Current Bioactive Compounds

Author(s): Himanshu Rani*

DOI: 10.2174/1573407219666230517154830

The Voyage of Natural Chalcone: Isoliquiritigenin

Article ID: e170523217028 Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

This review aims to provide a comprehensive summary of the pharmacological effects of isoliquiritigenin, a natural chalcone. The data was gathered from a variety of research papers published till 2022. The extensive pharmacological features of ISL, including its anti-inflammatory, anti-influenza, anti-tyrosinase, anti-bacterial, anti-sarcoma, anti-oxidative, anti-leiomyoma, anticholera, anti-asthma, anti-diabetic, and anti-cancer activity, neuroprotective, hepatoprotective, and cardioprotective effects, may explain its practical applicability in the treatment and prevention of many illnesses. However, to confirm the target-organ toxicity or side effects, more research is required. The creation and design of new ISL analogues based on previously discovered techniques may benefit from this review.

Graphical Abstract

[1]
Udomputtimekakul, P.; Pompimon, W.; Baison, W.; Sombutsiri, P.; Funnimid, N.; Chanadee, A.; Apisantiyakom, S. Profiling of secondary metabolites in aerial parts of Phanera bracteata. Am. J. Plant Sci., 2017, 8(5), 1100-1134.
[http://dx.doi.org/10.4236/ajps.2017.85073]
[2]
Hsu, Y.L.; Chia, C.C.; Chen, P.J.; Huang, S.E.; Huang, S.C.; Kuo, P.L. Shallot and licorice constituent isoliquiritigenin arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and initiation of the mitochondrial system in human cervical carcinoma HeLa cells. Mol. Nutr. Food Res., 2009, 53(7), 826-835.
[http://dx.doi.org/10.1002/mnfr.200800288] [PMID: 19536869]
[3]
Li, W.; Sun, Y.N.; Yan, X.T.; Yang, S.Y.; Kim, S.; Lee, Y.M.; Koh, Y.S.; Kim, Y.H. Flavonoids from Astragalus membranaceus and their inhibitory effects on LPS-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Arch. Pharm. Res., 2014, 37(2), 186-192.
[http://dx.doi.org/10.1007/s12272-013-0174-7] [PMID: 23771500]
[4]
Peng, F.; Du, Q.; Peng, C.; Wang, N.; Tang, H.; Xie, X.; Shen, J.; Chen, J. A review: The pharmacology of isoliquiritigenin. Phytother. Res., 2015, 29(7), 969-977.
[http://dx.doi.org/10.1002/ptr.5348] [PMID: 25907962]
[5]
Pan, X.; Kong, L.D.; Zhang, Y.; Cheng, C.H.K.; Tan, R.X. In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Acta Pharmacol. Sin., 2000, 21(10), 949-953.
[PMID: 11501051]
[6]
Youssef, D.T.A.; Ramadan, M.A.; Khalifa, A.A. Acetophenones, a chalcone, a chromone and flavonoids from Pancratium maritimum. Phytochemistry, 1998, 49(8), 2579-2583.
[http://dx.doi.org/10.1016/S0031-9422(98)00429-4]
[7]
Kimura, Y.; Okuda, H.; Okuda, T.; Arichi, S. Effects of chalcones isolated from licorice roots on leukotriene biosynthesis in human polymorphonuclear neutrophls. Phytother. Res., 1988, 2(3), 140-145.
[http://dx.doi.org/10.1002/ptr.2650020308]
[8]
Cao, Y.; Wang, Y.; Ji, C.; Ye, J. Determination of liquiritigenin and isoliquiritigenin in Glycyrrhiza uralensis and its medicinal preparations by capillary electrophoresis with electrochemical detection. J. Chromatogr. A, 2004, 1042(1-2), 203-209.
[http://dx.doi.org/10.1016/j.chroma.2004.05.049] [PMID: 15296407]
[9]
Peng, F.; Meng, C.W.; Zhou, Q.M.; Chen, J.P.; Xiong, L. Cytotoxic evaluation against breast cancer cells of isoliquiritigenin analogues from Spatholobus suberectus and their synthetic derivatives. J. Nat. Prod., 2016, 79(1), 248-251.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00774] [PMID: 26690274]
[10]
Chin, Y.W.; Jung, H.A.; Liu, Y.; Su, B.N.; Castoro, J.A.; Keller, W.J.; Pereira, M.A.; Kinghorn, A.D. Anti-oxidant constituents of the roots and stolons of licorice Glycyrrhiza glabra. J. Agric. Food Chem., 2007, 55(12), 4691-4697.
[http://dx.doi.org/10.1021/jf0703553] [PMID: 17516657]
[11]
Lee, S.H.; Kim, J.Y.; Seo, G.S.; Kim, Y.C.; Sohn, D.H. Isoliquiritigenin, from Dalbergia odorifera , up-regulates anti-inflammatory heme oxygenase-1 expression in RAW264.7 macrophages. Inflamm. Res., 2009, 58(5), 257-262.
[http://dx.doi.org/10.1007/s00011-008-8183-6] [PMID: 19169644]
[12]
Aida, K.; Tawata, M.; Shindo, H.; Onaya, T.; Sasaki, H.; Yamaguchi, T.; Chin, M.; Mitsuhashi, H. Isoliquiritigenin: a new aldose reductase inhibitor from glycyrrhizae radix. Planta Med., 1990, 56(3), 254-258.
[http://dx.doi.org/10.1055/s-2006-960950] [PMID: 2118267]
[13]
Ebel, J.; Schmidt, W.E.; Loyal, R. Phytoalexin synthesis in soybean cells: Elicitor induction of phenylalanine ammonia-lyase and chalcone synthase mRNAs and correlation with phytoalexin accumulation. Arch. Biochem. Biophys., 1984, 232(1), 240-248.
[http://dx.doi.org/10.1016/0003-9861(84)90540-X] [PMID: 6540068]
[14]
Koldas, S.; Demirtas, I.; Mutlu, D.; Atalar, M.N.; Ünver, H.; Arslan, Ş. New cytotoxic chalcone derivatives from Astragalus ponticus Pall. Nat. Prod. Res., 2022, 36(18), 4666-4674.
[http://dx.doi.org/10.1080/14786419.2021.2012771] [PMID: 34866505]
[15]
Hayashi, H.; Hiraoka, N.; Ikeshiro, Y.; Yamamoto, H.; Yoshikawa, T. Seasonal variation of glycyrrhizin and isoliquiritigenin glycosides in the root of Glycyrrhiza glabra L. Biol. Pharm. Bull., 1998, 21(9), 987-989.
[http://dx.doi.org/10.1248/bpb.21.987] [PMID: 9781853]
[16]
Porcu, M.; Chiarugi, A. The emerging therapeutic potential of sirtuin interacting drugs: from cell death to lifespan extension. Trends Pharmacol. Sci., 2005, 26(2), 94-103.
[http://dx.doi.org/10.1016/j.tips.2004.12.009] [PMID: 15681027]
[17]
Kusano, A.; Nikaido, T.; Kuge, T.; Ohmoto, T.; Monache, G.D.; Botta, B.; Botta, M.; Saitoh, T. Inhibition of adenosine 3′,5′-cyclic mono-phosphate phosphodiesterase by flavonoids from licorice roots and 4-arylcoumarins. Chem. Pharm. Bull. (Tokyo), 1991, 39(4), 930-933.
[http://dx.doi.org/10.1248/cpb.39.930] [PMID: 1654220]
[18]
Kape, R.; Parniske, M.; Brandt, S.; Werner, D. Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate. Appl. Environ. Microbiol., 1992, 58(5), 1705-1710.
[http://dx.doi.org/10.1128/aem.58.5.1705-1710.1992] [PMID: 1622242]
[19]
Zubieta, C.; He, X.Z.; Dixon, R.A.; Noel, J.P. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat. Struct. Biol., 2001, 8(3), 271-279.
[http://dx.doi.org/10.1038/85029] [PMID: 11224575]
[20]
de Souza, P.S.; Bibá, G.C.C.; Melo, E.D.N.; Muzitano, M.F. Chalcones against the hallmarks of cancer: A mini-review. Nat. Prod. Res., 2022, 36(18), 4803-4820.
[http://dx.doi.org/10.1080/14786419.2021.2000980] [PMID: 34865580]
[21]
Wang, Z.; Wang, N.; Han, S.; Wang, D.; Mo, S.; Yu, L.; Huang, H.; Tsui, K.; Shen, J.; Chen, J. Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PLoS One, 2013, 8(7), e68566.
[http://dx.doi.org/10.1371/journal.pone.0068566] [PMID: 23861918]
[22]
Maggiolini, M.; Statti, G.; Vivacqua, A.; Gabriele, S.; Rago, V.; Loizzo, M.; Menichini, F.; Amdò, S. Estrogenic and antiproliferative activities of isoliquiritigenin in MCF7 breast cancer cells. J. Steroid Biochem. Mol. Biol., 2002, 82(4-5), 315-322.
[http://dx.doi.org/10.1016/S0960-0760(02)00230-3] [PMID: 12589938]
[23]
Calliste, C.A.; Le Bail, J.C.; Trouillas, P.; Pouget, C.; Habrioux, G.; Chulia, A.J.; Duroux, J.L. Chalcones: Structural requirements for anti-oxidant, estrogenic and antiproliferative activities. Anticancer Res., 2001, 21(6A), 3949-3956.
