Current Topics in Medicinal Chemistry

Author(s): Juhi Rais*, Habiba Khan and Mohd. Arshad*

DOI: 10.2174/1568026623666230516161827

The Role of Phytochemicals in Cancer Prevention: A Review with Emphasis on Baicalein, Fisetin, and Biochanin A

Page: [1123 - 1135] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Cancer is a disease in which repeated rounds of mutations cause uncontrolled growth of cells, which prospers at the expense of their neighbor cells and then eventually leads to the destruction of the whole cellular community. Chemopreventive drugs either prevent DNA damage, which results in malignancy, or they stop or reverse the division of premalignant cells with DNA damage, which inhibits the growth of cancer. There is an obvious need for an alternate strategy given the ongoing rise in cancer incidence, the ineffectiveness of traditional chemotherapies to control cancer, and the excessive toxicity of chemotherapies. From antiquity to date, the saga of the usage of plants as medicine has been the mainstay among people worldwide. In recent years, extensive studies have been conducted on medicinal plants, spices, and nutraceuticals, as these have gained much popularity in reducing the risk of several cancer types in humans. Extensive studies on cell culture systems and animal models have demonstrated that various medicinal plants and nutraceuticals from various natural resources and their products, such as major polyphenolic constituents, flavones, flavonoids, antioxidants, etc, provide considerable protection against many cancer types. As shown in the literatures, the major aim of studies conducted is to develop preventive/therapeutic agents which can induce apoptosis in cancer cells without affecting normal cells. Projects are going on worldwide to find better ways to eradicate the disease. The study of phytomedicines has shed new light on this topic as research to date has proven that they have antiproliferative and apoptotic capabilities that will aid in the development of novel cancer prevention options. Dietary substances, such as Baicalein, Fisetin, and Biochanin A have shown that they have an inhibitory effect on cancer cells, suggesting that they may work as chemopreventive agents. This review discusses the chemopreventive and anticancer mechanisms of such reported natural compounds.

Graphical Abstract

[1]
Lai, P.; Roy, J. Antimicrobial and chemopreventive properties of herbs and spices. Curr. Med. Chem., 2004, 11(11), 1451-1460.
[http://dx.doi.org/10.2174/0929867043365107] [PMID: 15180577]
[2]
Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr., 2003, 78(3)(Suppl.), 517S-520S.
[http://dx.doi.org/10.1093/ajcn/78.3.517S] [PMID: 12936943]
[3]
Hasler, C.M.; Blumberg, J.B. Phytochemicals: biochemistry and physiology. Introduction. J. Nutr., 1999, 129(3), 756S-757S.
[http://dx.doi.org/10.1093/jn/129.3.756S] [PMID: 10082785]
[4]
Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Adv. Nutr., 2011, 2(1), 32-50.
[http://dx.doi.org/10.3945/an.110.000117] [PMID: 22211188]
[5]
Meagher, L.P.; Beecher, G.R.; Flanagan, V.P.; Li, B.W. Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal. J. Agric. Food Chem., 1999, 47(8), 3173-3180.
[http://dx.doi.org/10.1021/jf981359y] [PMID: 10552626]
[6]
Mondal, S.; Soumya, N.P.P.; Mini, S.; Sivan, S.K. Bioactive compounds in functional food and their role as therapeutics. Bioactive Compounds Health Dis., 2021, 4(3), 24-39.
[http://dx.doi.org/10.31989/bchd.v4i3.786]
[7]
Costa, M.A.; Xia, Z.Q.; Davin, L.B.; Lewis, N.G. Toward engineering the metabolic pathways of cancer-preventing lignans in cereal grains and other crops.Phytochemicals in Human Health Protection, Nutrition, and Plant Defense; Springer: Boston, MA, 1999, pp. 67-87.
[http://dx.doi.org/10.1007/978-1-4615-4689-4_4]
[8]
Rao, B.N. Bioactive phytochemicals in Indian foods and their potential in health promotion and disease prevention. Asia Pac. J. Clin. Nutr., 2003, 12(1), 9-22.
[PMID: 12737006]
[9]
George, B.P.; Chandran, R.; Abrahamse, H. Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants, 2021, 10(9), 1455.
[http://dx.doi.org/10.3390/antiox10091455] [PMID: 34573087]
[10]
Kwak, M.K.; Kensler, T.W. Targeting NRF2 signaling for cancer chemoprevention. Toxicol. Appl. Pharmacol., 2010, 244(1), 66-76.
[http://dx.doi.org/10.1016/j.taap.2009.08.028] [PMID: 19732782]
[11]
Li-Weber, M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev., 2009, 35(1), 57-68.
[http://dx.doi.org/10.1016/j.ctrv.2008.09.005] [PMID: 19004559]
[12]
Kim, D.H.; Hossain, M.A.; Kang, Y.J.; Jang, J.Y.; Lee, Y.J.; Im, E.; Yoon, J.H.; Kim, H.S.; Chung, H.Y.; Kim, N.D. Baicalein, an active component of Scutellaria baicalensis Georgi, induces apoptosis in human colon cancer cells and prevents AOM/DSS-induced colon cancer in mice. Int. J. Oncol., 2013, 43(5), 1652-1658.
