dx.doi.org/10.1016/j.pneurobio.2012.07.004] [PMID: 22841649]
[96]
Fernandez-Espejo E. Pathogenesis of Parkinson’s disease: prospects of neuroprotective and restorative therapies. Mol Neurobiol 2004; 29(1): 15-30.
[http://dx.doi.org/10.1385/MN:29:1:15] [PMID: 15034220]
[97]
Dave KD, De Silva S, Sheth NP, et al. Phenotypic characterization of recessive gene knockout rat models of Parkinson’s disease. Neurobiol Dis 2014; 70: 190-203.
[http://dx.doi.org/10.1016/j.nbd.2014.06.009] [PMID: 24969022]
[98]
Abdelkader NF, Safar MM, Salem HA. Ursodeoxycholic acid ameliorates apoptotic cascade in the rotenone model of Parkinson’s disease: modulation of mitochondrial perturbations. Mol Neurobiol 2016; 53(2): 810-7.
[http://dx.doi.org/10.1007/s12035-014-9043-8] [PMID: 25502462]
[99]
Toy WA, Petzinger GM, Leyshon BJ, et al. Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurobiol Dis 2014; 63: 201-9.
[http://dx.doi.org/10.1016/j.nbd.2013.11.017] [PMID: 24316165]
[100]
Kandil EA, Sayed RH, Ahmed LA, Abd El Fattah MA, El-Sayeh BM. Modulatory role of Nurr1 activation and thrombin inhibition in the neuroprotective effects of dabigatran etexilate in rotenone-induced Parkinson’s disease in rats. Mol Neurobiol 2018; 55(5): 4078-89.
[PMID: 28585189]
[101]
Guo L, Xiong H, Kim JI, et al. Dynamic rewiring of neural circuits in the motor cortex in mouse models of Parkinson’s disease. Nat Neurosci 2015; 18(9): 1299-309.
[http://dx.doi.org/10.1038/nn.4082] [PMID: 26237365]
[102]
Xu T, Wang S, Lalchandani RR, Ding JB. Motor learning in animal models of Parkinson’s disease: Aberrant synaptic plasticity in the motor cortex. Mov Disord 2017; 32(4): 487-97.
[http://dx.doi.org/10.1002/mds.26938] [PMID: 28343366]
[103]
Aeed F, Cermak N, Schiller J, Schiller Y. Intrinsic disruption of the M1 cortical network in a mouse model of Parkinson’s disease. Mov Disord 2021; 36(7): 1565-77.
[http://dx.doi.org/10.1002/mds.28538] [PMID: 33606292]
[104]
Zhou H, Niu L, Xia X, et al. Wearable ultrasound improves motor function in an MPTP mouse model of Parkinson’s disease. IEEE Trans Biomed Eng 2019; 66(11): 3006-13.
[http://dx.doi.org/10.1109/TBME.2019.2899631] [PMID: 30794160]
[105]
Magno LAV, Tenza-Ferrer H, Collodetti M, et al. Optogenetic stimulation of the M2 cortex reverts motor dysfunction in a mouse model of Parkinson’s Disease. J Neurosci 2019; 39(17): 3234-48.
[http://dx.doi.org/10.1523/JNEUROSCI.2277-18.2019] [PMID: 30782975]
[106]
Delaville C, Cruz AV, McCoy AJ, et al. Oscillatory activity in basal ganglia and motor cortex in an awake behaving rodent model of Parkinson’s disease. Basal Ganglia 2014; 3(4): 221-7.
[http://dx.doi.org/10.1016/j.baga.2013.12.001] [PMID: 25667820]
[107]
Fuentes R, Petersson P, Siesser WB, Caron MG, Nicolelis MAL. Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science 2009; 323(5921): 1578-82.
[http://dx.doi.org/10.1126/science.1164901] [PMID: 19299613]
[108]
Escande MV, Taravini IRE, Zold CL, Belforte JE, Murer MG. Loss of homeostasis in the direct pathway in a mouse model of asymptomatic Parkinson’s disease. J Neurosci 2016; 36(21): 5686-98.
[http://dx.doi.org/10.1523/JNEUROSCI.0492-15.2016] [PMID: 27225760]
[109]
Menardy F, Varani AP, Combes A, Léna C, Popa D. Functional alteration of cerebello-cerebral coupling in an experimental mouse model of parkinson’s disease. Cereb Cortex 2019; 29(4): 1752-66.
