Recent Developments on Synthesis of Organofluorine Compounds Using Green Approaches

Page: [190 - 205] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

The synthesis of organofluorine compounds plays a vital role in the field of pharmaceuticals, agrochemicals, and materials since the fluorine-containing compounds have shown improved biological and physicochemical properties. Significant research has been directed towards synthesizing organofluorine compounds because organofluorine compounds have been displayed in several biological activities, including anticancer, antitumor, antihypertensive, antidepressant, anti-HIV and treatment of stroke. Due to several pharmaceutical applications of organofluorine compounds, numerous conventional as well as green synthetic methodologies have been developed for the synthesis of fluorine-containing compounds. However, particularly, the synthesis of organofluorine compounds using green approaches has been continuously attracting research interest since green approaches have several advantages, including the use of inexpensive and nontoxic reagents, catalytic, highly efficient, short reaction time, energy efficient, high reaction yields, and environmentally benign over the conventional methods. Among the green tools, the use of microwave-assisted synthesis, water, and ionic liquids as green solvent/reaction media, organocatalysts, photocatalysts, and solvent-free and catalyst-free reaction conditions have been exploited in the past decades for the synthesis of organofluorine compounds. In this review, we highlighted the recent developments in various green methods for the synthesis of organofluorine compounds via electrophilic fluorination for synthesis of various fluorohydrins, fluorinated acyclic & cyclic β -ketoesters, 1,3-dicarbonyl compounds, cyclic and acyclic ketones, α - cyanoesters, α-aryl-tetralones, α-amino acids, flavanones, and several fluorinated heterocycles such as fluorinated pyridine, pyrimidine, pyrrole, pyrazolone, benzofuran, indole, flavanone, and coumarin derivatives. In addition, some green methodologies have been highlighted for the synthesis of biologically active fluorinated compounds, including HIV-1 integrase inhibitors, 20-deoxy-20-fluorocamptothecin, fluorinated estrone, sclareolide, BMS- 204352 (MaxiPost), fluorinated naproxen and fluoxetine.

Graphical Abstract

[1]
(a) O’Hagan, D. Fluorine in health care: Organofluorine containing blockbuster drugs. J. Fluor. Chem., 2010, 131(11), 1071-1081.
[http://dx.doi.org/10.1016/j.jfluchem.2010.03.003];
(b) Hiyama, T. Organofluorine Compounds: Chemistry and Applications; Springer Science & Business Media: Berlin, 2000.
[http://dx.doi.org/10.1007/978-3-662-04164-2]
[2]
(a) Fujiwara, T.; O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluor. Chem., 2014, 167, 16-29.
[http://dx.doi.org/10.1016/j.jfluchem.2014.06.014];
(b) Kirsch, P. Modern fluoro organic chemistry: synthesis, reactivity, applications; John Wiley & Sons: New Jersey, USA, 2013.
[http://dx.doi.org/10.1002/9783527651351]
[3]
Nakajima, T. Fluorine compounds as energy conversion materials. J. Fluor. Chem., 2013, 149, 104-111.
[http://dx.doi.org/10.1016/j.jfluchem.2013.02.007]
[4]
Li, X.; Shi, X.; Li, X.; Shi, D. Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups. Beilstein J. Org. Chem., 2019, 15, 2213-2270.
[http://dx.doi.org/10.3762/bjoc.15.218] [PMID: 31598178]
[5]
Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V.A.; Coelho, J.A.S.; Toste, F.D. Modern approaches for asymmetric construction of carbon–fluorine quaternary stereogenic centers: Synthetic challenges and pharmaceutical needs. Chem. Rev., 2018, 118(7), 3887-3964.
[http://dx.doi.org/10.1021/acs.chemrev.7b00778] [PMID: 29608052]
[6]
(a) Champagne, P.A.; Desroches, J.; Hamel, J.D.; Vandamme, M.; Paquin, J.F. Monofluorination of organic compounds: 10 years of innovation. Chem. Rev., 2015, 115(17), 9073-9174.
[http://dx.doi.org/10.1021/cr500706a] [PMID: 25854146];
(b) Yang, X.; Wu, T.; Phipps, R.J.; Toste, F.D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev., 2015, 115(2), 826-870.
[http://dx.doi.org/10.1021/cr500277b] [PMID: 25337896]
[7]
Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed., 2013, 52(32), 8214-8264.
[http://dx.doi.org/10.1002/anie.201206566] [PMID: 23873766]
[8]
Lectard, S.; Hamashima, Y.; Sodeoka, M. Recent advances in catalytic enantioselective fluorination reactions. Adv. Synth. Catal., 2010, 352(16), 2708-2732.
[http://dx.doi.org/10.1002/adsc.201000624]
[9]
Yerien, D.E.; Bonesi, S.; Postigo, A. Fluorination methods in drug discovery. Org. Biomol. Chem., 2016, 14(36), 8398-8427.