[http://dx.doi.org/10.3892/ijo.2013.2086] [PMID: 24008356]
[13]
Mehendale, S.; Aung, H.; Wang, C.Z.; Tong, R.; Foo, A.; Xie, J.T.; Yuan, C.S. Scutellaria baicalensis and a constituent flavonoid, Baicalein, attenuate ritonavir-induced gastrointestinal side-effects. J. Pharm. Pharmacol., 2010, 59(11), 1567-1572.
[http://dx.doi.org/10.1211/jpp.59.11.0015] [PMID: 17976269]
[14]
Li, H.L.; Zhang, S.; Wang, Y.; Liang, R.R.; Li, J. an, P.; Wang, Z.M.; Yang, J.; Li, Z.F. Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells. Mol. Med. Rep., 2013, 7(1), 266-270.
[http://dx.doi.org/10.3892/mmr.2012.1123] [PMID: 23064738]
[15]
Chen, H.; Gao, Y.; Wu, J.; Chen, Y.; Chen, B.; Hu, J.; Zhou, J. Exploring therapeutic potentials of baicalin and its aglycone Baicalein for hematological malignancies. Cancer Lett., 2014, 354(1), 5-11.
[http://dx.doi.org/10.1016/j.canlet.2014.08.003] [PMID: 25128647]
[16]
Wang, L.; Ling, Y.; Chen, Y.; Li, C.L.; Feng, F.; You, Q.D.; Lu, N.; Guo, Q.L. Flavonoid Baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells. Cancer Lett., 2010, 297(1), 42-48.
[http://dx.doi.org/10.1016/j.canlet.2010.04.022] [PMID: 20580866]
[17]
Wu, B.; Li, J.; Huang, D.; Wang, W.; Chen, Y.; Liao, Y.; Tang, X.; Xie, H.; Tang, F. RETRACTED ARTICLE: Baicalein mediates inhibition of migration and invasiveness of skin carcinoma through Ezrin in A431 cells. BMC Cancer, 2011, 11(1), 527.
[http://dx.doi.org/10.1186/1471-2407-11-527] [PMID: 22204275]
[18]
Moon, Y.J.; Wang, X.; Morris, M.E. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro, 2006, 20(2), 187-210.
[http://dx.doi.org/10.1016/j.tiv.2005.06.048] [PMID: 16289744]
[19]
a) Breikaa, R.M.; Algandaby, M.M.; El-Demerdash, E.; Abdel-Naim, A.B. Multimechanistic antifibrotic effect of biochanin a in rats: implications of proinflammatory and profibrogenic mediators. PLoS One, 2013, 8(7), e69276.
[http://dx.doi.org/10.1371/journal.pone.0069276] [PMID: 23874933];
b) Kang, O.H.; Choi, J.G.; Lee, J.H.; Kwon, D.Y. Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells. Molecules, 2010, 15(1), 385-398.
[http://dx.doi.org/10.3390/molecules15010385] [PMID: 20110898];
c) Lin, Y.T.; Yang, J.S.; Lin, H.J.; Tan, T.W.; Tang, N.Y.; Chaing, J.H.; Chang, Y.H.; Lu, H.F.; Chung, J.G. Baicalein induces apoptosis in SCC-4 human tongue cancer cells via a Ca2+-dependent mitochondrial pathway. In Vivo, 2007, 21(6), 1053-1058.
[PMID: 18210755]
[20]
Taniguchi, H.; Yoshida, T.; Horinaka, M.; Yasuda, T.; Goda, A.E.; Konishi, M.; Wakada, M.; Kataoka, K.; Yoshikawa, T.; Sakai, T. Baicalein overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance via two different cell-specific pathways in cancer cells but not in normal cells. Cancer Res., 2008, 68(21), 8918-8927.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1120] [PMID: 18974136]
[21]
Zhou, Q.; Wang, S.; Zhang, H.; Lu, Y.; Wang, X.; Motoo, Y.; Su, S. The combination of baicalin and Baicalein enhances apoptosis via the ERK/p38 MAPK pathway in human breast cancer cells. Acta Pharmacol. Sin., 2009, 30(12), 1648-1658.
[http://dx.doi.org/10.1038/aps.2009.166] [PMID: 19960010]
[22]
Kim, S.J.; Kim, H.J.; Kim, H.R.; Lee, S.H.; Cho, S.D.; Choi, C.S.; Nam, J.S.; Jung, J.Y. Antitumor actions of Baicalein and wogonin in HT-29 human colorectal cancer cells. Mol. Med. Rep., 2012, 6(6), 1443-1449.
[http://dx.doi.org/10.3892/mmr.2012.1085] [PMID: 22992837]
[23]
Kong, D.; Zhang, Y.; Yamori, T.; Duan, H.; Jin, M. Inhibitory activity of flavonoids against class I phosphatidylinositol 3-kinase isoforms. Molecules, 2011, 16(6), 5159-5167.
[http://dx.doi.org/10.3390/molecules16065159] [PMID: 21694679]
[24]
Zhang, H.B.; Lu, P.; Guo, Q.Y.; Zhang, Z.H.; Meng, X.Y. Baicalein induces apoptosis in esophageal squamous cell carcinoma cells through modulation of the PI3K/Akt pathway. Oncol. Lett., 2013, 5(2), 722-728.