[24]
Lau, G.; Ye, L.; Leung, L. The licorice flavonoid isoliquiritigenin suppresses phorbol ester-induced cyclooxygenase-2 expression in the non-tumorigenic MCF-10A breast cell line. Planta Med., 2010, 76(8), 780-785.
[http://dx.doi.org/10.1055/s-0029-1240699] [PMID: 20033868]
[25]
Kang, S.W.; Choi, J.S.; Choi, Y.J.; Bae, J.Y.; Li, J.; Kim, D.S.; Kim, J.L.; Shin, S.Y.; Lee, Y.J.; Kwun, I.S.; Kang, Y.H. Licorice isoliquiritigenin dampens angiogenic activity via inhibition of MAPK-responsive signaling pathways leading to induction of matrix metalloproteinases. J. Nutr. Biochem., 2010, 21(1), 55-65.
[http://dx.doi.org/10.1016/j.jnutbio.2008.10.004] [PMID: 19157825]
[26]
Wang, K.L.; Hsia, S.M.; Chan, C.J.; Chang, F.Y.; Huang, C.Y.; Bau, D.T.; Wang, P.S. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin. Ther. Targets, 2013, 17(4), 337-349.
[http://dx.doi.org/10.1517/14728222.2013.756869] [PMID: 23327692]
[27]
Lorusso, V.; Marech, I. Novel plant-derived target drugs: a step forward from licorice? Expert Opin. Ther. Targets, 2013, 17(4), 333-335.
[http://dx.doi.org/10.1517/14728222.2013.773312] [PMID: 23425066]
[28]
Li, Y.; Zhao, H.; Wang, Y.; Zheng, H.; Yu, W.; Chai, H.; Zhang, J.; Falck, J.R.; Guo, A.M.; Yue, J.; Peng, R.; Yang, J. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer. Toxicol. Appl. Pharmacol., 2013, 272(1), 37-48.
[http://dx.doi.org/10.1016/j.taap.2013.05.031] [PMID: 23747687]
[29]
Lin, P.H.; Chiang, Y.F.; Shieh, T.M.; Chen, H.Y.; Shih, C.K.; Wang, T.H.; Wang, K.L.; Huang, T.C.; Hong, Y.H.; Li, S.C.; Hsia, S.M. Dietary compound isoliquiritigenin, an antioxidant from licorice, suppresses triple-negative breast tumor growth via apoptotic death program activation in cell and xenograft animal models. Antioxidants, 2020, 9(3), 228.
[http://dx.doi.org/10.3390/antiox9030228] [PMID: 32164337]
[30]
Ning, S.; Mu, J.; Shen, Z.; Zhu, D.; Jiang, F.; Wang, X.; Li, Y.; Li, Z. Isoliquiritigenin attenuates the invasive capacity of breast cancer cells via up-regulating the tumor suppressor RECK. RSC Advances, 2016, 6(29), 24719-24727.
[http://dx.doi.org/10.1039/C5RA26759E]
[31]
Ning, S.; Ma, X.; Zhu, D.; Shen, Z.; Liu, J.; Liu, Y.; Chen, J.; Li, Z. Isoliquiritigenin attenuates MiR-21 expression via induction of PIAS3 in breast cancer cells. RSC Advances, 2017, 7(29), 18085-18092.
[http://dx.doi.org/10.1039/C6RA25511F]
[32]
Gao, F.; Zhang, J.; Fu, C.; Xie, X.; Peng, F.; You, J.; Tang, H.; Wang, Z.; Li, P.; Chen, J. iRGD-modified lipid–polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int. J. Nanomedicine, 2017, 12, 4147-4162.
[http://dx.doi.org/10.2147/IJN.S134148] [PMID: 28615942]
[33]
Wang, N.; Wang, Z.; Peng, C.; You, J.; Shen, J.; Han, S.; Chen, J. Dietary compound isoliquiritigenin targets GRP78 to chemosensitize breast cancer stem cells via β-catenin/ABCG2 signaling. Carcinogenesis, 2014, 35(11), 2544-2554.
[http://dx.doi.org/10.1093/carcin/bgu187] [PMID: 25194164]
[34]
Peng, F.; Xiong, L.; Xie, X.; Tang, H.; Huang, R.; Peng, C. Isoliquiritigenin derivative regulates miR-374a/BAX axis to suppress triple-negative breast cancer tumorigenesis and development. Front. Pharmacol., 2020, 11, 378.
[http://dx.doi.org/10.3389/fphar.2020.00378] [PMID: 32296334]
[35]
Wang, N.; Wang, Z.; Wang, Y.; Xie, X.; Shen, J.; Peng, C.; You, J.; Peng, F.; Tang, H.; Guan, X.; Chen, J. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation. Oncotarget, 2015, 6(12), 9854-9876.
[http://dx.doi.org/10.18632/oncotarget.3396] [PMID: 25918249]
[36]
Zheng, H.; Li, Y.; Wang, Y.; Zhao, H.; Zhang, J.; Chai, H.; Tang, T.; Yue, J.; Guo, A.M.; Yang, J. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion. Toxicol. Appl. Pharmacol., 2014, 280(1), 10-20.
[http://dx.doi.org/10.1016/j.taap.2014.07.018] [PMID: 25094029]
[37]
Peng, F.; Tang, H.; Liu, P.; Shen, J.; Guan, X.; Xie, X.; Gao, J.; Xiong, L.; Jia, L.; Chen, J.; Peng, C. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis. Sci. Rep., 2017, 7(1), 9022.
[http://dx.doi.org/10.1038/s41598-017-08422-y] [PMID: 28827662]
[38]
Ye, L.; Gho, W.M.; Chan, F.L.; Chen, S.; Leung, L.K. Dietary administration of the licorice flavonoid isoliquiritigenin deters the growth of MCF-7 cells overexpressing aromatase. Int. J. Cancer, 2009, 124(5), 1028-1036.
[http://dx.doi.org/10.1002/ijc.24046] [PMID: 19065667]
[39]
Jung, J.I.; Chung, E.; Seon, M.R.; Shin, H.K.; Kim, E.J.; Lim, S.S.; Chung, W.Y.; Park, K.K.; Park, J.H.Y. Isoliquiritigenin (ISL) inhibits ErbB3 signaling in prostate cancer cells. Biofactors, 2006, 28(3-4), 159-168.
[http://dx.doi.org/10.1002/biof.5520280302] [PMID: 17473376]
[40]
Jung, J.; Lim, S.; Choi, H.; Cho, H.; Shin, H.; Kim, E.; Chung, W.; Park, K.; Park, J. Isoliquiritigenin induces apoptosis by depolarizing mitochondrial membranes in prostate cancer cells. J. Nutr. Biochem., 2006, 17(10), 689-696.
[http://dx.doi.org/10.1016/j.jnutbio.2005.11.006] [PMID: 16517140]
[41]
Zhang, X.; Yeung, E.D.; Wang, J.; Panzhinskiy, E.E.; Tong, C.; Li, W.; Li, J. Isoliquiritigenin, a natural anti-oxidant, selectively inhibits the proliferation of prostate cancer cells. Clin. Exp. Pharmacol. Physiol., 2010, 37(8), 841-847.
[http://dx.doi.org/10.1111/j.1440-1681.2010.05395.x] [PMID: 20456427]
[42]
Kanazawa, M.; Satomi, Y.; Mizutani, Y.; Ukimura, O.; Kawauchi, A.; Sakai, T.; Baba, M.; Okuyama, T.; Nishino, H.; Miki, T. Isoliquiritigenin inhibits the growth of prostate cancer. Eur. Urol., 2003, 43(5), 580-586.
[http://dx.doi.org/10.1016/S0302-2838(03)00090-3] [PMID: 12706007]
[43]
Kwon, G.T.; Cho, H.J.; Chung, W.Y.; Park, K.K.; Moon, A.; Park, J.H.Y. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling. J. Nutr. Biochem., 2009, 20(9), 663-676.
[http://dx.doi.org/10.1016/j.jnutbio.2008.06.005] [PMID: 18824345]
[44]
Lee, Y.M.; Lim, D.Y.; Choi, H.J.; Jung, J.I.; Chung, W.Y.; Park, J.H.Y. Induction of cell cycle arrest in prostate cancer cells by the dietary compound isoliquiritigenin. J. Med. Food, 2009, 12(1), 8-14.
[http://dx.doi.org/10.1089/jmf.2008.0039] [PMID: 19298190]
[45]
Zhang, B.; Lai, Y.; Li, Y.; Shu, N.; Wang, Z.; Wang, Y.; Li, Y.; Chen, Z. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur. J. Pharmacol., 2018, 821, 57-67.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.053] [PMID: 29277717]
[46]
Hu, F.W.; Yu, C.C.; Hsieh, P.L.; Liao, Y.W.; Lu, M.Y.; Chu, P.M. Targeting oral cancer stemness and chemoresistance by isoliquiritigenin-mediated GRP78 regulation. Oncotarget, 2017, 8(55), 93912-93923.
[http://dx.doi.org/10.18632/oncotarget.21338] [PMID: 29212198]
[47]
Ii, T.; Satomi, Y.; Katoh, D.; Shimada, J.; Baba, M.; Okuyama, T.; Nishino, H.; Kitamura, N. Induction of cell cycle arrest and p21CIP1/WAF1 expression in human lung cancer cells by isoliquiritigenin. Cancer Lett., 2004, 207(1), 27-35.