[http://dx.doi.org/10.1039/C6OB00764C] [PMID: 27506398]
[10]
Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev., 2008, 37(2), 320-330.
[http://dx.doi.org/10.1039/B610213C] [PMID: 18197348]
[11]
Kirk, K.L. Fluorination in medicinal chemistry: Methods, strategies, and recent developments. Org. Process Res. Dev., 2008, 12(2), 305-321.
[http://dx.doi.org/10.1021/op700134j]
[12]
Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem. Rev., 2016, 116(2), 422-518.
[http://dx.doi.org/10.1021/acs.chemrev.5b00392] [PMID: 26756377]
[13]
(a) Hagmann, W.K. The many roles for fluorine in medicinal chemistry. J. Med. Chem., 2008, 51(15), 4359-4369.
[http://dx.doi.org/10.1021/jm800219f] [PMID: 18570365];
(b) Yamazaki, T.; Taguchi, T.; Ojima, I. Unique properties of fluorine and their relevance to medicinal chemistry and chemical biology. J. Fluor. Chem., 2009, 1.
[14]
O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev., 2008, 37(2), 308-319.
[http://dx.doi.org/10.1039/B711844A] [PMID: 18197347]
[15]
Furuya, T.; Kamlet, A.S.; Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature, 2011, 473(7348), 470-477.
[http://dx.doi.org/10.1038/nature10108] [PMID: 21614074]
[16]
(a) Harsanyi, A. Lückener, A.; Pasztor, H.; Yilmaz, Z.; Tam, L.; Yufit, D.S.; Sandford, G. α-Fluorotricarbonyl derivatives as versatile fluorinated building blocks: Synthesis of fluoroacetophenone, fluoroketo ester and fluoropyran-4-one derivatives. Eur. J. Org. Chem., 2020, 2020(25), 3872-3878.
[http://dx.doi.org/10.1002/ejoc.202000503];
(b) Zeidan, N.; Zambri, M.; Unger, S.; Dank, C.; Torelli, A.; Mirabi, B.; Lautens, M. Synthesis and reactions of 3,3-Difluoro-2- exo -methylidene indolines. Org. Lett., 2020, 22(9), 3688-3691.
[http://dx.doi.org/10.1021/acs.orglett.0c01175] [PMID: 32276536];
(c) Adachi, A.; Aikawa, K.; Ishibashi, Y.; Nozaki, K.; Okazoe, T. An N-fluorinated imide for practical catalytic imidations. Eur. J. Res., 2021, 27, 11919-11925.;
(d) Roagna, G.; Ascough, D.M.H.; Ibba, F.; Vicini, A.C.; Fontana, A.; Christensen, K.E.; Peschiulli, A.; Oehlrich, D.; Misale, A.; Trabanco, A.A.; Paton, R.S.; Pupo, G.; Gouverneur, V. Hydrogen bonding phase-transfer catalysis with ionic reactants: Enantioselective synthesis of γ-fluoroamines. J. Am. Chem. Soc., 2020, 142(33), 14045-14051.
[http://dx.doi.org/10.1021/jacs.0c05131] [PMID: 32608977]
[17]
Jubeen, F.; Liaqat, A.; Amjad, F.; Sultan, M.; Iqbal, S.Z.; Sajid, I.; Khan Niazi, M.B.; Sher, F. Synthesis of 5-fluorouracil cocrystals with novel organic acids as coformers and anticancer evaluation against HCT-116 colorectal cell lines. Cryst. Growth Des., 2020, 20(4), 2406-2414.
[http://dx.doi.org/10.1021/acs.cgd.9b01570]
[18]
Li, J.; Cai, Y.; Chen, W.; Liu, X.; Lin, L.; Feng, X. Highly enantioselective fluorination of unprotected 3-substituted oxindoles: one-step synthesis of BMS 204352 (MaxiPost). J. Org. Chem., 2012, 77(20), 9148-9155.
[http://dx.doi.org/10.1021/jo301705t] [PMID: 23030737]
[19]
Solà, R.; Sutcliffe, O.B.; Banks, C.E.; Maciá, B. Ball mill and microwave assisted synthetic routes to Fluoxetine. Sustain. Chem. Pharm., 2017, 5, 14-21.
[http://dx.doi.org/10.1016/j.scp.2016.11.003]
[20]
Reddy, D.S.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.; Kanemasa, S. Desymmetrization-like catalytic enantioselective fluorination of malonates and its application to pharmaceutically attractive molecules. Angew. Chem. Int. Ed., 2008, 47(1), 164-168.
[http://dx.doi.org/10.1002/anie.200704093] [PMID: 17997510]
[21]
Shibata, N.; Toru, T.; Ishimaru, T.; Nakamura, M. 20-Deoxy-20-fluorocamptothecin: Design and synthesis of camptothecinisostere. Synlett, 2004, 2004(14), 2509-2512.