[http://dx.doi.org/10.1093/cercor/bhy346] [PMID: 30715237]
[110]
Ahn S, Song TJ, Park SU, et al. Effects of a combination treatment of KD5040 and L-dopa in a mouse model of Parkinson’s disease. BMC Complement Altern Med 2017; 17(1): 220.
[http://dx.doi.org/10.1186/s12906-017-1731-2] [PMID: 28424060]
[111]
Phillips JM, Lam HA, Ackerson LC, Maidment NT. Blockade of mGluR5 glutamate receptors in the subthalamic nucleus ameliorates motor asymmetry in an animal model of Parkinson’s disease. Eur J Neurosci 2006; 23(1): 151-60.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04550.x] [PMID: 16420425]
[112]
Limousin P, Krack P, Pollak P, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 1998; 339(16): 1105-11.
[http://dx.doi.org/10.1056/NEJM199810153391603] [PMID: 9770557]
[113]
Benabid AL, Pollak P, Gross C, et al. Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 1994; 62(1-4): 76-84.
[http://dx.doi.org/10.1159/000098600] [PMID: 7631092]
[114]
Rolland M, Carcenac C, Overton PG, Savasta M, Coizet V. Enhanced visual responses in the superior colliculus and subthalamic nucleus in an animal model of Parkinson’s disease. Neuroscience 2013; 252: 277-88.
[http://dx.doi.org/10.1016/j.neuroscience.2013.07.047] [PMID: 23916713]
[115]
Paul G, Meissner W, Rein S, et al. Ablation of the subthalamic nucleus protects dopaminergic phenotype but not cell survival in a rat model of Parkinson’s disease. Exp Neurol 2004; 185(2): 272-80.
[http://dx.doi.org/10.1016/S0014-4886(03)00363-7] [PMID: 14736508]
[116]
Visanji NP, Kamali Sarvestani I, Creed MC, et al. Deep brain stimulation of the subthalamic nucleus preferentially alters the translational profile of striatopallidal neurons in an animal model of Parkinson’s disease. Front Cell Neurosci 2015; 9: 221.
[http://dx.doi.org/10.3389/fncel.2015.00221] [PMID: 26106299]
[117]
Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM. The subthalamic nucleus in the context of movement disorders. Brain 2004; 127(1): 4-20.
[http://dx.doi.org/10.1093/brain/awh029] [PMID: 14607789]
[118]
Pienaar IS, Harrison IF, Elson JL, et al. An animal model mimicking pedunculopontine nucleus cholinergic degeneration in Parkinson’s disease. Brain Struct Funct 2015; 220(1): 479-500.
[http://dx.doi.org/10.1007/s00429-013-0669-5] [PMID: 24292256]
[119]
Jenkinson N, Nandi D, Muthusamy K, et al. Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus. Mov Disord 2009; 24(3): 319-28.
[http://dx.doi.org/10.1002/mds.22189] [PMID: 19097193]
[120]
Aravamuthan BR, Bergstrom DA, French RA, Taylor JJ, Parr-Brownlie LC, Walters JR. Altered neuronal activity relationships between the pedunculopontine nucleus and motor cortex in a rodent model of Parkinson’s disease. Exp Neurol 2008; 213(2): 268-80.
[http://dx.doi.org/10.1016/j.expneurol.2008.05.023] [PMID: 18601924]
[121]
Geng X, Xie J, Wang X, et al. Altered neuronal activity in the pedunculopontine nucleus: An electrophysiological study in a rat model of Parkinson’s disease. Behav Brain Res 2016; 305: 57-64.
[http://dx.doi.org/10.1016/j.bbr.2016.02.026] [PMID: 26924016]
[122]
Pienaar IS, Vernon A, Winn P. The cellular diversity of the pedunculopontine nucleus: relevance to behavior in health and aspects of Parkinson’s disease. Neuroscientist 2017; 23(4): 415-31.
[http://dx.doi.org/10.1177/1073858416682471] [PMID: 27932591]
[123]
Li M, Zhou M, Wen P, et al. The network of causal interactions for beta oscillations in the pedunculopontine nucleus, primary motor cortex, and subthalamic nucleus of walking parkinsonian rats. Exp Neurol 2016; 282: 27-36.
[http://dx.doi.org/10.1016/j.expneurol.2016.05.007] [PMID: 27163550]
[124]
Pahapill PA, Lozano AM. The pedunculopontine nucleus and Parkinson’s disease. Brain 2000; 123(9): 1767-83.
[http://dx.doi.org/10.1093/brain/123.9.1767] [PMID: 10960043]
[125]
Tykocki T, Mandat T, Nauman P. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease. Arch Med Sci 2011; 4(4): 555-64.