[http://dx.doi.org/10.1016/j.canlet.2003.10.023] [PMID: 15050731]
[48]
Hsu, Y.L.; Kuo, P.L.; Chiang, L.C.; Lin, C.C. Isoliquiritigenin inhibits the proliferation and induces the apoptosis of human non-small cell lung cancer a549 cells. Clin. Exp. Pharmacol. Physiol., 2004, 31(7), 414-418.
[http://dx.doi.org/10.1111/j.1440-1681.2004.04016.x] [PMID: 15236626]
[49]
Jung, S.K.; Lee, M.H.; Lim, D.Y.; Kim, J.E.; Singh, P.; Lee, S.Y.; Jeong, C.H.; Lim, T.G.; Chen, H.; Chi, Y.I.; Kundu, J.K.; Lee, N.H.; Lee, C.C.; Cho, Y.Y.; Bode, A.M.; Lee, K.W.; Dong, Z. Isoliquiritigenin induces apoptosis and inhibits xenograft tumor growth of human lung cancer cells by targeting both wild type and L858R/T790M mutant EGFR. J. Biol. Chem., 2014, 289(52), 35839-35848.
[http://dx.doi.org/10.1074/jbc.M114.585513] [PMID: 25368326]
[50]
Liu, Q.; Lv, H.; Wen, Z.; Ci, X.; Peng, L. Isoliquiritigenin activates nuclear factor erythroid-2 related factor 2 to Suppress the NOD-Like Receptor Protein 3 Inflammasome and Inhibits the NF-κB pathway in macrophages and in acute lung injury. Front. Immunol., 2017, 8(NOV), 1518.
[http://dx.doi.org/10.3389/fimmu.2017.01518] [PMID: 29163554]
[51]
Huang, H.J.; Sugimoto, S.; Lai, J.; Okazaki, M.; Yamamoto, S.; Krupnick, A.S.; Kreisel, D.; Gelman, A.E. Maintenance of IKKβ activity is necessary to protect lung grafts from acute injury. Transplantation, 2011, 91(6), 624-631.
[http://dx.doi.org/10.1097/TP.0b013e31820ba2a0] [PMID: 21293322]
[52]
Yan, F.; Yang, F.; Wang, R.; Yao, X.J.; Bai, L.; Zeng, X.; Huang, J.; Wong, V.K.W.; Lam, C.W.K.; Zhou, H.; Su, X.; Liu, J.; Li, T.; Liu, L. Isoliquiritigenin suppresses human T Lymphocyte activation via covalently binding cysteine 46 of IκB kinase. Oncotarget, 2017, 8(21), 34223-34235.
[http://dx.doi.org/10.18632/oncotarget.11934] [PMID: 27626700]
[53]
Tian, T.; Sun, J.; Wang, J.; Liu, Y.; Liu, H. Isoliquiritigenin inhibits cell proliferation and migration through the PI3K/AKT signaling pathway in A549 lung cancer cells. Oncol. Lett., 2018, 16(5), 6133-6139.
[http://dx.doi.org/10.3892/ol.2018.9344] [PMID: 30344755]
[54]
Zhang, W.; Wang, G.; Zhou, S. Protective Effects of Isoliquiritigenin on LPS-Induced Acute Lung Injury by Activating PPAR-γ. Inflammation, 2018, 41(4), 1290-1296.
[http://dx.doi.org/10.1007/s10753-018-0777-8] [PMID: 29654430]
[55]
Chen, C.; Shenoy, A.K.; Padia, R.; Fang, D.; Jing, Q.; Yang, P.; Su, S.B.; Huang, S. Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2′, 4′-Tetrahydroxychalcone. J. Exp. Clin. Cancer Res., 2018, 37(1), 243.
[http://dx.doi.org/10.1186/s13046-018-0902-4] [PMID: 30285892]
[56]
Yu, D.; Liu, X.; Zhang, G.; Ming, Z.; Wang, T. Isoliquiritigenin Inhibits Cigarette Smoke-Induced COPD by Attenuating Inflammation and Oxidative Stress via the Regulation of the Nrf2 and NF-κB Signaling Pathways. Front. Pharmacol., 2018, 9(SEP), 1001.
[http://dx.doi.org/10.3389/fphar.2018.01001] [PMID: 30294270]
[57]
Hsu, Y.L.; Kuo, P.L.; Lin, C.C. Isoliquiritigenin induces apoptosis and cell cycle arrest through p53-dependent pathway in Hep G2 cells. Life Sci., 2005, 77(3), 279-292.
[http://dx.doi.org/10.1016/j.lfs.2004.09.047] [PMID: 15878356]
[58]
Jang, D.S.; Park, E.J.; Hawthorne, M.E.; Vigo, J.S.; Graham, J.G.; Cabieses, F.; Santarsiero, B.D.; Mesecar, A.D.; Fong, H.H.S.; Mehta, R.G.; Pezzuto, J.M.; Kinghorn, A.D. Potential cancer chemopreventive constituents of the seeds of Dipteryx odorata (tonka bean). J. Nat. Prod., 2003, 66(5), 583-587.
[http://dx.doi.org/10.1021/np020522n] [PMID: 12762787]
[59]
Cuendet, M.; Oteham, C.P.; Moon, R.C.; Pezzuto, J.M. Quinone reductase induction as a biomarker for cancer chemoprevention. J. Nat. Prod., 2006, 69(3), 460-463.
[http://dx.doi.org/10.1021/np050362q] [PMID: 16562858]
[60]
Cuendet, M.; Guo, J.; Luo, Y.; Chen, S.; Oteham, C.P.; Moon, R.C.; van Breemen, R.B.; Marler, L.E.; Pezzuto, J.M. Cancer chemopreventive activity and metabolism of isoliquiritigenin, a compound found in licorice. Cancer Prev. Res. (Phila.), 2010, 3(2), 221-232.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0049] [PMID: 20068129]
[61]
Hsu, Y.L.; Kuo, P.L.; Lin, L.T.; Lin, C.C. Isoliquiritigenin inhibits cell proliferation and induces apoptosis in human hepatoma cells. Planta Med., 2005, 71(2), 130-134.
[http://dx.doi.org/10.1055/s-2005-837779] [PMID: 15729620]
[62]
Sun, C.; Zhang, H.; Ma, X.; Zhou, X.; Gan, L.; Liu, Y.; Wang, Z. Isoliquiritigenin enhances radiosensitivity of HepG2 cells via disturbance of redox status. Cell Biochem. Biophys., 2013, 65(3), 433-444.
[http://dx.doi.org/10.1007/s12013-012-9447-x] [PMID: 23086355]
[63]
Wang, J.R.; Luo, Y.H.; Piao, X.J.; Zhang, Y.; Feng, Y.C.; Li, J.Q.; Xu, W.T.; Zhang, Y.; Zhang, T.; Wang, S.N.; Xue, H.; Wang, W.Z.; Cao, L.K.; Jin, C.H. Mechanisms underlying isoliquiritigenin‐induced apoptosis and cell cycle arrest via ROS‐mediated MAPK/STAT3/NF‐κB pathways in human hepatocellular carcinoma cells. Drug Dev. Res., 2019, 80(4), 461-470.
[http://dx.doi.org/10.1002/ddr.21518] [PMID: 30698296]
[64]
Gaur, R.; Kumar, S.; Trivedi, P.; Bhakuni, R.S.; Bawankule, D.U.; Pal, A.; Shanker, K. Liquiritigenin derivatives and their hepatotoprotective activity. Nat. Prod. Commun., 2010, 5(8), 1934578X1000500.
[http://dx.doi.org/10.1177/1934578X1000500819] [PMID: 20839627]
[65]
De Bartolo, L.; Morelli, S.; Gallo, M.C.; Campana, C.; Statti, G.; Rende, M.; Salerno, S.; Drioli, E. Effect of isoliquiritigenin on viability and differentiated functions of human hepatocytes maintained on PEEK-WC–polyurethane membranes. Biomaterials, 2005, 26(33), 6625-6634.
[http://dx.doi.org/10.1016/j.biomaterials.2005.04.021] [PMID: 15927248]
[66]
Woo, S.; Lee, S.; Ko, G.; Kim, Y.C.; Sohn, D. Isoliquiritigenin inhibits cell proliferation by a heme oxygenase-dependent pathway in rat hepatic stellate cells. Planta Med., 2008, 74(8), 834-839.
[http://dx.doi.org/10.1055/s-2008-1074555] [PMID: 18563666]
[67]
Huang, Y.; Liu, C.; Zeng, W.C.; Xu, G.Y.; Wu, J.M.; Li, Z.W.; Huang, X.Y.; Lin, R.J.; Shi, X. Isoliquiritigenin inhibits the proliferation, migration and metastasis of Hep3B cells via suppressing cyclin D1 and PI3K/AKT pathway. Biosci. Rep., 2020, 40(1), BSR20192727.
[http://dx.doi.org/10.1042/BSR20192727] [PMID: 31840737]
[68]
Wang, L.; Kong, L.; Xu, S.; Wang, X.; Huang, K.; Wang, S.; Wu, J.; Wang, C.; Sun, H.; Liu, K.; Meng, Q. Isoliquiritigenin-mediated miR-23a-3p inhibition activates PGC-1α to alleviate alcoholic liver injury. Phytomedicine, 2022, 96, 153845.