[http://dx.doi.org/10.1055/s-2004-834810]
[22]
Yi, W.B.; Zhang, Z.; Huang, X.; Tanner, A.; Cai, C.; Zhang, W. One-pot fluorination and asymmetric Michael addition promoted by recyclable fluorous organocatalysts. RSC Advances, 2013, 3(40), 18267-18270.
[http://dx.doi.org/10.1039/c3ra42501k]
[23]
Pham, K.; Huang, X.; Zhang, W. One-pot fluorination and Mannich reactions of 1,3-dicarbonyl compounds. Tetrahedron Lett., 2015, 56(15), 1998-2000.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.117]
[24]
Yi, W.B.; Huang, X.; Cai, C.; Zhang, W. One-pot fluorination followed by Michael addition or Robinson annulation for preparation of α-fluorinated carbonyl compounds. Green Chem., 2012, 14(11), 3185-3189.
[http://dx.doi.org/10.1039/c2gc36166c]
[25]
(a) Testa, C.; Gigot, É.; Genc, S.; Decréau, R.; Roger, J.; Hierso, J.C. Ortho ‐Functionalized aryltetrazines by direct palladium‐catalyzed C−H halogenation: Application to fast electrophilic fluorination reactions. Angew. Chem. Int. Ed., 2016, 55(18), 5555-5559.
[http://dx.doi.org/10.1002/anie.201601082] [PMID: 27010438];
(b) Ma, J.A.; Cahard, D. Copper(II) triflate-bis(oxazoline)-catalysed enantioselective electrophilic fluorination of β-ketoesters. Tetrahedron Asymmetry, 2004, 15(6), 1007-1011.
[http://dx.doi.org/10.1016/j.tetasy.2004.01.014];
(c) Jiang, F.; Zhao, Y.; Hu, J. Selective monofluorination of active methylene compounds: the important role of ZnCl2 in inhibiting overfluorination. Org. Chem. Front., 2014, 1(6), 625-629.
[http://dx.doi.org/10.1039/C4QO00090K]
[26]
(a) Pihko, P.M. Enantioselective α-fluorination of carbonyl compounds: Organocatalysis or metal catalysis? Angew. Chem. Int. Ed., 2006, 45(4), 544-547.
[http://dx.doi.org/10.1002/anie.200502425] [PMID: 16370011];
(b) Krištofíková, D. Mečiarová, M.; Rakovský, E.; Šebesta, R. Mechanochemically activated asymmetric organocatalytic domino mannich reaction-fluorination. ACS Sustain. Chem.& Eng., 2020, 8(38), 14417-14424.
[http://dx.doi.org/10.1021/acssuschemeng.0c04260];
(c) Zhao, Y.; Pan, Y.; Sim, S.B.D.; Tan, C.H. Enantioselective organocatalytic fluorination using organofluoro nucleophiles. Org. Biomol. Chem., 2012, 10(3), 479-485.
[http://dx.doi.org/10.1039/C1OB05840A] [PMID: 22083353];
(d) Chen, Z.M.; Yang, B.M.; Chen, Z.H.; Zhang, Q.W.; Wang, M.; Tu, Y.Q. Organocatalytic asymmetric fluorination/semipinacol rearrangement: An efficient approach to chiral β-fluoroketones. Chemistry, 2012, 18(41), 12950-12954.
[http://dx.doi.org/10.1002/chem.201202444] [PMID: 22936470]
[27]
(a) Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854];
(b) Sheldon, R.A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev., 2012, 41(4), 1437-1451.
[http://dx.doi.org/10.1039/C1CS15219J] [PMID: 22033698]
[28]
Mondal, D.; Kalar, P.L.; Kori, S.; Gayen, S.; Das, K. Recent developments on synthesis of indole derivatives through green approaches and their pharmaceutical applications. Curr. Org. Chem., 2020, 24(22), 2665-2693.
[http://dx.doi.org/10.2174/1385272824999201111203812]
[29]
(a) Stavber, G.; Stavber, S. Towards greener fluorine organic chemistry: Direct electrophilic fluorination of carbonyl compounds in water and under solvent-free reaction conditions. Adv. Synth. Catal., 2010, 352(16), 2838-2846.
[http://dx.doi.org/10.1002/adsc.201000477];
(b) Stavber, G.; Zupan, M.; Jereb, M.; Stavber, S. Selective and effective fluorination of organic compounds in water using Selectfluor F-TEDA-BF4. Org. Lett., 2004, 6(26), 4973-4976.
[http://dx.doi.org/10.1021/ol047867c] [PMID: 15606113];
(c) Borodkin, G.I.; Shubin, V.G. Electrophilic and oxidative fluorination of heterocyclic compounds: Contribution to green chemistry. Russ. J. Org. Chem., 2021, 57(9), 1369-1397.