[http://dx.doi.org/10.3892/ol.2012.1069] [PMID: 23420294]
[25]
Lee, H.Z.; Leung, H.W.; Lai, M.Y.; Wu, C.H. Baicalein induced cell cycle arrest and apoptosis in human lung squamous carcinoma CH27 cells. Anticancer Res., 2005, 25(2A), 959-964.
[PMID: 15868934]
[26]
Pidgeon, G.P.; Kandouz, M.; Meram, A.; Honn, K.V. Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Res., 2002, 62(9), 2721-2727.
[PMID: 11980674]
[27]
Chen, C.H.; Huang, L.L.H.; Huang, C.C.; Lin, C.C.; Lee, Y.; Lu, F.J. Baicalein, a novel apoptotic agent for hepatoma cell lines: A potential medicine for hepatoma. Nutr. Cancer, 2000, 38(2), 287-295.
[http://dx.doi.org/10.1207/S15327914NC382_19] [PMID: 11525608]
[28]
Chen, J.; Li, Z.; Chen, A.; Ye, X.; Luo, H.; Rankin, G.; Chen, Y. Inhibitory effect of baicalin and Baicalein on ovarian cancer cells. Int. J. Mol. Sci., 2013, 14(3), 6012-6025.
[http://dx.doi.org/10.3390/ijms14036012] [PMID: 23502466]
[29]
Hwang, K.Y.; Oh, Y.T.; Yoon, H.; Lee, J.; Kim, H.; Choe, W.; Kang, I. Baicalein suppresses hypoxia-induced HIF-11 α protein accumulation and activation through inhibition of reactive oxygen species and PI 3-kinase/Akt pathway in BV2 murine microglial cells. Neurosci. Lett., 2008, 444(3), 264-269.
[http://dx.doi.org/10.1016/j.neulet.2008.08.057] [PMID: 18771709]
[30]
Ling, Y.; Chen, Y.; Chen, P.; Hui, H.; Song, X.; Lu, Z.; Li, C.; Lu, N.; Guo, Q. Baicalein potently suppresses angiogenesis induced by vascular endothelial growth factor through the p53/Rb signaling pathway leading to G1/S cell cycle arrest. Exp. Biol. Med., 2011, 236(7), 851-858.
[http://dx.doi.org/10.1258/ebm.2011.010395] [PMID: 21659383]
[31]
Wu, J.Y.; Tsai, K.W.; Li, Y.Z.; Chang, Y.S.; Lai, Y.C.; Laio, Y.H.; Wu, J.D.; Liu, Y.W. Anti-bladder-tumor effect of Baicalein from Scutellaria baicalensis georgi and its application in vivo. Evidencebased Complementary and Alternative Medicine : eCAM. 2013, 2013, 579751.
[http://dx.doi.org/ 10.1155/2013/579751]
[32]
Zhang, Y.; Song, L.; Cai, L.; Wei, R.; Hu, H.; Jin, W. Effects of Baicalein on apoptosis, cell cycle arrest, migration and invasion of osteosarcoma cells. Food Chem. Toxicol., 2013, 53, 325-333.
[http://dx.doi.org/10.1016/j.fct.2012.12.019]
[33]
Chen, K.; Zhang, S.; Ji, Y.; Li, J.; An, P.; Ren, H.; Liang, R.; Yang, J.; Li, Z. Baicalein inhibits the invasion and metastatic capabilities of hepatocellular carcinoma cells via down-regulation of the ERK pathway. PLoS One, 2013, 8(9), e72927.
[http://dx.doi.org/10.1371/journal.pone.0072927] [PMID: 24039823]
[34]
Zhang, Z.; Lv, J.; Lei, X.; Li, S.; Zhang, Y.; Meng, L.; Xue, R.; Li, Z. Baicalein reduces the invasion of glioma cells via reducing the activity of p38 signaling pathway. PLoS One, 2014, 9(2), e90318.
[http://dx.doi.org/10.1371/journal.pone.0090318] [PMID: 24587321]
[35]
Yan, X.; Rui, X.; Zhang, K. Baicalein inhibits the invasion of gastric cancer cells by suppressing the activity of the p38 signaling pathway. Oncol. Rep., 2015, 33(2), 737-743.
[http://dx.doi.org/10.3892/or.2014.3669] [PMID: 25502212]
[36]
Li, Q.; You, Y.; Chen, Z.; Lü, J.; Shao, J.; Zou, P. Role of Baicalein in the regulation of proliferation and apoptosis in human myeloma RPMI8226 cells. Chin. Med. J., 2006, 119(11), 948-952.
[http://dx.doi.org/10.1097/00029330-200606010-00012] [PMID: 16780776]
[37]
Wu, M.S.; Lien, G.S.; Shen, S.C.; Yang, L.Y.; Chen, Y.C. N -acetyl- L -cysteine enhances Fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells. Mol. Carcinog., 2014, 53(S1)(Suppl. 1), E119-E129.