[http://dx.doi.org/10.1016/j.phymed.2021.153845] [PMID: 34785106]
[69]
Lee, S.K.; Park, K.K.; Park, J.H.Y.; Lim, S.S.; Chung, W.Y. The inhibitory effect of roasted licorice extract on human metastatic breast cancer cell-induced bone destruction. Phytother. Res., 2013, 27(12), 1776-1783.
[http://dx.doi.org/10.1002/ptr.4930] [PMID: 23401151]
[70]
Chen, J.; Liu, C.; Yang, Q.Q.; Ma, R.B.; Ke, Y.; Dong, F.; Wu, X.E. Isoliquiritigenin Suppresses Osteosarcoma U2OS Cell Proliferation and Invasion by Regulating the PI3K/Akt Signalling Pathway. Chemotherapy, 2018, 63(3), 155-161.
[http://dx.doi.org/10.1159/000490151] [PMID: 29936511]
[71]
Li, C.; Zhou, X.; Sun, C.; Liu, X.; Shi, X.; Wu, S. Isoliquiritigenin inhibits the proliferation, apoptosis and migration of osteosarcoma cells. Oncol. Rep., 2019, 41(4), 2502-2510.
[http://dx.doi.org/10.3892/or.2019.6998] [PMID: 30720124]
[72]
Jeong, S.; Lee, S.; Kim, K.; Lee, Y.; Lee, J.; Oh, S.; Choi, J.W.; Kim, S.W.; Hwang, K.C.; Lim, S. Isoliquiritigenin derivatives inhibit RANKL-Induced osteoclastogenesis by regulating p38 and NF-κB activation in RAW 264.7 Cells. Molecules, 2020, 25(17), 3908.
[http://dx.doi.org/10.3390/molecules25173908] [PMID: 32867185]
[73]
Sun, X.; Zhang, J.; Wang, Z.; Liu, B.; Zhu, S.; Zhu, L.; Peng, B. Licorice isoliquiritigenin-encapsulated mesoporous silica nanoparticles for osteoclast inhibition and bone loss prevention. Theranostics, 2019, 9(18), 5183-5199.
[http://dx.doi.org/10.7150/thno.33376] [PMID: 31410209]
[74]
Baba, M.; Asano, R.; Takigami, I.; Takahashi, T.; Ohmura, M.; Okada, Y.; Sugimoto, H.; Arika, T.; Nishino, H.; Okuyama, T. Studies on cancer chemoprevention by traditional folk medicines XXV. Inhibitory effect of isoliquiritigenin on azoxymethane-induced murine colon aberrant crypt focus formation and carcinogenesis. Biol. Pharm. Bull., 2002, 25(2), 247-250.
[http://dx.doi.org/10.1248/bpb.25.247] [PMID: 11853176]
[75]
Takahashi, T.; Takasuka, N.; Iigo, M.; Baba, M.; Nishino, H.; Tsuda, H.; Okuyama, T. Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Sci., 2004, 95(5), 448-453.
[http://dx.doi.org/10.1111/j.1349-7006.2004.tb03230.x] [PMID: 15132774]
[76]
Takahashi, T.; Baba, M.; Nishino, H.; Okuyama, T. Cyclooxygenase-2 plays a suppressive role for induction of apoptosis in isoliquiriti-genin-treated mouse colon cancer cells. Cancer Lett., 2006, 231(2), 319-325.
[http://dx.doi.org/10.1016/j.canlet.2005.02.025] [PMID: 16399234]
[77]
Yoshida, T.; Horinaka, M.; Takara, M.; Tsuchihashi, M.; Mukai, N.; Wakada, M.; Sakai, T. Combination of isoliquiritigenin and tumor necrosis factor-related apoptosis-inducing ligand induces apoptosis in colon cancer HT29 cells. Environ. Health Prev. Med., 2008, 13(5), 281-287.
[http://dx.doi.org/10.1007/s12199-008-0041-1] [PMID: 19568915]
[78]
Lee, C.K.; Son, S.H.; Park, K.K.; Park, J.H.Y.; Lim, S.S.; Chung, W.Y. Isoliquiritigenin inhibits tumor growth and protects the kidney and liver against chemotherapy-induced toxicity in a mouse xenograft model of colon carcinoma. J. Pharmacol. Sci., 2008, 106(3), 444-451.
[http://dx.doi.org/10.1254/jphs.FP0071498] [PMID: 18360095]
[79]
Zorko, B.A.; Pérez, L.B.; De Blanco, E.J. Effects of ILTG on DAPK1 promoter methylation in colon and leukemia cancer cell lines. Anticancer Res., 2010, 30(10), 3945-3950.
[PMID: 21036707]
[80]
Choi, Y.H.; Bae, J.K.; Chae, H.S.; Choi, Y.O.; Nhoek, P.; Choi, J.S.; Chin, Y.W. Isoliquiritigenin ameliorates dextran sulfate sodium-induced colitis through the inhibition of MAPK pathway. Int. Immunopharmacol., 2016, 31, 223-232.
[http://dx.doi.org/10.1016/j.intimp.2015.12.024] [PMID: 26771170]
[81]
Huang, Y.L.; Wei, F.; Zhao, K.; Zhang, Y.; Wang, D.; Li, X.H. Isoliquiritigenin inhibits colorectal cancer cells HCT-116 growth by suppressing the PI3K/AKT pathway. Open Life Sci., 2017, 12(1), 300-307.
[http://dx.doi.org/10.1515/biol-2017-0035]
[82]
Sechet, E.; Telford, E.; Bonamy, C.; Sansonetti, P.J.; Sperandio, B. Natural molecules induce and synergize to boost expression of the human antimicrobial peptide β-defensin-3. Proc. Natl. Acad. Sci. USA, 2018, 115(42), E9869-E9878.
[http://dx.doi.org/10.1073/pnas.1805298115] [PMID: 30275324]
[83]
Yamazaki, S.; Morita, T.; Endo, H.; Hamamoto, T.; Baba, M.; Joichi, Y.; Kaneko, S.; Okada, Y.; Okuyama, T.; Nishino, H.; Tokue, A. Isoliquiritigenin suppresses pulmonary metastasis of mouse renal cell carcinoma. Cancer Lett., 2002, 183(1), 23-30.
[http://dx.doi.org/10.1016/S0304-3835(02)00113-1] [PMID: 12049811]
[84]
Li, J.; Kang, S.W.; Kim, J.L.; Sung, H.Y.; Kwun, I.S.; Kang, Y.H. Isoliquiritigenin entails blockade of TGF-beta1-SMAD signaling for retarding high glucose-induced mesangial matrix accumulation. J. Agric. Food Chem., 2010, 58(5), 3205-3212.
[http://dx.doi.org/10.1021/jf9040723] [PMID: 20146476]
[85]
Witkowska, M.; Smolewski, P. Białka with family SMAD: Modern knowledge on the topic of their expressions and potential roles in cancer diseases. Hig. Prog. Med. Dosw., 2014, 68, 301-309.
[http://dx.doi.org/10.5604/17322693.1094726] [PMID: 24662798]
[86]
Wu, M.; Wu, Y.; Deng, B.; Li, J.; Cao, H.; Qu, Y.; Qian, X.; Zhong, G. Isoliquiritigenin decreases the incidence of colitis associated colorectal cancer by modulating the intestinal microbiota. Oncotarget, 2016, 7(51), 85318-85331.
[http://dx.doi.org/10.18632/oncotarget.13347] [PMID: 27863401]
[87]
Jin, H.; Seo, G.S.; Lee, S.H. Isoliquiritigenin-mediated p62/SQSTM1 induction regulates apoptotic potential through attenuation of caspase-8 activation in colorectal cancer cells. Eur. J. Pharmacol., 2018, 841, 90-97.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.015] [PMID: 30339814]
[88]
Wang, G.; Yu, Y.; Wang, Y.Z.; Yin, P.H.; Xu, K.; Zhang, H. The effects and mechanisms of isoliquiritigenin loaded nanoliposomes regulated AMPK/mTOR mediated glycolysis in colorectal cancer. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 1231-1249.
[http://dx.doi.org/10.1080/21691401.2020.1825092] [PMID: 32985258]
[89]
Zu, Y.; Liu, X.; Fu, Y.; Shi, X.; Wu, N.; Yao, L.; Efferth, T. Cytotoxic activity of isoliquiritigenin towards CCRF-CEM leukemia cells and its effect on DNA damage. Planta Med., 2009, 75(10), 1134-1140.
[http://dx.doi.org/10.1055/s-0029-1185479] [PMID: 19291608]
[90]
Patricia Moreno-Londoño, A.; Bello-Alvarez, C.; Pedraza-Chaverri, J. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem. Toxicol., 2017, 109(Pt 1), 143-154.
[http://dx.doi.org/10.1016/j.fct.2017.08.047] [PMID: 28870684]
[91]
Si, L.; Yang, X.; Yan, X.; Wang, Y.; Zheng, Q. Isoliquiritigenin induces apoptosis of human bladder cancer T24 cells via a cyclin-dependent kinase-independent mechanism. Oncol. Lett., 2017, 14(1), 241-249.