[http://dx.doi.org/10.1134/S1070428021090013]
[30]
Wang, M.; Wang, B.M.; Shi, L.; Tu, Y.Q.; Fan, C.A.; Wang, S.H.; Hu, X.D.; Zhang, S.Y. Quinine/selectfluor combination induced asymmetric semipinacol rearrangement of allylic alcohols: An effective and enantioselective approach to α-quaternary β-fluoro aldehydes. Chem. Commun., 2005, (44), 5580-5582.
[http://dx.doi.org/10.1039/b510004f] [PMID: 16358070]
[31]
Xu, J.; Hu, Y.; Huang, D.; Wang, K.H.; Xu, C.; Niu, T. Thiourea-catalyzed enantioselective fluorination of β-keto esters. Adv. Synth. Catal., 2012, 354(2-3), 515-526.
[http://dx.doi.org/10.1002/adsc.201100660]
[32]
Yi, W.B.; Huang, X.; Zhang, Z.; Zhu, D.R.; Cai, C.; Zhang, W. Recyclable fluorous cinchona alkaloid ester as a chiral promoter for asymmetric fluorination of β-ketoesters. Beilstein J. Org. Chem., 2012, 8, 1233-1240.
[http://dx.doi.org/10.3762/bjoc.8.138] [PMID: 23019453]
[33]
Shang, J.Y.; Li, L.; Lu, Y.; Yang, K.F.; Xu, L.W. Enantioselective fluorination reaction of β-ketoester–catalyzed chiral primary amine–based multifunctional catalyst systems. Synth. Commun., 2014, 44(1), 101-114.
[http://dx.doi.org/10.1080/00397911.2013.791697]
[34]
(a) Lam, Y.; Houk, K.N. How cinchona alkaloid-derived primary amines control asymmetric electrophilic fluorination of cyclic ketones. J. Am. Chem. Soc., 2014, 136(27), 9556-9559.
[http://dx.doi.org/10.1021/ja504714m] [PMID: 24967514];
(b) Yang, X.; Phipps, R.J.; Toste, F.D. Asymmetric fluorination of α-branched cyclohexanones enabled by a combination of chiral anion phase-transfer catalysis and enamine catalysis using protected amino acids. J. Am. Chem. Soc., 2014, 136(14), 5225-5228.
[http://dx.doi.org/10.1021/ja500882x] [PMID: 24684209]
[35]
(a) Huang, J.Q.; Nairoukh, Z.; Marek, I. Electrophilic fluorination of stereodefineddisubstituted silyl ketene hemiaminalsen route to tertiary α-fluorinated carbonyl derivatives. Org. Biomol. Chem., 2018, 16, 1079-1082.;
(b) Zhang, H.; Wang, B.; Cui, L.; Bao, X.; Qu, J.; Song, Y. Organocatalytic asymmetric fluorination of 4-substituted isoxazolinones. Eur. J. Org. Chem., 2015, 10, 2143-2147.
[36]
(a) Souza, L.G.; Jorge, L.D.O.; Fernandes, T.D.A.; Renno, M.N.; Sansano, J.M.; Najera, C.; Costa, P.R. Enantioselective electrophilic fluorination of α-aryl-tetralones using a preparation of N-fluoroammonium salts of cinchonine. J. Fluor. Chem., 2019, 217, 72-79.
[http://dx.doi.org/10.1016/j.jfluchem.2018.11.007];
(b) Arimitsu, S.; Iwasa, S.; Arakaki, R. Enantioselective fluorination of α-branched β-ynone esters using a cinchona-based phase-transfer catalyst. J. Org. Chem., 2020, 85(19), 12804-12812.
[http://dx.doi.org/10.1021/acs.joc.0c01997] [PMID: 32955893];
(c) Zhu, C.L.; Fu, X.Y.; Wei, A.J.; Cahard, D.; Ma, J.A. P-Spiro phosphonium salts catalyzed asymmetric fluorination of 3-substituted benzofuran-2(3H)-ones. J. Fluor. Chem., 2013, 150, 60-66.
[http://dx.doi.org/10.1016/j.jfluchem.2013.03.007]
[37]
(a) Gakh, A.A.; Kirk, K.L. Fluorinated heterocycles; American Chemical Society: Washington, DC, 2009. ;
(b) Shibata, N.; Toru, T.; Yasui, H.; Nakamura, S. DNA-mediated enantioselective carbon-fluorine bond formation. Synlett, 2007, 2007(7), 1153-1157.
[http://dx.doi.org/10.1055/s-2007-977429]
[38]
(a) Laali, K.K.; Borodkin, G.I. First application of ionic liquids in electrophilic fluorination of arenes; Selectfluor™ (F-TEDA-BF4) for “green” fluorination. J. Chem. Soc., Perkin Trans. 2, 2002, 2(5), 953-957.
[http://dx.doi.org/10.1039/b111725d];
(b) Borodkin, G.I.; Shubin, V.G. Electrophilic fluorination of heterocyclic compounds with NF reagents in unconventional media. Chem. Heterocycl. Compd., 2022, 58(2-3), 84-96.