[http://dx.doi.org/10.5114/aoms.2011.24119] [PMID: 22291786]
[126]
Pienaar IS, Elson JL, Racca C, Nelson G, Turnbull DM, Morris CM. Mitochondrial abnormality associates with type-specific neuronal loss and cell morphology changes in the pedunculopontine nucleus in Parkinson disease. Am J Pathol 2013; 183(6): 1826-40.
[http://dx.doi.org/10.1016/j.ajpath.2013.09.002] [PMID: 24099985]
[127]
Grabli D, Karachi C, Folgoas E, et al. Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 2013; 33(29): 11986-93.
[http://dx.doi.org/10.1523/JNEUROSCI.1568-13.2013] [PMID: 23864685]
[128]
Wang X, Li M, Xie J, et al. Beta band modulation by dopamine D2 receptors in the primary motor cortex and pedunculopontine nucleus in a rat model of Parkinson’s disease. Brain Res Bull 2022; 181: 121-8.
[http://dx.doi.org/10.1016/j.brainresbull.2022.01.012] [PMID: 35077843]
[129]
Moore C, Xu M, Bohlen JK, Meshul CK. Differential ultrastructural alterations in the Vglut2 glutamatergic input to the substantia nigra pars compacta/pars reticulata following nigrostriatal dopamine loss in a progressive mouse model of Parkinson’s disease. Eur J Neurosci 2021; 53(7): 2061-77.
[http://dx.doi.org/10.1111/ejn.14894] [PMID: 32619030]
[130]
Karunakaran S, Diwakar L, Saeed U, et al. Activation of apoptosis signal regulating kinase 1 (ASK1) and translocation of death-associated protein, Daxx, in substantia nigra pars compacta in a mouse model of Parkinson’s disease: protection by α-lipoic acid. FASEB J 2007; 21(9): 2226-36.
[http://dx.doi.org/10.1096/fj.06-7580com] [PMID: 17369508]
[131]
Surmeier DJ, Guzman JN, Sanchez-Padilla J, Schumacker PT. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience 2011; 198: 221-31.
[http://dx.doi.org/10.1016/j.neuroscience.2011.08.045] [PMID: 21884755]
[132]
Avila I, Parr-Brownlie LC, Brazhnik E, Castañeda E, Bergstrom DA, Walters JR. Beta frequency synchronization in basal ganglia output during rest and walk in a hemiparkinsonian rat. Exp Neurol 2010; 221(2): 307-19.
[http://dx.doi.org/10.1016/j.expneurol.2009.11.016] [PMID: 19948166]
[133]
Da Cunha C, Angelucci MEM, Canteras NS, Wonnacott S, Takahashi RN. The lesion of the rat substantia nigra pars compacta dopaminergic neurons as a model for Parkinson’s disease memory disabilities. Cell Mol Neurobiol 2002; 22(3): 227-37.
[http://dx.doi.org/10.1023/A:1020736131907] [PMID: 12469866]
[134]
Tseng KY, Kasanetz F, Kargieman L, Pazo JH, Murer MG, Riquelme LA. Subthalamic nucleus lesions reduce low frequency oscillatory firing of substantia nigra pars reticulata neurons in a rat model of Parkinson’s disease. Brain Res 2001; 904(1): 93-103.
[http://dx.doi.org/10.1016/S0006-8993(01)02489-1] [PMID: 11516415]
[135]
Novikova L, Garris BL, Garris DR, Lau YS. Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson’s disease. Neuroscience 2006; 140(1): 67-76.
[http://dx.doi.org/10.1016/j.neuroscience.2006.02.007] [PMID: 16533572]
[136]
Li M, Xu H, Chen G, et al. Impaired D2 receptor-dependent dopaminergic transmission in prefrontal cortex of awake mouse model of Parkinson’s disease. Brain 2019; 142(10): 3099-115.
[http://dx.doi.org/10.1093/brain/awz243] [PMID: 31504219]
[137]
Joel D, Weiner I, Feldon J. Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: implications for animal models of schizophrenia. Behav Brain Res 1997; 85(2): 187-201.
[http://dx.doi.org/10.1016/S0166-4328(97)87583-3] [PMID: 9105575]
[138]
Rojas P, Montes S, Serrano-García N, Rojas-Castañeda J. Effect of EGb761 supplementation on the content of copper in mouse brain in an animal model of Parkinson’s disease. Nutrition 2009; 25(4): 482-5.