[http://dx.doi.org/10.3892/ol.2017.6159] [PMID: 28693160]
[92]
Gómez-Sierra, T.; Medina-Campos, O.N.; Solano, J.D.; Ibarra-Rubio, M.E.; Pedraza-Chaverri, J. Isoliquiritigenin pretreatment induces endoplasmic reticulum stress-mediated hormesis and attenuates cisplatin-induced oxidative stress and damage in LLC-PK1 Cells. Molecules, 2020, 25(19), 4442.
[http://dx.doi.org/10.3390/molecules25194442] [PMID: 32992605]
[93]
Lee, Y.M.; Jeong, G.S.; Lim, H.D.; An, R.B.; Kim, Y.C.; Kim, E.C. Isoliquiritigenin 2′-methyl ether induces growth inhibition and apoptosis in oral cancer cells via heme oxygenase-1. Toxicol. In Vitro, 2010, 24(3), 776-782.
[http://dx.doi.org/10.1016/j.tiv.2009.12.024] [PMID: 20040371]
[94]
Ohno, H.; Araho, D.; Uesawa, Y.; Kagaya, H.; Ishihara, M.; Sakagami, H.; Yamamoto, M. Evaluation of Cytotoxiciy and Tumor-Specificity of Licorice Flavonoids Based on Chemical Structure., 2013, 3068, 3061-3068.
[95]
Hsia, S.M.; Yu, C.C.; Shih, Y.H.; Yuanchien Chen, M.; Wang, T.H.; Huang, Y.T.; Shieh, T.M. Isoliquiritigenin as a cause of DNA damage and inhibitor of ataxia-telangiectasia mutated expression leading to G2/M phase arrest and apoptosis in oral squamous cell carcinoma. Head Neck, 2016, 38(S1)(Suppl. 1), E360-E371.
[http://dx.doi.org/10.1002/hed.24001] [PMID: 25580586]
[96]
Ma, J.; Fu, N.Y.; Pang, D.B.; Wu, W.Y.; Xu, A.L. Apoptosis induced by isoliquiritigenin in human gastric cancer MGC-803 cells. Planta Med., 2001, 67(8), 754-757.
[http://dx.doi.org/10.1055/s-2001-18361] [PMID: 11731922]
[97]
Kim, D.C.; Choi, S.Y.; Kim, S.H.; Yun, B.S.; Yoo, I.D.; Reddy, N.R.P.; Yoon, H.S.; Kim, K.T. Isoliquiritigenin selectively inhibits H(2) histamine receptor signaling. Mol. Pharmacol., 2006, 70(2), 493-500.
[http://dx.doi.org/10.1124/mol.106.023226] [PMID: 16675659]
[98]
Lee, C.H.; Tsai, H.Y.; Chen, C.L.; Chen, J.L.; Lu, C.C.; Fang, Y.P.; Wu, D.C.; Huang, Y.B.; Lin, M.W. Isoliquiritigenin inhibits gastric cancer stemness, modulates tumor microenvironment, and suppresses tumor growth through glucose-regulated protein 78 downregulation. Biomedicines, 2022, 10(6), 1350.
[http://dx.doi.org/10.3390/biomedicines10061350] [PMID: 35740372]
[99]
Zhang, X.R.; Wang, S.Y.; Sun, W.; Wei, C. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Mol. Med. Rep., 2018, 18(3), 3429-3436.
[http://dx.doi.org/10.3892/mmr.2018.9318] [PMID: 30066879]
[100]
Huang, F.; Wang, J.; Xu, Y.; Zhang, Y.; Xu, N.; Yin, L. Discovery of novel isoliquiritigenin analogue ISL-17 as a potential anti-gastric cancer agent. Biosci. Rep., 2020, 40(6), BSR20201199.
[http://dx.doi.org/10.1042/BSR20201199] [PMID: 32515470]
[101]
Yuan, X.; Zhang, B.; Chen, N.; Chen, X.Y.; Liu, L.L.; Zheng, Q.S.; Wang, Z.P. Isoliquiritigenin treatment induces apoptosis by increasing intracellular ROS levels in HeLa cells. J. Asian Nat. Prod. Res., 2012, 14(8), 789-798.
[http://dx.doi.org/10.1080/10286020.2012.694873] [PMID: 22694287]
[102]
Hirchaud, F.; Hermetet, F.; Ablise, M.; Fauconnet, S.; Vuitton, D.; Prétet, J.L.; Mougin, C. Isoliquiritigenin induces caspase-dependent apoptosis via downregulation of HPV16 E6 expression in cervical cancer Ca Ski cells. Planta Med., 2013, 79(17), 1628-1635.
[http://dx.doi.org/10.1055/s-0033-1350956] [PMID: 24214831]
[103]
Zhao, H.; Yuan, X.; Li, D.; Chen, H.; Jiang, J.; Wang, Z.; Sun, X.; Zheng, Q. Isoliquiritigen enhances the antitumour activity and decreases the genotoxic effect of cyclophosphamide. Molecules, 2013, 18(8), 8786-8798.
[http://dx.doi.org/10.3390/molecules18088786] [PMID: 23887720]
[104]
Yuan, X.; Zhang, B.; Gan, L.; Wang, Z.H.; Yu, B.C.; Liu, L.L.; Zheng, Q.S.; Wang, Z.P. Involvement of the mitochondrion dependent and the endoplasmic reticulum stress-signaling pathways in isoliquiritigenin-induced apoptosis of HeLa cell. Biomed. Environ. Sci., 2013, 26(4), 268-276.
[http://dx.doi.org/10.3967/0895-3988.2013.04.005] [PMID: 23534467]
[105]
Wu, C.H.; Chen, H.Y.; Wang, C.W.; Shieh, T.M.; Huang, T.C.; Lin, L.C.; Wang, K.L.; Hsia, S.M. Isoliquiritigenin induces apoptosis and autophagy and inhibits endometrial cancer growth in mice. Oncotarget, 2016, 7(45), 73432-73447.
[http://dx.doi.org/10.18632/oncotarget.12369] [PMID: 27708238]
[106]
Yuan, X.; Yu, B.; Wang, Y.; Jiang, J.; Liu, L.; Zhao, H.; Qi, W.; Zheng, Q. Involvement of endoplasmic reticulum stress in isoliquiritigen-in-induced SKOV-3 cell apoptosis. Recent Patents Anticancer Drug Discov., 2013, 8(2), 191-199.
[http://dx.doi.org/10.2174/1574892811308020007] [PMID: 22963151]
[107]
Mahalingam, S.; Gao, L.; Eisner, J.; Helferich, W.; Flaws, J.A. Effects of isoliquiritigenin on ovarian antral follicle growth and steroidogenesis. Reprod. Toxicol., 2016, 66, 107-114.
[http://dx.doi.org/10.1016/j.reprotox.2016.10.004] [PMID: 27773742]
[108]
Chen, H.Y.; Huang, T.C.; Shieh, T.M.; Wu, C.H.; Lin, L.C.; Hsia, S.M. Isoliquiritigenin induces autophagy and inhibits ovarian cancer cell growth. Int. J. Mol. Sci., 2017, 18(10), 2025.
[http://dx.doi.org/10.3390/ijms18102025] [PMID: 28934130]
[109]
Li, N.; Yang, L.; Deng, X.; Sun, Y. Effects of isoliquiritigenin on ovarian cancer cells. OncoTargets Ther., 2018, 11, 1633-1642.
[http://dx.doi.org/10.2147/OTT.S149295] [PMID: 29606882]
[110]
Chen, C.; Huang, S.; Chen, C.L.; Su, S.B.; Fang, D.D. Isoliquiritigenin inhibits ovarian cancer metastasis by reversing epithelial-to-mesenchymal transition. Molecules, 2019, 24(20), 3725.
[http://dx.doi.org/10.3390/molecules24203725] [PMID: 31623144]
[111]
Yu, S.M.; Kuo, S.C. Vasorelaxant effect of isoliquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta. Br. J. Pharmacol., 1995, 114(8), 1587-1594.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb14943.x] [PMID: 7599926]
[112]
Wegener, J.W.; Nawrath, H. Cardiac effects of isoliquiritigenin. Eur. J. Pharmacol., 1997, 326(1), 37-44.
[http://dx.doi.org/10.1016/S0014-2999(97)00134-9] [PMID: 9178653]
[113]
Zhang, X.; Zhu, P.; Zhang, X.; Ma, Y.; Li, W.; Chen, J.M.; Guo, H.M.; Bucala, R.; Zhuang, J.; Li, J. Natural antioxidant-isoliquiritigenin ameliorates contractile dysfunction of hypoxic cardiomyocytes via AMPK signaling pathway. Mediators Inflamm., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/390890] [PMID: 24163504]
[114]
Noguchi, C.; Yang, J.; Sakamoto, K.; Maeda, R.; Takahashi, K.; Takasugi, H.; Ono, T.; Murakawa, M.; Kimura, J. Inhibitory effects of isoliquiritigenin and licorice extract on voltage-dependent K(+) currents in H9c2 cells. J. Pharmacol. Sci., 2008, 108(4), 439-445.