[http://dx.doi.org/10.1007/s10593-022-03060-3]
[39]
Yang, L.; Dong, T.; Revankar, H.M.; Zhang, C.P. Recent progress on fluorination in aqueous media. Green Chem., 2017, 19(17), 3951-3992.
[http://dx.doi.org/10.1039/C7GC01566F]
[40]
(a) de la Hoz, A.; Díaz-Ortiz, A.; Prieto, P. Microwave-assisted green organic synthesis. In: Alternative Energy Sources for Green Chemistry; John Wiley: New Jersey, USA, 2016; pp. 1-33.
[http://dx.doi.org/10.1039/9781782623632-00001];
(b) Roberts, B.A.; Strauss, C.R. Toward rapid, “green”, predictable microwave-assisted synthesis. Acc. Chem. Res., 2005, 38(8), 653-661.
[http://dx.doi.org/10.1021/ar040278m] [PMID: 16104688]
[41]
Bui, T.T.; Hong, W.P.; Kim, H.K. Recent advances in visible light-mediated fluorination. J. Fluor. Chem., 2021, 247, 109794.
[http://dx.doi.org/10.1016/j.jfluchem.2021.109794]
[42]
Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41(5), 629-639.
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[43]
(a) Rathi, A.K.; Gawande, M.B.; Zboril, R.; Varma, R.S. Microwave-assisted synthesis–catalytic applications in aqueous media. Coord. Chem. Rev., 2015, 291, 68-94.;
(b) Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107, 2563-2591.
[44]
Tran, P.H.; Nguyen, H.T.; Nguyen, L.H.T.; Le Doan, T.H. Microwave-assisted for solvent-free organic synthesis.Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, 2021, pp. 511-538.
[http://dx.doi.org/10.1016/B978-0-12-819848-3.00012-8]
[45]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[46]
Kumari, K.; Vishvakarma, V.K.; Singh, P.; Patel, R.; Chandra, R. Microwave: An important and efficient tool for the synthesis of biological potent organic compounds. Curr. Med. Chem., 2017, 24(41), 4579-4595.
[PMID: 28554323]
[47]
Kumar, A.; Singh, T.V.; Venugopalan, P. Microwave assisted fluorofunctionalization of phenyl substituted alkenes using selectfluor™. J. Fluor. Chem., 2013, 150, 72-77.
[http://dx.doi.org/10.1016/j.jfluchem.2013.02.014]
[48]
Wang, Y.F.; Wang, C.J.; Feng, Q.Z.; Zhai, J.J.; Qi, S.S.; Zhong, A.G.; Chu, M.M.; Xu, D.Q. Copper-catalyzed asymmetric 1,6-conjugate addition of in situ generated para -quinone methides with β-ketoesters. Chem. Commun., 2022, 58(46), 6653-6656.
[http://dx.doi.org/10.1039/D2CC00146B] [PMID: 35593224]
[49]
Yuan, J.; Zeng, F.; Mai, W.; Yang, L.; Xiao, Y.; Mao, P.; Wei, D. Fluorination-triggered tandem cyclization of styrene-type carboxylic acids to access 3-aryl isocoumarin derivatives under microwave irradiation. Org. Biomol. Chem., 2019, 17(20), 5038-5046.
[http://dx.doi.org/10.1039/C9OB00509A] [PMID: 31045201]
[50]
Heeran, D.; Sandford, G. Fluorination of pyrrole derivatives by Selectfluor™. Tetrahedron, 2016, 72(19), 2456-2463.
[http://dx.doi.org/10.1016/j.tet.2016.03.067]
[51]
Xiao, J.C.; Shreeve, J.M. Microwave-assisted rapid electrophilic fluorination of 1,3-dicarbonyl derivatives with Selectfluor®. J. Fluor. Chem., 2005, 126(4), 473-476.
[http://dx.doi.org/10.1016/j.jfluchem.2004.10.043]
[52]
(a) Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123];
(b) Sharma, R.K.; Chouryal, Y.N.; Chaudhari, S.; Saravanakumar, J.; Dey, S.R.; Ghosh, P. Adsorption-driven catalytic and photocatalytic activity of phase tuned In2S3 nanocrystals synthesized via ionic liquids. ACS Appl. Mater. Interfaces, 2017, 9(13), 11651-11661.
[http://dx.doi.org/10.1021/acsami.7b01092] [PMID: 28290651]
[53]
Pârvulescu, V.I.; Hardacre, C. Catalysis in ionic liquids. Chem. Rev., 2007, 107(6), 2615-2665.
[http://dx.doi.org/10.1021/cr050948h] [PMID: 17518502]
[54]
van Rantwijk, F.; Sheldon, R.A. Biocatalysis in ionic liquids. Chem. Rev., 2007, 107(6), 2757-2785.