[http://dx.doi.org/10.1002/mc.22053] [PMID: 24019108]
[38]
Lin, M.T.; Lin, C.L.; Lin, T.Y.; Cheng, C.W.; Yang, S.F.; Lin, C.L.; Wu, C.C.; Hsieh, Y.H.; Tsai, J.P. Synergistic effect of Fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway. Tumour Biol., 2016, 37(5), 6987-6996.
[http://dx.doi.org/10.1007/s13277-015-4526-4] [PMID: 26662956]
[39]
Sung, B.; Pandey, M.K.; Aggarwal, B.B. Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol. Pharmacol., 2007, 71(6), 1703-1714.
[http://dx.doi.org/10.1124/mol.107.034512] [PMID: 17387141]
[40]
Mukhtar, E.; Adhami, V.M.; Sechi, M.; Mukhtar, H. Dietary flavonoid Fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells. Cancer Lett., 2015, 367(2), 173-183.
[http://dx.doi.org/10.1016/j.canlet.2015.07.030] [PMID: 26235140]
[41]
Lall, R.K.; Adhami, V.M.; Mukhtar, H. Dietary flavonoid Fisetin for cancer prevention and treatment. Mol. Nutr. Food Res., 2016, 60, 1396-1405.
[http://dx.doi.org/10.1002/mnfr.201600025]
[42]
Adhami, V.M.; Syed, D.N.; Khan, N.; Mukhtar, H. Dietary flavonoid Fisetin: A novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem. Pharmacol., 2012, 84(10), 1277-1281.
[http://dx.doi.org/10.1016/j.bcp.2012.07.012] [PMID: 22842629]
[43]
Tuli, H.S.; Kumar, G.; Sandhu, S.S.; Sharma, A.K.; Kashyap, D. Apoptotic effect of cordycepin on A549 human lung cancer cell line. Turk. J. Biol., 2015, 39, 306-311.
[http://dx.doi.org/10.3906/biy-1408-14]
[44]
Ravichandran, N.; Suresh, G.; Ramesh, B.; Manikandan, R.; Choi, Y.W.; Vijaiyan Siva, G. Fisetin modulates mitochondrial enzymes and apoptotic signals in benzo(a)pyrene-induced lung cancer. Mol. Cell. Biochem., 2014, 390(1-2), 225-234.
[http://dx.doi.org/10.1007/s11010-014-1973-y] [PMID: 24496750]
[45]
Li, J.; Cheng, Y.; Qu, W.; Sun, Y.; Wang, Z.; Wang, H.; Tian, B. Fisetin, a dietary flavonoid, induces cell cycle arrest and apoptosis through activation of p53 and inhibition of NF-kappa B pathways in bladder cancer cells. Basic Clin. Pharmacol. Toxicol., 2011, 108(2), 84-93.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00613.x] [PMID: 21054790]
[46]
Kang, K.A.; Piao, M.J.; Madduma Hewage, S.R.K.; Ryu, Y.S.; Oh, M.C.; Kwon, T.K.; Chae, S.; Hyun, J.W. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway. Tumour Biol., 2016, 37(7), 9615-9624.
[http://dx.doi.org/10.1007/s13277-016-4864-x] [PMID: 26797785]
[47]
Kang, K.A.; Piao, M.J.; Hyun, J.W. Fisetin induces apoptosis in human nonsmall lung cancer cells via a mitochondria-mediated pathway. In Vitro Cell. Dev. Biol. Anim., 2015, 51(3), 300-309.
[http://dx.doi.org/10.1007/s11626-014-9830-6] [PMID: 25381036]
[48]
Khan, N.; Afaq, F.; Syed, D.N.; Mukhtar, H. Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells. Carcinogenesis, 2008, 29(5), 1049-1056.
[http://dx.doi.org/10.1093/carcin/bgn078] [PMID: 18359761]
[49]
Kim, J.A.; Lee, S.; Kim, D.E.; Kim, M.; Kwon, B.M.; Han, D.C. Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter. Carcinogenesis, 2015, 36(6), 696-706.
[http://dx.doi.org/10.1093/carcin/bgv045] [PMID: 25840992]
[50]
Pal, H.C.; Baxter, R.D.; Hunt, K.M.; Agarwal, J.; Elmets, C.A.; Athar, M.; Afaq, F. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells. Oncotarget, 2015, 6(29), 28296-28311.
[http://dx.doi.org/10.18632/oncotarget.5064] [PMID: 26299806]
[51]
Suh, Y.; Afaq, F.; Johnson, J.J.; Mukhtar, H. A plant flavonoid Fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF- B-signaling pathways. Carcinogenesis, 2008, 30(2), 300-307.
[http://dx.doi.org/10.1093/carcin/bgn269] [PMID: 19037088]
[52]
Krol, W.; Helewski, K.J.; Mizgala, E.; Krol, W. The dietary flavonol Fisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. Int. J. Oncol., 2011, 39(4), 771-779.
[http://dx.doi.org/10.3892/ijo.2011.1116] [PMID: 21743964]
[53]
Wang, N.; Yao, F.; Li, K.; Zhang, L.; Yin, G.; Du, M.; Wu, B. Fisetin regulates astrocyte migration and proliferation in vitro. Int. J. Mol. Med., 2017, 39(4), 783-790.