[http://dx.doi.org/10.1254/jphs.08227FP] [PMID: 19098391]
[115]
Ryu, Y.B.; Kim, J.H.; Park, S.J.; Chang, J.S.; Rho, M.C.; Bae, K.H.; Park, K.H.; Lee, W.S. Inhibition of neuraminidase activity by polyphenol compounds isolated from the roots of Glycyrrhiza uralensis. Bioorg. Med. Chem. Lett., 2010, 20(3), 971-974.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.106] [PMID: 20064716]
[116]
Dao, T.T.; Nguyen, P.H.; Lee, H.S.; Kim, E.; Park, J.; Lim, S.I.; Oh, W.K. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg. Med. Chem. Lett., 2011, 21(1), 294-298.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.016] [PMID: 21123068]
[117]
Traboulsi, H.; Cloutier, A.; Boyapelly, K.; Bonin, M.A.; Marsault, É.; Cantin, A.M.; Richter, M.V. The flavonoid isoliquiritigenin reduces lung inflammation and mouse morbidity during influenza virus infection. Antimicrob. Agents Chemother., 2015, 59(10), 6317-6327.
[http://dx.doi.org/10.1128/AAC.01098-15] [PMID: 26248373]
[118]
an, W.; Yang, J.; Ao, Y. Metallothionein mediates cardioprotection of isoliquiritigenin against ischemia-reperfusion through JAK2/STAT3 activation. Acta Pharmacol. Sin., 2006, 27(11), 1431-1437.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00419.x] [PMID: 17049118]
[119]
Zhan, C.; Yang, J. Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol. Res., 2006, 53(3), 303-309.
[http://dx.doi.org/10.1016/j.phrs.2005.12.008] [PMID: 16459097]
[120]
Birari, R.B.; Gupta, S.; Mohan, C.G.; Bhutani, K.K. Antiobesity and lipid lowering effects of Glycyrrhiza chalcones : Experimental and computational studies. Phytomedicine, 2011, 18(8-9), 795-801.
[http://dx.doi.org/10.1016/j.phymed.2011.01.002] [PMID: 21315569]
[121]
Nerya, O.; Vaya, J.; Musa, R.; Izrael, S.; Ben-Arie, R.; Tamir, S. Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. J. Agric. Food Chem., 2003, 51(5), 1201-1207.
[http://dx.doi.org/10.1021/jf020935u] [PMID: 12590456]
[122]
Nerya, O.; Musa, R.; Khatib, S.; Tamir, S.; Vaya, J. Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry, 2004, 65(10), 1389-1395.
[http://dx.doi.org/10.1016/j.phytochem.2004.04.016] [PMID: 15231412]
[123]
Iwashita, K.; Kobori, M.; Yamaki, K.; Tsushida, T. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci. Biotechnol. Biochem., 2000, 64(9), 1813-1820.
[http://dx.doi.org/10.1271/bbb.64.1813] [PMID: 11055382]
[124]
Chen, X.; Zhang, B.; Yuan, X.; Yang, F.; Liu, J.; Zhao, H.; Liu, L.; Wang, Y.; Wang, Z.; Zheng, Q. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line. Oxid. Med. Cell. Longev., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/534934] [PMID: 23304254]
[125]
Lv, J.; Fu, Y.; Cao, Y.; Jiang, S.; Yang, Y.; Song, G.; Yun, C.; Gao, R. Isoliquiritigenin inhibits melanogenesis, melanocyte dendricity and melanosome transport by regulating ERK‐mediated MITF degradation. Exp. Dermatol., 2020, 29(2), 149-157.
[http://dx.doi.org/10.1111/exd.14066] [PMID: 31785162]
[126]
Chen, X.Y.; Li, D.F.; Han, J.C.; Wang, B.; Dong, Z.P.; Yu, L.N.; Pan, Z.H.; Qu, C.J.; Chen, Y.; Sun, S.G.; Zheng, Q.S. Reprogramming induced by isoliquiritigenin diminishes melanoma cachexia through mTORC2-AKT-GSK3β signaling. Oncotarget, 2017, 8(21), 34565-34575.
[http://dx.doi.org/10.18632/oncotarget.16655] [PMID: 28410220]
[127]
Chen, X.Y.; Ren, H.H.; Wang, D.; Chen, Y.; Qu, C.J.; Pan, Z.H.; Liu, X.N.; Hao, W.J.; Xu, W.J.; Wang, K.J.; Li, D.F.; Zheng, Q.S. Isoliquiritigenin induces mitochondrial dysfunction and apoptosis by inhibiting mitoNEET in a reactive oxygen species-dependent manner in A375 human melanoma cells. Oxid. Med. Cell. Longev., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/9817576] [PMID: 30805086]
[128]
Chen, X.; Yang, M.; Hao, W.; Han, J.; Ma, J.; Wang, C.; Sun, S.; Zheng, Q. Differentiation-inducing and anti-proliferative activities of isoliquiritigenin and all-trans-retinoic acid on B16F0 melanoma cells: Mechanisms profiling by RNA-seq. Gene, 2016, 592(1), 86-98.
[http://dx.doi.org/10.1016/j.gene.2016.07.052] [PMID: 27461947]
[129]
Xiang, S.; Zeng, H.; Xia, F.; Ji, Q.; Xue, J.; Ren, R.; Que, F.; Zhou, B. The dietary flavonoid isoliquiritigenin induced apoptosis and suppressed metastasis in melanoma cells: An in vitro and in vivo study. Life Sci., 2021, 264, 118598.
[http://dx.doi.org/10.1016/j.lfs.2020.118598] [PMID: 33189818]
[130]
Wang, Y.; Ma, J.; Yan, X.; Chen, X.; Si, L.; Liu, Y.; Han, J.; Hao, W.; Zheng, Q. Isoliquiritigenin inhibits proliferation and induces apoptosis via alleviating hypoxia and reducing glycolysis in mouse melanoma B16F10 Cells. Recent Patents Anticancer Drug Discov., 2016, 11(2), 215-227.
[http://dx.doi.org/10.2174/1573406412666160307151904] [PMID: 26951491]
[131]
Li, D.; Wang, Z.; Chen, H.; Wang, J.; Zheng, Q.; Shang, J.; Li, J. Isoliquiritigenin induces monocytic differentiation of HL-60 cells. Free Radic. Biol. Med., 2009, 46(6), 731-736.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.011] [PMID: 19110051]
[132]
Youns, M.; Fu, Y.J.; Zu, Y.G.; Kramer, A.; Konkimalla, V.B.; Radlwimmer, B.; Sültmann, H.; Efferth, T. Sensitivity and resistance towards isoliquiritigenin, doxorubicin and methotrexate in T cell acute lymphoblastic leukaemia cell lines by pharmacogenomics. Naunyn Schmiedebergs Arch. Pharmacol., 2010, 382(3), 221-234.
[http://dx.doi.org/10.1007/s00210-010-0541-6] [PMID: 20668838]
[133]
Chen, H.; Zhang, B.; Yuan, X.; Yao, Y.; Zhao, H.; Sun, X.; Zheng, Q. Isoliquiritigenin-induced effects on Nrf2 mediated antioxidant defence in the HL-60 cell monocytic differentiation. Cell Biol. Int., 2013, 37(11), 1215-24.
[http://dx.doi.org/10.1002/cbin.10156] [PMID: 23881796]
[134]
Cao, Z.X.; Wen, Y.; He, J.L.; Huang, S.Z.; Gao, F.; Guo, C.J.; Liu, Q.Q.; Zheng, S.W.; Gong, D.Y.; Li, Y.Z.; Zhang, R.Q.; Chen, J.P.; Peng, C. Isoliquiritigenin, an orally available natural flt3 inhibitor from licorice, exhibits selective anti–acute myeloid leukemia efficacy in vitro and in vivo. Mol. Pharmacol., 2019, 96(5), 589-599.
[http://dx.doi.org/10.1124/mol.119.116129] [PMID: 31462456]
[135]
Kim, D.; Ramachandran, S.; Baek, S.; Kwon, S.H.; Kwon, K.Y.; Cha, S.D.; Bae, I.; Cho, C.H. Induction of growth inhibition and apoptosis in human uterine leiomyoma cells by isoliquiritigenin. Reprod. Sci., 2008, 15(6), 552-558.
[http://dx.doi.org/10.1177/1933719107312681] [PMID: 18487228]
[136]
Kumar, S.; Sharma, A.; Madan, B.; Singhal, V.; Ghosh, B. Isoliquiritigenin inhibits IκB kinase activity and ROS generation to block TNF-α induced expression of cell adhesion molecules on human endothelial cells. Biochem. Pharmacol., 2007, 73(10), 1602-1612.
[http://dx.doi.org/10.1016/j.bcp.2007.01.015] [PMID: 17276410]
[137]
Kwon, H.M.; Kang, Y-H.; Choi, J.S.; Kang, S.W.; Bae, J.Y.; Kang, I.J.; Jun, J.G.; Lee, S.S.; Lim, S.S.; Kang, Y.H. Blockade of cytokine‐induced endothelial cell adhesion molecule expression by licorice compound isoliquiritigenin through NF‐κB signal disruption. FASEB J., 2006, 20(4), 235-245.
[http://dx.doi.org/10.1096/fasebj.20.4.A605] [PMID: 17259331]
[138]
Ma, X.; Fang, F.; Song, M.; Ma, S. The effect of isoliquiritigenin on learning and memory impairments induced by high-fat diet via inhibiting TNF-α/JNK/IRS signaling. Biochem. Biophys. Res. Commun., 2015, 464(4), 1090-1095.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.081] [PMID: 26188513]
[139]
Yu, H.; Li, H.; Li, Y.; Li, M.; Chen, G. Effect of isoliquiritigenin for the treatment of atopic dermatitis-like skin lesions in mice. Arch. Dermatol. Res., 2017, 309(10), 805-813.