[http://dx.doi.org/10.1021/cr050946x] [PMID: 17564484]
[55]
Pavlinac, J.; Zupan, M.; Laali, K.K.; Stavber, S. Halogenation of organic compounds in ionic liquids. Tetrahedron, 2009, 65(29-30), 5625-5662.
[http://dx.doi.org/10.1016/j.tet.2009.04.092]
[56]
Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H. Jr CO(2) capture by a task-specific ionic liquid. J. Am. Chem. Soc., 2002, 124(6), 926-927.
[http://dx.doi.org/10.1021/ja017593d] [PMID: 11829599]
[57]
Kim, J.K.; Matic, A.; Ahn, J.H.; Jacobsson, P. An imidazolium based ionic liquid electrolyte for lithium batteries. J. Power Sources, 2010, 195(22), 7639-7643.
[http://dx.doi.org/10.1016/j.jpowsour.2010.06.005]
[58]
Borodkin, G.I.; Shubin, V.G. Electrophilic reactions of aromatic and heteroaromatic compounds in ionic liquids. Russ. J. Org. Chem., 2006, 42(12), 1745-1770.
[http://dx.doi.org/10.1134/S1070428006120013]
[59]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[60]
Lagrost, C.; Carrié, D.; Vaultier, M.; Hapiot, P. Reactivities of some electrogenerated organic cation radicals in room-temperature ionic liquids: Toward an alternative to volatile organic solvents. J. Phys. Chem. A, 2003, 107(5), 745-752.
[http://dx.doi.org/10.1021/jp026907w]
[61]
Chiappe, C.; Pieraccini, D. Ionic liquids: Solvent properties and organic reactivity. J. Phys. Org. Chem., 2005, 18(4), 275-297.
[http://dx.doi.org/10.1002/poc.863]
[62]
Bluhm, M.E.; Bradley, M.G.; Butterick, R., III; Kusari, U.; Sneddon, L.G. Amineborane-based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids. J. Am. Chem. Soc., 2006, 128(24), 7748-7749.
[http://dx.doi.org/10.1021/ja062085v] [PMID: 16771483]
[63]
Gupta, R.; Yadav, M.; Gaur, R.; Arora, G.; Yadav, P.; Sharma, R.K. Magnetically supported ionic liquids: A sustainable catalytic route for organic transformations. Mater. Horiz., 2020, 7(12), 3097-3130.
[http://dx.doi.org/10.1039/D0MH01088J]
[64]
Rogers, R.D.; Seddon, K.R. Ionic liquids-solvents of the future. Sci., 2003, 302, 792-793.
[65]
Oh, Y.; Shin, J.; Noh, H.; Kim, C.; Kim, Y.S.; Lee, Y.K.; Lee, J.K. Selective hydrotreating and hydrocracking of FCC light cycle oil into high-value light aromatic hydrocarbons. Appl. Catal. A Gen., 2019, 577, 86-98.
[http://dx.doi.org/10.1016/j.apcata.2019.03.004]
[66]
Zhao, D.; Wu, M.; Kou, Y.; Min, E. Ionic liquids: Applications in catalysis. Catal. Today, 2002, 74(1-2), 157-189.
[http://dx.doi.org/10.1016/S0920-5861(01)00541-7]
[67]
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun., 2001, 23(23), 2399-2407.
[http://dx.doi.org/10.1039/b107270f] [PMID: 12239988]
[68]
Reddy, P.N.; Padmaja, P.; Subba Reddy, B.V.; Rambabu, G. Ionic liquid/water mixture promoted organic transformations. RSC Advances, 2015, 5(63), 51035-51054.
[http://dx.doi.org/10.1039/C5RA08625F]
[69]
Reddy, A.S.; Laali, K.K. Mild and selective α-fluorination of carbonyl compounds (ketones, 1,3-diketones, β-ketoesters, α-nitroketones, and β-ketonitriles) with Selectfluor (F-TEDA-BF4) in imidazolium ILs [BMIM/PF6 or BMIM/NTf2] with Brønsted-acidic IL [PMIM(SO3H)/OTf] as promoter. Tetrahedron Lett., 2015, 56(41), 5495-5499.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.084]
[70]
Baudequin, C.; Plaquevent, J.C.; Audouard, C.; Cahard, D. Enantioselective electrophilic fluorination in ionic liquids. Green Chem., 2002, 4(6), 584-586.
[http://dx.doi.org/10.1039/b208817g]
[71]
Borodkin, G.I.; Elanov, I.R.; Gatilov, Y.V.; Shubin, V.G. Promotional effect of ionic liquids in electrophilic fluorination of methylated uracils. RSC Advances, 2016, 6(65), 60556-60564.
[http://dx.doi.org/10.1039/C6RA10850D]
[72]
Zaikin, P.A.; Dyan, O.T.; Elanov, I.R.; Borodkin, G.I. Ionic liquid-assisted grinding: An electrophilic fluorination benchmark. Molecules, 2021, 26(19), 5756.