[http://dx.doi.org/10.3892/ijmm.2017.2890] [PMID: 28204814]
[54]
Adan, A.; Baran, Y. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling. Tumour Biol., 2016, 37(5), 5781-5795.
[http://dx.doi.org/10.1007/s13277-015-4118-3] [PMID: 26408178]
[55]
Pal, H.C.; Sharma, S.; Elmets, C.A.; Athar, M.; Afaq, F. Fisetin inhibits growth, induces G 2/M arrest and apoptosis of human epidermoid carcinoma A431 cells: Role of mitochondrial membrane potential disruption and consequent caspases activation. Exp. Dermatol., 2013, 22(7), 470-475.
[http://dx.doi.org/10.1111/exd.12181] [PMID: 23800058]
[56]
Smith, M.L.; Murphy, K.; Doucette, C.D.; Greenshields, A.L.; Hoskin, D.W. The dietary flavonoid Fisetin causes cell cycle arrest, caspase‐dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple‐negative breast cancer cells. J. Cell. Biochem., 2016, 117(8), 1913-1925.
[http://dx.doi.org/10.1002/jcb.25490] [PMID: 26755433]
[57]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[58]
Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med., 2011, 17(11), 1359-1370.
[http://dx.doi.org/10.1038/nm.2537] [PMID: 22064426]
[59]
Sun, Q.; Heilmann, J.; König, B. Natural phenolic metabolites with anti-angiogenic properties-a review from the chemical point of view. Beilstein J. Org. Chem., 2015, 11, 249-264.
[http://dx.doi.org/10.3762/bjoc.11.28] [PMID: 25815077]
[60]
Bhat, T.A.; Nambiar, D.; Pal, A.; Agarwal, R.; Singh, R.P. Fisetin inhibits various attributes of angiogenesis in vitro and in vivo-Implications for angioprevention. Carcinogenesis, 2012, 33(2), 385-393.
[http://dx.doi.org/10.1093/carcin/bgr282] [PMID: 22139440]
[61]
Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol., 2006, 17(6), 300-312.
[http://dx.doi.org/10.1016/j.tifs.2005.12.004]
[62]
Gutiérrez-Venegas, G.; Contreras-Sánchez, A.; Ventura-Arroyo, J.A. Anti-inflammatory activity of Fisetin in human gingival fibroblasts treated with lipopolysaccharide. J. Asian Nat. Pro. Res., 2014, 16, 1009-17.
[http://dx.doi.org/10.1080/10286020.2014.932351]
[63]
Sartorelli, P.; Carvalho, C.S.; Reimão, J.Q.; Ferreira, M.J.P.; Tempone, A.G. Antiparasitic activity of Biochanin A, an isolated isoflavone from fruits of Cassia fistula (Leguminosae). Parasitol. Res., 2009, 104(2), 311-314.
[http://dx.doi.org/10.1007/s00436-008-1193-z] [PMID: 18810492]
[64]
Zhang, D.Y.; Zu, Y.G.; Fu, Y.J.; Luo, M.; Gu, C.B.; Wang, W.; Yao, X.H. Negative pressure cavitation extraction and antioxidant activity of Biochanin A and genistein from the leaves of Dalbergia odorifera T. Chen. Sep. purify. tech.,, 2011, 83, 91- 9.
[http://dx.doi.org/10.1016/j.seppur.2011.09.017]
[65]
Dornstauder, E.; Jisa, E.; Unterrieder, I.; Krenn, L.; Kubelka, W.; Jungbauer, A. Estrogenic activity of two standardized red clover extracts (Menoflavon®) intended for large scale use in hormone replacement therapy. J. Steroid Biochem. Mol. Biol., 2001, 78(1), 67-75.
[http://dx.doi.org/10.1016/S0960-0760(01)00075-9] [PMID: 11530286]
[66]
Kole, L.; Giri, B.; Manna, S.K.; Pal, B.; Ghosh, S. Biochanin-A, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFκB nuclear translocation. Eur. J. Pharmacol., 2011, 653(1-3), 8-15.
[http://dx.doi.org/10.1016/j.ejphar.2010.11.026] [PMID: 21147093]
[67]
Lee, K.H.; Choi, E.M. Biochanin A stimulates osteoblastic differentiation and inhibits hydrogen peroxide-induced production of inflammatory mediators in MC3T3-E1 cells. Biol. Pharm. Bull., 2005, 28(10), 1948-1953.
[http://dx.doi.org/10.1248/bpb.28.1948] [PMID: 16204952]
[68]
Chen, H.Q.; Jin, Z.Y.; Li, G.H. Biochanin A protects dopaminergic neurons against lipopolysaccharide-induced damage through inhibition of microglia activation and proinflammatory factors generation. Neurosci. Lett., 2007, 417(2), 112-117.
[http://dx.doi.org/10.1016/j.neulet.2006.11.045] [PMID: 17399896]
[69]
Lin, V.C.; Ding, H.Y.; Tsai, P.C.; Wu, J.Y.; Lu, Y.H.; Chang, T.S. In vitro and in vivo melanogenesis inhibition by Biochanin A from Trifolium pratense. Biosci. Biotechnol. Biochem., 2011, 75(5), 914-918.