[http://dx.doi.org/10.1007/s00403-017-1787-3] [PMID: 29026975]
[140]
Yushan, R.; Ying, Y.; Yujun, T.; Jingchun, Y.; Dongguang, L.; Lihong, P.; Pingping, W.; Lili, Z.; Fanhui, Z.; Zhong, L.; Guimin, Z.; Jie, L. Isoliquiritigenin inhibits mouse S180 tumors with a new mechanism that regulates autophagy by GSK-3β/TNF-α pathway. Eur. J. Pharmacol., 2018, 838, 11-22.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.033] [PMID: 30171855]
[141]
Jang, E.Y.; Choe, E.S.; Hwang, M.; Kim, S.C.; Lee, J.R.; Kim, S.G.; Jeon, J.P.; Buono, R.J.; Yang, C.H. Isoliquiritigenin suppresses cocaine-induced extracellular dopamine release in rat brain through GABAB receptor. Eur. J. Pharmacol., 2008, 587(1-3), 124-128.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.054] [PMID: 18495107]
[142]
Lee, M.J.; Yang, C.H.; Jeon, J.P.; Hwang, M. Protective effects of isoliquiritigenin against methamphetamine-induced neurotoxicity in mice. J. Pharmacol. Sci., 2009, 111(2), 216-220.
[http://dx.doi.org/10.1254/jphs.09153SC] [PMID: 19834288]
[143]
Yang, E.J.; Min, J.S.; Ku, H.Y.; Choi, H.S.; Park, M.; Kim, M.K.; Song, K.S.; Lee, D.S. Isoliquiritigenin isolated from Glycyrrhiza uralensis protects neuronal cells against glutamate-induced mitochondrial dysfunction. Biochem. Biophys. Res. Commun., 2012, 421(4), 658-664.
[http://dx.doi.org/10.1016/j.bbrc.2012.04.053] [PMID: 22538371]
[144]
Yang, E.J.; Kim, M.; Woo, J.E.; Lee, T.; Jung, J.W.; Song, K.S. The comparison of neuroprotective effects of isoliquiritigenin and its Phase I metabolites against glutamate-induced HT22 cell death. Bioorg. Med. Chem. Lett., 2016, 26(23), 5639-5643.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.072] [PMID: 27815122]
[145]
Selvaraj, B.; Kim, D.W.; Huh, G.; Lee, H.; Kang, K.; Lee, J.W. Synthesis and biological evaluation of isoliquiritigenin derivatives as a neuroprotective agent against glutamate mediated neurotoxicity in HT22 cells. Bioorg. Med. Chem. Lett., 2020, 30(8), 127058.
[http://dx.doi.org/10.1016/j.bmcl.2020.127058] [PMID: 32122738]
[146]
Gay, N.H.; Suwanjang, W.; Ruankham, W.; Songtawee, N.; Wongchitrat, P.; Prachayasittikul, V.; Prachayasittikul, S.; Phopin, K. Butein, isoliquiritigenin, and scopoletin attenuate neurodegeneration via antioxidant enzymes and SIRT1/ADAM10 signaling pathway. RSC Advances, 2020, 10(28), 16593-16606.
[http://dx.doi.org/10.1039/C9RA06056A] [PMID: 35498835]
[147]
Kong, L.D.; Zhang, Y.; Pan, X.; Tan, R.X.; Cheng, C.H.K. Inhibition of xanthine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis . Cell. Mol. Life Sci., 2000, 57(3), 500-505.
[http://dx.doi.org/10.1007/PL00000710] [PMID: 10823249]
[148]
Zhang, K.; Wang, Q.; Yang, Q.; Wei, Q.; Man, N.; Adu-Frimpong, M.; Toreniyazov, E.; Ji, H.; Yu, J.; Xu, X. Enhancement of oral bioa-vailability and anti-hyperuricemic activity of isoliquiritigenin via self-microemulsifying drug delivery system. AAPS PharmSciTech, 2019, 20(5), 218.
[http://dx.doi.org/10.1208/s12249-019-1421-0] [PMID: 31187334]
[149]
Jhanji, V.; Liu, H.; Law, K.; Lee, V.Y.W.; Huang, S.F.; Pang, C.P.; Yam, G.H.F. Isoliquiritigenin from licorice root suppressed neovascularisation in experimental ocular angiogenesis models. Br. J. Ophthalmol., 2011, 95(9), 1309-1315.
[http://dx.doi.org/10.1136/bjophthalmol-2011-300110] [PMID: 21719569]
[150]
Shi, Y.; Wu, D.; Sun, Z.; Yang, J.; Chai, H.; Tang, L.; Guo, Y. Analgesic and uterine relaxant effects of isoliquiritigenin, a flavone from Glycyrrhiza glabra . Phytother. Res., 2012, 26(9), 1410-1417.
[http://dx.doi.org/10.1002/ptr.3715] [PMID: 22389128]
[151]
Yamada, C.; Saegusa, Y.; Nakagawa, K.; Ohnishi, S.; Muto, S.; Nahata, M.; Sadakane, C.; Hattori, T.; Sakamoto, N.; Takeda, H. Rikkunshito, a Japanese kampo medicine, ameliorates decreased feeding behavior via ghrelin and serotonin 2B receptor signaling in a novelty stress murine model. BioMed Res. Int., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/792940] [PMID: 24288687]
[152]
Yang, N.; Patil, S.; Zhuge, J.; Wen, M.C.; Bolleddula, J.; Doddaga, S.; Goldfarb, J.; Sampson, H.A.; Li, X.M. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMI™, inhibit memory Th2 responses in vitro and in vivo. Phytother. Res., 2013, 27(9), 1381-1391.
[http://dx.doi.org/10.1002/ptr.4862] [PMID: 23165939]
[153]
Liu, B.; Yang, J.; Wen, Q.; Li, Y. Isoliquiritigenin, a flavonoid from licorice, relaxes guinea-pig tracheal smooth muscle in vitro and in vivo: Role of cGMP/PKG pathway. Eur. J. Pharmacol., 2008, 587(1-3), 257-266.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.015] [PMID: 18462716]
[154]
Cao, M.; Zhan, M.; Wang, Z.; Wang, Z.; Li, X.M.; Miao, M. Development of an Orally Bioavailable Isoliquiritigenin Self-Nanoemulsifying Drug Delivery System to Effectively Treat Ovalbumin-Induced Asthma. Int. J. Nanomedicine, 2020, 15, 8945-8961.
[http://dx.doi.org/10.2147/IJN.S269982] [PMID: 33223829]
[155]
Zhao, X.; Mei, W.; Gong, M.; Zuo, W.; Bai, H.; Dai, H. Antibacterial activity of the flavonoids from Dalbergia odorifera on Ralstonia solanacearum . Molecules, 2011, 16(12), 9775-9782.
[http://dx.doi.org/10.3390/molecules16129775] [PMID: 22117168]
[156]
Feldman, M.; Santos, J.; Grenier, D. Comparative evaluation of two structurally related flavonoids, isoliquiritigenin and liquiritigenin, for their oral infection therapeutic potential. J. Nat. Prod., 2011, 74(9), 1862-1867.
[http://dx.doi.org/10.1021/np200174h] [PMID: 21866899]
[157]
Gaur, R.; Yadav, K.S.; Verma, R.K.; Yadav, N.P.; Bhakuni, R.S. In vivo anti-diabetic activity of derivatives of isoliquiritigenin and liquiritigenin. Phytomedicine, 2014, 21(4), 415-422.
[http://dx.doi.org/10.1016/j.phymed.2013.10.015] [PMID: 24262065]
[158]
Sun, Z.J.; Chen, G.; Zhang, W.; Hu, X.; Huang, C.F.; Wang, Y.F.; Jia, J.; Zhao, Y.F. Mammalian target of rapamycin pathway promotes tumor-induced angiogenesis in adenoid cystic carcinoma: its suppression by isoliquiritigenin through dual activation of c-Jun NH2-terminal kinase and inhibition of extracellular signal-regulated kinase. J. Pharmacol. Exp. Ther., 2010, 334(2), 500-512.
[http://dx.doi.org/10.1124/jpet.110.167692] [PMID: 20484154]
[159]
Chen, X.; Wu, Y.; Jiang, Y.; Zhou, Y.; Wang, Y.; Yao, Y.; Yi, C.; Gou, L.; Yang, J. Isoliquiritigenin inhibits the growth of multiple myeloma via blocking IL-6 signaling. J. Mol. Med. (Berl.), 2012, 90(11), 1311-1319.
[http://dx.doi.org/10.1007/s00109-012-0910-3] [PMID: 22648519]
[160]
Kim, Y.M.; Kim, T.H.; Kim, Y.W.; Yang, Y.M.; Ryu, D.H.; Hwang, S.J.; Lee, J.R.; Kim, S.C.; Kim, S.G. Inhibition of liver X receptor-α-dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition. Free Radic. Biol. Med., 2010, 49(11), 1722-1734.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.001] [PMID: 20840863]
[161]
Na, A.Y.; Yang, E.J.; Jeon, J.M.; Ki, S.H.; Song, K.S.; Lee, S. Protective Effect of Isoliquiritigenin against Ethanol-Induced Hepatic Steatosis by Regulating the SIRT1-AMPK Pathway. Toxicol. Res., 2018, 34(1), 23-29.