[http://dx.doi.org/10.3390/molecules26195756] [PMID: 34641300]
[73]
(a) Antenucci, A.; Dughera, S.; Renzi, P. Green chemistry meets asymmetric organocatalysis: A critical overview on catalysts synthesis. ChemSusChem, 2021, 14(14), 2785-2853.
[http://dx.doi.org/10.1002/cssc.202100573] [PMID: 33984187];
(b) Huang, X.; Zhang, W. Recyclable fluorous cinchona organocatalysts for asymmetric synthesis of biologically interesting compounds. Chem. Commun., 2021, 57(79), 10116-10124.
[http://dx.doi.org/10.1039/D1CC03722F] [PMID: 34522921];
(c) Aukland, M.H.; List, B. Organocatalysis emerging as a technology. Pure Appl. Chem., 2021, 93(12), 1371-1381.
[http://dx.doi.org/10.1515/pac-2021-0501]
[74]
(a) Yao, W.; Wang, J.; Zhong, A.; Wang, S.; Shao, Y. Transition-metal-free catalytic hydroboration reduction of amides to amines. Org. Chem. Front., 2020, 7(21), 3515-3520.
[http://dx.doi.org/10.1039/D0QO01092H];
(b) Yao, W.; He, L.; Han, D.; Zhong, A. Sodium triethylborohydride-catalyzed controlled reduction of unactivated amides to secondary or tertiary amines. J. Org. Chem., 2019, 84(22), 14627-14635.
[http://dx.doi.org/10.1021/acs.joc.9b02211] [PMID: 31663738];
(c) Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org. Chem. Front., 2021, 8(16), 4554-4559.
[http://dx.doi.org/10.1039/D1QO00705J]
[75]
(a) Remete, A.M.; Nonn, M.; Escorihuela, J.; Fustero, S.; Kiss, L. Asymmetric Methods for Carbon‐. Fluorine Bond Formation. Eur. J. Org. Chem., 2021, 44, 5946-5974.;
(b) Jain, K.; Das, K. Recent Advances in the Developments of Enantioselective Electrophilic Fluorination Reactions via Organocatalysis. Fundamentals and Prospects of Catalysis; Bentham Science; UAE, 2020, 1, 123-147.;
(c) Lin, J.H.; Xiao, J.C. Recent advances in asymmetric fluorination and fluoroalkylation reactions via organocatalysis. Tetrahedron Lett., 2014, 55, 6147-6155.;
(d) Zhang, X.X.; Gao, Y.; Hu, X.S.; Ji, C.B.; Liu, Y.L.; Yu, J.S. Recent advances in catalytic enantioselective synthesis of fluorinated α‐and β‐amino acids. Adv. Synth. Catal., 2020, 362, 4763-4793.
[76]
Arimitsu, S.; Yonamine, T.; Higashi, M. Cinchona-based primary amine catalyzed a proximal functionalization of dienamines: Asymmetric α-fluorination of α-branched enals. ACS Catal., 2017, 7(7), 4736-4740.
[http://dx.doi.org/10.1021/acscatal.7b01178]
[77]
Bao, X.; Wei, S.; Zou, L.; Song, Y.; Qu, J.; Wang, B. Asymmetric fluorination of 4-substituted pyrazolones catalyzed by quinine. Tetrahedron Asymmetry, 2016, 27(9-10), 436-441.
[http://dx.doi.org/10.1016/j.tetasy.2016.03.013]
[78]
Kwiatkowski, P.; Beeson, T.D.; Conrad, J.C.; MacMillan, D.W.C. Enantioselective organocatalytic α-fluorination of cyclic ketones. J. Am. Chem. Soc., 2011, 133(6), 1738-1741.
[http://dx.doi.org/10.1021/ja111163u] [PMID: 21247133]
[79]
Wang, H.F.; Cui, H.F.; Chai, Z.; Li, P.; Zheng, C.W.; Yang, Y.Q.; Zhao, G. Asymmetric synthesis of fluorinated flavanone derivatives by an organocatalytic tandem intramolecular oxa-Michael addition/electrophilic fluorination reaction by using bifunctional cinchona alkaloids. Chemistry, 2009, 15(48), 13299-13303.
[http://dx.doi.org/10.1002/chem.200902303] [PMID: 19899096]
[80]
Jain, K.; Das, K. A convenient method for the synthesis of fluorinated α-cyanoacetates via phase-transfer catalysis. Synth. Commun., 2018, 48(15), 1966-1973.
[http://dx.doi.org/10.1080/00397911.2018.1473442]
[81]
König, B. Photocatalysis in organic synthesis–past, present, and future. Eur. J. Org. Chem., 2017, 2017(15), 1979-1981.
[http://dx.doi.org/10.1002/ejoc.201700420]
[82]
Reischauer, S.; Pieber, B. Emerging concepts in photocatalytic organic synthesis. iScience, 2021, 24(3), 102209.