[http://dx.doi.org/10.1271/bbb.100878] [PMID: 21597196]
[70]
Moon, Y.J.; Shin, B.S.; An, G.; Morris, M.E. Biochanin A inhibits breast cancer tumor growth in a murine xenograft model. Pharm. Res., 2008, 25(9), 2158-2163.
[http://dx.doi.org/10.1007/s11095-008-9583-6] [PMID: 18454305]
[71]
Lee, Y.S.; Seo, J.S.; Chung, H.T.; Jang, J.J. Inhibitory effects of Biochanin A on mouse lung tumor induced by benzo(a)pyrene. J. Korean Med. Sci., 1991, 6(4), 325-328.
[http://dx.doi.org/10.3346/jkms.1991.6.4.325] [PMID: 1844641]
[72]
Szliszka, E.; Czuba, Z.P.; Mertas, A.; Paradysz, A.; Krol, W. The dietary isoflavone Biochanin-A sensitizes prostate cancer cells to TRAIL-induced apoptosis. Urol. Oncol., 2013, 31(3), 331-342.
[http://dx.doi.org/10.1016/j.urolonc.2011.01.019] [PMID: 21803611]
[73]
Mansoor, T.A.; Ramalho, R.M.; Luo, X.; Ramalhete, C.; Rodrigues, C.M.P.; Ferreira, M.J.U. Isoflavones as apoptosis inducers in human hepatoma HuH-7 cells. Phytother. Res., 2011, 25(12), 1819-1824.
[http://dx.doi.org/10.1002/ptr.3498] [PMID: 21495101]
[74]
Sehdev, V.; Lai, J.C.; Bhushan, A. Biochanin A modulates cell viability, invasion, and growth promoting signaling pathways in HER-2-positive breast cancer cells J. onco.,2009, 2009.
[http://dx.doi.org/10.1155/2009/121458]
[75]
Jain, A.; Lai, J.C.K.; Bhushan, A. Biochanin A inhibits endothelial cell functions and proangiogenic pathways. Anticancer Drugs, 2015, 26(3), 323-330.
[http://dx.doi.org/10.1097/CAD.0000000000000189] [PMID: 25501542]
[76]
Puthli, A.; Tiwari, R.; Mishra, K.P. Biochanin A enhances the radiotoxicity in colon tumor cells in vitro. J. Environ. Pathol. Toxicol. Oncol., 2013, 32(3), 189-203.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2013007280] [PMID: 24266406]
[77]
Chen, Y.; Huang, C.; Zhou, T.; Zhang, S.; Chen, G. Biochanin A induction of sulfotransferases in rats. J. Biochem. Mol. Toxicol., 2010, 24(2), 102-114.
[http://dx.doi.org/10.1002/jbt.20318] [PMID: 20391625]
[78]
Azizi, R.; Goodarzi, M.T.; Salemi, Z. Effect of biochanin a on serum visfatin level of streptozocin-induced diabetic rats. Iran. Red Crescent Med. J., 2014, 16(9), e15424.
[http://dx.doi.org/10.5812/ircmj.15424] [PMID: 25593725]
[79]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. A review of astragalus species as foodstuffs, dietary supplements, a traditional Chinese medicine and a part of modern pharmaceutical science. Appl. Ecol. Environ. Res., 2019, 17(6), 13371-13382.
[http://dx.doi.org/10.15666/aeer/1706_1337113382]
[80]
Chen, X.P.; Li, W.; Xiao, X.F.; Zhang, L.L.; Liu, C.X. Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin. J. Nat. Med., 2013, 11(6), 577-587.
[http://dx.doi.org/10.1016/S1875-5364(13)60067-9] [PMID: 24345498]
[81]
Thomson, M.; Ali, M. Garlic [Allium sativum]: A review of its potential use as an anti-cancer agent. Curr. Cancer Drug Targets, 2003, 3(1), 67-81.
[http://dx.doi.org/10.2174/1568009033333736] [PMID: 12570662]
[82]
Borrelli, F.; Ernst, E. Cimicifuga racemosa: A systematic review of its clinical efficacy. Eur. J. Clin. Pharmacol., 2002, 58(4), 235-241.
[http://dx.doi.org/10.1007/s00228-002-0457-2] [PMID: 12136368]
[83]
Saeidnia, S.; Manayi, A.; Vazirian, M. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn. Rev., 2015, 9(17), 63-72.
[http://dx.doi.org/10.4103/0973-7847.156353] [PMID: 26009695]
[84]
de Almeida, L.M.S.; Carvalho, L.S.A.; Gazolla, M.C.; Silva Pinto, P.L.; Silva, M.P.N.; de Moraes, J.; Da Silva Filho, A.A. Flavonoids and Sesquiterpene Lactones from Artemisia absinthium and Tanacetum parthenium against Schistosoma mansoni Worms. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/9521349] [PMID: 27980595]
[85]
Haniadka, R.; Saldanha, E.; Sunita, V.; Palatty, P.L.; Fayad, R.; Baliga, M.S. A review of the gastroprotective effects of ginger (Zingiber officinale Roscoe). Food Funct., 2013, 4(6), 845-855.