[http://dx.doi.org/10.1016/j.nut.2008.10.013] [PMID: 19091511]
[139]
Okano M, Takahata K, Sugimoto J, Muraoka S. Selegiline recovers synaptic plasticity in the medial prefrontal cortex and improves corresponding depression-like behavior in a mouse model of Parkinson’s disease In:. Front 2019; p. 176.
[140]
Delaville C, McCoy AJ, Gerber CM, Cruz AV, Walters JR. Subthalamic nucleus activity in the awake hemiparkinsonian rat: relationships with motor and cognitive networks. J Neurosci 2015; 35(17): 6918-30.
[http://dx.doi.org/10.1523/JNEUROSCI.0587-15.2015] [PMID: 25926466]
[141]
Farrand AQ, Gregory RA, Bäckman CM, Helke KL, Boger HA. Altered glutamate release in the dorsal striatum of the MitoPark mouse model of Parkinson’s disease. Brain Res 2016; 1651: 88-94.
[http://dx.doi.org/10.1016/j.brainres.2016.09.025] [PMID: 27659966]
[142]
Zhang H, Yang J, Wang X, et al. Altered local field potential relationship between the parafascicular thalamic nucleus and dorsal striatum in hemiparkinsonian rats. Neurosci Bull 2019; 35(2): 315-24.
[http://dx.doi.org/10.1007/s12264-018-0312-9] [PMID: 30478502]
[143]
De Leonibus E, Pascucci T, Lopez S, Oliverio A, Amalric M, Mele A. Spatial deficits in a mouse model of Parkinson disease. Psychopharmacology (Berl) 2007; 194(4): 517-25.
[http://dx.doi.org/10.1007/s00213-007-0862-4] [PMID: 17619858]
[144]
Vučcković MG, Li Q, Fisher B, et al. Exercise elevates dopamine D2 receptor in a mouse model of Parkinson’s disease: In vivo imaging with [ 18 F]fallypride. Mov Disord 2010; 25(16): 2777-84.
[http://dx.doi.org/10.1002/mds.23407] [PMID: 20960487]
[145]
Nordström U, Beauvais G, Ghosh A, et al. Progressive nigrostriatal terminal dysfunction and degeneration in the engrailed1 heterozygous mouse model of Parkinson’s disease. Neurobiol Dis 2015; 73: 70-82.
[http://dx.doi.org/10.1016/j.nbd.2014.09.012] [PMID: 25281317]
[146]
Lemaire N, Hernandez LF, Hu D, Kubota Y, Howe MW, Graybiel AM. Effects of dopamine depletion on LFP oscillations in striatum are task- and learning-dependent and selectively reversed by l -DOPA. Proc Natl Acad Sci USA 2012; 109(44): 18126-31.
[http://dx.doi.org/10.1073/pnas.1216403109] [PMID: 23074253]
[147]
Diguet E, Fernagut PO, Wei X, et al. Deleterious effects of minocycline in animal models of Parkinson’s disease and Huntington’s disease. Eur J Neurosci 2004; 19(12): 3266-76.
[http://dx.doi.org/10.1111/j.0953-816X.2004.03372.x] [PMID: 15217383]
[148]
Gerfen CR. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum animal model of Parkinson’s disease. Neuroscientist 2003; 9(6): 455-62.
[http://dx.doi.org/10.1177/1073858403255839] [PMID: 14678578]
[149]
Dupre KB, Cruz AV, McCoy AJ, et al. Effects of L-dopa priming on cortical high beta and high gamma oscillatory activity in a rodent model of Parkinson’s disease. Neurobiol Dis 2016; 86: 1-15.
[http://dx.doi.org/10.1016/j.nbd.2015.11.009] [PMID: 26586558]
[150]
de Groote C, Wüllner U, Löchmann PA, Luiten PG, Klockgether T. Functional characterization and expression of thalamic GABAB receptors in a rodent model of Parkinson’s disease. Neuropharmacology 1999; 38(11): 1683-9.
[http://dx.doi.org/10.1016/S0028-3908(99)00125-2] [PMID: 10587084]
[151]
Villalba RM, Mathai A, Smith Y. Morphological changes of glutamatergic synapses in animal models of Parkinson’s disease. Front Neuroanat 2015; 9: 117.
[http://dx.doi.org/10.3389/fnana.2015.00117] [PMID: 26441550]
[152]
Hebb MO, Robertson HA. Motor effects and mapping of cerebral alterations in animal models of Parkinson’s and Huntington’s diseases. J Comp Neurol 1999; 410(1): 99-114.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990719)410:1<99:AID-CNE9>3.0.CO;2-E] [PMID: 10397398]
[153]
Brazhnik E, McCoy AJ, Novikov N, Hatch CE, Walters JR. Ventral Medial Thalamic Nucleus Promotes Synchronization of Increased High Beta Oscillatory Activity in the Basal Ganglia–Thalamocortical Network of the Hemiparkinsonian Rat. J Neurosci 2016; 36(15): 4196-208.