[http://dx.doi.org/10.5487/TR.2018.34.1.023] [PMID: 29371998]
[162]
Lee, H.K.; Yang, E.J.; Kim, J.Y.; Song, K.; Seong, Y.H. Inhibitory effects of glycyrrhizae radix and its active component, isoliquiritigenin, on Aβ(25–35)-induced neurotoxicity in cultured rat cortical neurons. Arch. Pharm. Res., 2012, 35(5), 897-904.
[http://dx.doi.org/10.1007/s12272-012-0515-y] [PMID: 22644857]
[163]
Arai, T.; Maejima, Y.; Muroya, S.; Yada, T. Rikkunshito and isoliquiritigenin counteract 5-HT-induced 2C receptor-mediated activation of pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus. Neuropeptides, 2013, 47(4), 225-230.
[http://dx.doi.org/10.1016/j.npep.2013.05.004] [PMID: 23756052]
[164]
Muanprasat, C.; Sirianant, L.; Soodvilai, S.; Chokchaisiri, R.; Suksamrarn, A.; Chatsudthipong, V. Novel action of the chalcone isoliquiritigenin as a Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) inhibitor: potential therapy for cholera and polycystic kidney disease. J. Pharmacol. Sci., 2012, 118(1), 82-91.
[http://dx.doi.org/10.1254/jphs.11153FP]
[165]
Park, S.J.; Song, H.Y.; Youn, H.S. Suppression of the TRIF-dependent signaling pathway of toll-like receptors by isoliquiritigenin in RAW264.7 macrophages. Mol. Cells, 2009, 28(4), 365-368.
[http://dx.doi.org/10.1007/s10059-009-0130-z] [PMID: 19809799]
[166]
Park, S.; Youn, H.S. Isoliquiritigenin suppresses the Toll-interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF)-dependent signaling pathway of Toll-like receptors by targeting TBK1. J. Agric. Food Chem., 2010, 58(8), 4701-4705.
[http://dx.doi.org/10.1021/jf100484r] [PMID: 20356041]
[167]
Park, S.J.; Youn, H.S. Suppression of homodimerization of toll-like receptor 4 by isoliquiritigenin. Phytochemistry, 2010, 71(14-15), 1736-1740.
[http://dx.doi.org/10.1016/j.phytochem.2010.07.008] [PMID: 20701936]
[168]
Alshangiti, A.M.; Togher, K.L.; Hegarty, S.V.; Sullivan, A.M.; O’Keeffe, G.W. The dietary flavonoid isoliquiritigenin is a potent cytotoxin for human neuroblastoma cells. Neuronal Signal., 2019, 3(1), NS20180201.
[http://dx.doi.org/10.1042/NS20180201] [PMID: 32269833]
[169]
Yang, H.H.; Zhang, C.; Lai, S.H.; Zeng, C.C.; Liu, Y.J.; Wang, X.Z. Isoliquiritigenin induces cytotoxicity in PC-12 cells in vitro. Appl. Biochem. Biotechnol., 2017, 183(4), 1173-1190.
[http://dx.doi.org/10.1007/s12010-017-2491-7] [PMID: 28488118]
[170]
Gao, Y.; Lv, X.; Yang, H.; Peng, L.; Ci, X. Isoliquiritigenin exerts antioxidative and anti-inflammatory effects via activating the KEAP-1/Nrf2 pathway and inhibiting the NF-κB and NLRP3 pathways in carrageenan-induced pleurisy. Food Funct., 2020, 11(3), 2522-2534.
[http://dx.doi.org/10.1039/C9FO01984G] [PMID: 32141447]
[171]
Zhao, S.; Chang, H.; Ma, P.; Gao, G.; Jin, C.; Zhao, X.; Zhou, W.; Jin, B. Inhibitory effect of DNA topoisomerase inhibitor isoliquiritigenin on the growth of glioma cells. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12577-12582.
[PMID: 26722447]
[172]
Park, I.; Park, K.K.; Park, J.H.Y.; Chung, W.Y. Isoliquiritigenin induces G2 and M phase arrest by inducing DNA damage and by inhibiting the metaphase/anaphase transition. Cancer Lett., 2009, 277(2), 174-181.
[http://dx.doi.org/10.1016/j.canlet.2008.12.005] [PMID: 19167809]
[173]
Zhou, G.S.; Song, L.J.; Yang, B. Isoliquiritigenin inhibits proliferation and induces apoptosis of U87 human glioma cells in vitro. Mol. Med. Rep., 2013, 7(2), 531-536.
[http://dx.doi.org/10.3892/mmr.2012.1218] [PMID: 23229626]
[174]
Li, Z.; Li, J.; Li, Y.; You, K.; Xu, H.; Wang, J. Novel insights into the apoptosis mechanism of DNA topoisomerase I inhibitor isoliquiritigenin on HCC tumor cell. Biochem. Biophys. Res. Commun., 2015, 464(2), 548-553.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.003] [PMID: 26159926]
[175]
Lee, J.E.; Hong, E.J.; Nam, H.Y.; Hwang, M.; Kim, J.H.; Han, B.G.; Jeon, J.P. Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines. Biochem. Biophys. Res. Commun., 2012, 427(2), 392-397.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.070] [PMID: 22995316]
[176]
Tawata, M.; Aida, K.; Noguchi, T.; Ozaki, Y.; Kume, S.; Sasaki, H.; Chin, M.; Onaya, T. Anti-platelet action of isoliquiritigenin, an aldose reductase inhibitor in licorice. Eur. J. Pharmacol., 1992, 212(1), 87-92.
[http://dx.doi.org/10.1016/0014-2999(92)90076-G] [PMID: 1555643]
[177]
Lee, Y.S.; Kim, S.H.; Jung, S.H.; Kim, J.K.; Pan, C.H.; Lim, S.S. Aldose reductase inhibitory compounds from Glycyrrhiza uralensis. Biol. Pharm. Bull., 2010, 33(5), 917-921.
[http://dx.doi.org/10.1248/bpb.33.917] [PMID: 20460778]
[178]
Reddy, M.R.; Aidhen, I.S.; Reddy, U.A.; Reddy, G.B.; Ingle, K.; Mukhopadhyay, S. Synthesis of 4- C -β-D-glucosylated isoliquiritigenin and analogues for aldose reductase inhibition studies. Eur. J. Org. Chem., 2019, 2019(24), 3937-3948.
[http://dx.doi.org/10.1002/ejoc.201900413]
[179]
Zhang, X.Y.; Qiao, H.; Ni, J.M.; Shi, Y.B.; Qiang, Y. Preparation of isoliquiritigenin-loaded nanostructured lipid carrier and the in vivo evaluation in tumor-bearing mice. Eur. J. Pharm. Sci., 2013, 49(3), 411-422.
[http://dx.doi.org/10.1016/j.ejps.2013.04.020] [PMID: 23624327]
[180]
Zhang, X.; Qiao, H.; Zhang, T.; Shi, Y.; Ni, J. Enhancement of gastrointestinal absorption of isoliquiritigenin by nanostructured lipid carrier. Adv. Powder Technol., 2014, 25(3), 1060-1068.
[http://dx.doi.org/10.1016/j.apt.2014.02.012]
[181]
Noh, G.Y.; Suh, J.Y.; Park, S.N. Ceramide-based nanostructured lipid carriers for transdermal delivery of isoliquiritigenin: Development, physicochemical characterization, and in vitro skin permeation studies. Korean J. Chem. Eng., 2017, 34(2), 400-406.
[http://dx.doi.org/10.1007/s11814-016-0267-3]
[182]
Zhang, X.; Qiao, H.; Chen, Y.; Li, L.; Xia, H.; Shi, Y. Preparation, properties and preclinical pharmacokinetics of low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle. Iran. J. Pharm. Res., 2016, 15(3), 269-282.
[PMID: 27980562]
[183]
Liu, J.; Wang, Q.; Adu-Frimpong, M.; Wei, Q.; Xie, Y.; Zhang, K.; Wei, C.; Weng, W.; Ji, H.; Toreniyazov, E.; Xu, X.; Yu, J. Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded TPGS modified proliposomes. Int. J. Pharm., 2019, 563, 53-62.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.034] [PMID: 30890449]
[184]
Xie, Y.J.; Wang, Q.L.; Adu-Frimpong, M.; Liu, J.; Zhang, K.Y.; Xu, X.M.; Yu, J.N. Preparation and evaluation of isoliquiritigenin loaded F127/P123 polymeric micelles. Drug Dev. Ind. Pharm., 2019, 45(8), 1224-1232.
[http://dx.doi.org/10.1080/03639045.2019.1574812] [PMID: 30681382]
[185]
Qiao, F.; Zhao, Y.; Mai, Y.; Guo, J.; Dong, L.; Zhang, W.; Yang, J. Isoliquiritigenin nanosuspension enhances cytostatic effects in a549 lung cancer cells. Planta Med., 2020, 86(8), 538-547.
[http://dx.doi.org/10.1055/a-1134-3378] [PMID: 32294789]
[186]
Kong, B.J.; Kim, A.; Park, S.N. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr. Polym., 2016, 147, 473-481.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.021] [PMID: 27178954]