[http://dx.doi.org/10.1039/c3fo30337c] [PMID: 23612703]
[86]
Zhang, L.; Virgous, C.; Si, H. Ginseng and obesity: Observations and understanding in cultured cells, animals and humans. J. Nutr. Biochem., 2017, 44, 1-10.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.010] [PMID: 27930947]
[87]
Tomino, C.; Ilari, S.; Solfrizzi, V.; Malafoglia, V.; Zilio, G.; Russo, P.; Proietti, S.; Marcolongo, F.; Scapagnini, G.; Muscoli, C.; Rossini, P.M. Mild cognitive impairment and mild dementia: The role of Ginkgo biloba (EGb 761®). Pharmaceuticals, 2021, 14(4), 305.
[http://dx.doi.org/10.3390/ph14040305] [PMID: 33915701]
[88]
Panossian, A.; Wikman, G. Effects of adaptogens on the central nervous system and the molecular mechanisms associated with their stress-protective activity. Pharmaceuticals, 2010, 3(1), 188-224.
[http://dx.doi.org/10.3390/ph3010188] [PMID: 27713248]
[89]
Ho, C.T.; Rafi, M.M.; Ghai, G. Bioactive Substances: Nutraceuticals and Toxicants.Fennema’s Food Chemistry; CRC Press, 2007, pp. 763-794.
[http://dx.doi.org/10.1201/9781420020526-16]
[90]
Rais, J.; Jafri, A.; Siddiqui, S.; Tripathi, M.; Arshad, M. Phytochemicals in the treatment of ovarian cancer nbsp. Front. Biosci., 2017, 9(1), 67-75.
[http://dx.doi.org/10.2741/e786] [PMID: 27814590]
[91]
Pérez-López, F.R.; Haya, J.; Chedraui, P. Vaccinium macrocarpon: An interesting option for women with recurrent urinary tract infections and other health benefits. J. Obstet. Gynaecol. Res., 2009, 35(4), 630-639.
[http://dx.doi.org/10.1111/j.1447-0756.2009.01026.x] [PMID: 19751320]
[92]
Ali, J.; Ansari, S.; Kotta, S. Exploring scientifically proven herbal aphrodisiacs. Pharmacogn. Rev., 2013, 7(1), 1-10.
[http://dx.doi.org/10.4103/0973-7847.112832] [PMID: 23922450]
[93]
Sarris, J.; Scholey, A.; Schweitzer, I.; Bousman, C.; LaPorte, E.; Ng, C.; Murray, G.; Stough, C. The acute effects of kava and oxazepam on anxiety, mood, neurocognition; and genetic correlates: A randomized, placebo-controlled, double-blind study. Hum. Psychopharmacol., 2012, 27(3), 262-269.
[http://dx.doi.org/10.1002/hup.2216] [PMID: 22311378]
[94]
Sharma, V.; Katiyar, A.; Agrawal, R.C. Glycyrrhiza glabra: Chemistry and pharmacological activity. Ref. Series Phytochem., 2018, 87, 87-100.
[http://dx.doi.org/10.1007/978-3-319-27027-2_21]
[95]
Valentová, K.; Ulrichová, J. Smallanthus sonchifolius and Lepidium meyenii - prospective Andean crops for the prevention of chronic diseases. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2003, 147(2), 119-130.
[http://dx.doi.org/10.5507/bp.2003.017] [PMID: 15037892]
[96]
Camini, F.C.; Costa, D.C. Silymarin: Not just another antioxidant. J. Basic Clin. Physiol. Pharmacol., 2020, 31(4)
[http://dx.doi.org/10.1515/jbcpp-2019-0206] [PMID: 32134732]
[97]
Rohdewald, P.J. 2005.
[http://dx.doi.org/ 10.1201/b13959-59]
[98]
Thompson Coon, J.; Pittler, M.H.; Ernst, E. Trifolium pratense isoflavones in the treatment of menopausal hot flushes: A systematic review and meta-analysis. Phytomedicine, 2007, 14(2-3), 153-159.
[http://dx.doi.org/10.1016/j.phymed.2006.12.009] [PMID: 17239573]
[99]
Li, L.F.; Liu, H.B.; Zhang, Q.W.; Li, Z.P.; Wong, T.L.; Fung, H.Y.; Zhang, J-X.; Bai, S-P.; Lu, A-P.; Han, Q-B. Comprehensive comparison of polysaccharides from Ganoderma lucidum and G. sinense: chemical, antitumor, immunomodulating and gut-microbiota modulatory properties. Sci. Rep., 2018, 8(1), 6172.
[http://dx.doi.org/10.1038/s41598-018-22885-7] [PMID: 29311619]
[100]
Ahmad, A.; Hayat, I.; Arif, S.; Masud, T.; Khalid, N.; Ahmed, A. Mechanisms involved in the therapeutic effects of soybean (Glycine Max). Int. J. Food Prop., 2014, 17(6), 1332-1354.
[http://dx.doi.org/10.1080/10942912.2012.714828]
[101]
He, M.; Wang, Y.; Hua, W.; Zhang, Y.; Wang, Z. De novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites. Plos one, 2012.