[http://dx.doi.org/10.1523/JNEUROSCI.3582-15.2016] [PMID: 27076419]
[154]
da Conceição FS, Ngo-Abdalla S, Houzel J-C, Rehen SK. Murine model for Parkinson’s disease: from 6-OH dopamine lesion to behavioral test. J Vis Exp 2010; (35): e1376.
[PMID: 20081770]
[155]
Thiele SL, Warre R, Nash JE. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson’s disease. J Vis Exp 2012; (60): e3234.
[PMID: 22370630]
[156]
Yang X, Zhao H, Shi H, et al. Intranigral administration of substance P receptor antagonist attenuated levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Exp Neurol 2015; 271: 168-74.
[http://dx.doi.org/10.1016/j.expneurol.2015.05.007] [PMID: 26001615]
[157]
Henderson JM, Schleimer SB, Allbutt H, et al. Behavioural effects of parafascicular thalamic lesions in an animal model of parkinsonism. Behav Brain Res 2005; 162(2): 222-32.
[http://dx.doi.org/10.1016/j.bbr.2005.03.017] [PMID: 15970217]
[158]
Villalba RM, Wichmann T, Smith Y. Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Struct Funct 2014; 219(1): 381-94.
[http://dx.doi.org/10.1007/s00429-013-0507-9] [PMID: 23508713]
[159]
Knaryan VH, Samantaray S, Le Gal C, Ray SK, Banik NL. Tracking extranigral degeneration in animal models of Parkinson’s disease: quest for effective therapeutic strategies. J Neurochem 2011; 118(3): 326-38.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07320.x] [PMID: 21615738]
[160]
Mendes-Pinheiro B, Soares-Cunha C, Marote A, et al. Unilateral intrastriatal 6-hydroxydopamine lesion in mice: a closer look into non-motor phenotype and glial response. Int J Mol Sci 2021; 22(21): 11530.
[http://dx.doi.org/10.3390/ijms222111530] [PMID: 34768962]
[161]
Khorasani A, Heydari Beni N, Shalchyan V, Daliri MR. Continuous force decoding from local field potentials of the primary motor cortex in freely moving rats. Sci Rep 2016; 6(1): 35238.
[http://dx.doi.org/10.1038/srep35238] [PMID: 27767063]
[162]
Stefani A, Grandi LC, Galati S. Deep brain stimulation of the pedunculopontine nucleus modulates subthalamic pathological oscillations. Neurobiol Dis 2019; 128: 49-52.
[http://dx.doi.org/10.1016/j.nbd.2018.11.006] [PMID: 30423476]
[163]
Aristieta A, Ruiz-Ortega JA, Miguelez C, Morera-Herreras T, Ugedo L. Chronic L-DOPA administration increases the firing rate but does not reverse enhanced slow frequency oscillatory activity and synchronization in substantia nigra pars reticulata neurons from 6-hydroxydopamine-lesioned rats. Neurobiol Dis 2016; 89: 88-100.
[http://dx.doi.org/10.1016/j.nbd.2016.02.003] [PMID: 26852950]
[164]
Le Merre P, Esmaeili V, Charrière E, et al. Reward-based learning drives rapid sensory signals in medial prefrontal cortex and dorsal hippocampus necessary for goal-directed behavior. Neuron 2018; 97(1): 83-91.
[http://dx.doi.org/10.1016/j.neuron.2017.11.031]
[165]
Tort ABL, Kramer MA, Thorn C, et al. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci USA 2008; 105(51): 20517-22.
[http://dx.doi.org/10.1073/pnas.0810524105] [PMID: 19074268]
[166]
Desbois C, Villanueva L. The organization of lateral ventromedial thalamic connections in the rat: a link for the distribution of nociceptive signals to widespread cortical regions. Neuroscience 2001; 102(4): 885-98.
[http://dx.doi.org/10.1016/S0306-4522(00)00537-6] [PMID: 11182250]
[167]
Bradfield LA, Hart G, Balleine BW. The role of the anterior, mediodorsal, and parafascicular thalamus in instrumental conditioning. Front Syst Neurosci 2013; 7: 51.
[http://dx.doi.org/10.3389/fnsys.2013.00051] [PMID: 24130522]