[http://dx.doi.org/10.1371/journal.pone.0042081]
[102]
Orhan, I.E. A review focused on molecular mechanisms of anxiolytic effect of Valerina officinalis L. in connection with its phytochemistry through in vitro/in vivo studies. Curr. Pharm. Des., 2021, 27(28), 3084-3090.
[http://dx.doi.org/10.2174/1381612827666210119105254] [PMID: 33463459]
[103]
Siveen, K.S.; Sikka, S.; Surana, R.; Dai, X.; Zhang, J.; Kumar, A.P.; Tan, B.K.H.; Sethi, G.; Bishayee, A. Targeting the STAT3 signaling pathway in cancer: Role of synthetic and natural inhibitors. Biochim. Biophys. Acta Rev. Cancer, 2014, 1845(2), 136-154.
[http://dx.doi.org/10.1016/j.bbcan.2013.12.005] [PMID: 24388873]
[104]
Mantovani, A. Molecular pathways linking inflammation and cancer. Curr. Mol. Med., 2010, 10(4), 369-373.
[http://dx.doi.org/10.2174/156652410791316968] [PMID: 20455855]
[105]
Wu, T.C.; Chan, S.T.; Chang, C.N.; Yu, P.S.; Chuang, C.H.; Yeh, S.L. Quercetin and chrysin inhibit nickel-induced invasion and migration by downregulation of TLR4/NF-κB signaling in A549 cells. Chem. Biol. Interact., 2018, 292, 101-109.
[http://dx.doi.org/10.1016/j.cbi.2018.07.010] [PMID: 30016632]
[106]
Manigandan, K.; Manimaran, D.; Jayaraj, R.L.; Elangovan, N.; Dhivya, V.; Kaphle, A. Taxifolin curbs NF-κB-mediated Wnt/β-catenin signaling via up-regulating Nrf2 pathway in experimental colon carcinogenesis. Biochimie, 2015, 119, 103-112.
[http://dx.doi.org/10.1016/j.biochi.2015.10.014] [PMID: 26482805]
[107]
Ruela-de-Sousa, R.R.; Fuhler, G.M.; Blom, N.; Ferreira, C.V.; Aoyama, H.; Peppelenbosch, M.P. Cytotoxicity of apigenin on leukemia cell lines: Implications for prevention and therapy. Cell Death Dis., 2010, 1(1), e19.
[http://dx.doi.org/10.1038/cddis.2009.18] [PMID: 21364620]
[108]
Lim, K.H.; Staudt, L.M. Toll-like receptor signaling. Cold Spring Harb. Perspect. Biol., 2013, 5(1), a011247.
[http://dx.doi.org/10.1101/cshperspect.a011247] [PMID: 23284045]
[109]
Panda, P.K.; Mukhopadhyay, S.; Das, D.N.; Sinha, N.; Naik, P.P.; Bhutia, S.K. Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics. Semin. Cell Dev. Biol., 2015, 39, 43-55.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.013] [PMID: 25724561]
[110]
Jia, L.; Huang, S.; Yin, X.; Zan, Y.; Guo, Y.; Han, L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci., 2018, 208, 123-130.
[http://dx.doi.org/10.1016/j.lfs.2018.07.027] [PMID: 30025823]
[111]
Han, B.; Yu, Y.Q.; Yang, Q.L.; Shen, C.Y.; Wang, X.J. Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling. Oncotarget, 2017, 8(49), 86227-86239.
[http://dx.doi.org/10.18632/oncotarget.21043] [PMID: 29156790]
[112]
Zhu, M.; Zhang, P.; Jiang, M.; Yu, S.; Wang, L. Myricetin induces apoptosis and autophagy by inhibiting PI3K/Akt/mTOR signalling in human colon cancer cells. BMC Compl. Med. Ther., 2020, 20(1), 209.
[http://dx.doi.org/10.1186/s12906-020-02965-w] [PMID: 32631392]
[113]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 2014, 1-23.
[http://dx.doi.org/10.1155/2014/150845] [PMID: 25013758]
[114]
Kashyap, D.; Garg, V.K.; Tuli, H.S.; Yerer, M.B.; Sak, K.; Sharma, A.K.; Kumar, M.; Aggarwal, V.; Sandhu, S.S. Fisetin and quercetin: Promising flavonoids with chemopreventive potential. Biomolecules, 2019, 9(5), 174.
[http://dx.doi.org/10.3390/biom9050174] [PMID: 31064104]
[115]
Lee, J.; Kim, J.H. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One, 2016, 11(5), e0155264.
[http://dx.doi.org/10.1371/journal.pone.0155264] [PMID: 27175782]
[116]
Pan, F.; Liu, Y.; Liu, J.; Wang, E. Stability of blueberry anthocyanin, anthocyanidin and pyranoanthocyanidin pigments and their inhibitory effects and mechanisms in human cervical cancer HeLa cells. RSC Advances, 2019, 9(19), 10842-10853.
[http://dx.doi.org/10.1039/C9RA01772K] [PMID: 35515294]
[117]
Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol., 2019, 10, 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336] [PMID: 31866857]
[118]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]