[http://dx.doi.org/10.1016/j.isci.2021.102209] [PMID: 33733069]
[83]
Friedmann, D.; Hakki, A.; Kim, H.; Choi, W.; Bahnemann, D. Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives. Green Chem., 2016, 18(20), 5391-5411.
[http://dx.doi.org/10.1039/C6GC01582D]
[84]
Romero, N.A.; Nicewicz, D.A. Organic photoredox catalysis. Chem. Rev., 2016, 116(17), 10075-10166.
[http://dx.doi.org/10.1021/acs.chemrev.6b00057] [PMID: 27285582]
[85]
Huang, X.; Zhang, K.; Peng, B.; Wang, G.; Muhler, M.; Wang, F. Ceria-based materials for themocatalytic and photocatalytic organic synthesis. ACS Catal., 2021, 11(15), 9618-9678.
[http://dx.doi.org/10.1021/acscatal.1c02443]
[86]
Szpera, R.; Moseley, D.F.J.; Smith, L.B.; Sterling, A.J.; Gouverneur, V. The Fluorination of C− H bonds: Developments and perspectives. Angew. Chem. Int. Ed., 2019, 58(42), 14824-14848.
[http://dx.doi.org/10.1002/anie.201814457] [PMID: 30759327]
[87]
Wu, X.; Meng, C.; Yuan, X.; Jia, X.; Qian, X.; Ye, J. Transition-metal-free visible-light photoredox catalysis at room-temperature for decarboxylative fluorination of aliphatic carboxylic acids by organic dyes. Chem. Commun., 2015, 51(59), 11864-11867.
[http://dx.doi.org/10.1039/C5CC04527D] [PMID: 26111079]
[88]
Halperin, S.D.; Kwon, D.; Holmes, M.; Regalado, E.L.; Campeau, L.C.; DiRocco, D.A.; Britton, R. Development of a direct photocatalytic C–H fluorination for the preparative synthesis of odanacatib. Org. Lett., 2015, 17(21), 5200-5203.
[http://dx.doi.org/10.1021/acs.orglett.5b02532] [PMID: 26484983]
[89]
Rueda-Becerril, M.; Mahé, O.; Drouin, M.; Majewski, M.B.; West, J.G.; Wolf, M.O.; Sammis, G.M.; Paquin, J.F. Direct C-F bond formation using photoredox catalysis. J. Am. Chem. Soc., 2014, 136(6), 2637-2641.
[http://dx.doi.org/10.1021/ja412083f] [PMID: 24437369]
[90]
Nodwell, M.B.; Bagai, A.; Halperin, S.D.; Martin, R.E.; Knust, H.; Britton, R. Direct photocatalytic fluorination of benzylic C–H bonds with N-fluorobenzenesulfonimide. Chem. Commun., 2015, 51(59), 11783-11786.
[http://dx.doi.org/10.1039/C5CC04058B] [PMID: 26107990]
[91]
(a) Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162];
(b) Sheldon, R.A. Green solvents for sustainable organic synthesis: state of the art. Green Chem., 2005, 7(5), 267-278.
[http://dx.doi.org/10.1039/b418069k];
(c) Kobayashi, S. Asymmetric catalysis in aqueous media. Pure Appl. Chem., 2007, 79(2), 235-245.
[http://dx.doi.org/10.1351/pac200779020235]
[92]
Li, J.; Li, Y.L.; Jin, N.; Ma, A.L.; Huang, Y.N.; Deng, J. A practical synthesis of α-fluoroketones in aqueous media by decarboxylative fluorination of β-ketoacids. Adv. Synth. Catal., 2015, 357(11), 2474-2478.
[http://dx.doi.org/10.1002/adsc.201500282]
[93]
Fujiwara, T.; Yin, B.; Jin, M.; Kirk, K.L.; Takeuchi, Y. Synthetic studies of 3-(3-fluorooxindol-3-yl)-l-alanine. J. Fluor. Chem., 2008, 129(9), 829-835.
[http://dx.doi.org/10.1016/j.jfluchem.2008.06.026] [PMID: 19122889]
[94]
Lal, G.S.; Pastore, W.; Pesaresi, R. A convenient synthesis of 5-fluoropyrimidines using 1-(Chloromethyl)-4-fluoro-1,4-diazabicyclo[2.cntdot.2.cntdot.2]octane Bis(tetrafluoroborate)-SELECTFLUOR Reagent. J. Org. Chem., 1995, 60(22), 7340-7342.
[http://dx.doi.org/10.1021/jo00127a046]
[95]
Yin, F.; Wang, Z.; Li, Z.; Li, C. Silver-catalyzed decarboxylative fluorination of aliphatic carboxylic acids in aqueous solution. J. Am. Chem. Soc., 2012, 134(25), 10401-10404.
[http://dx.doi.org/10.1021/ja3048255] [PMID: 22694301]
[96]
Zhu, L.; Chen, H.; Wang, Z.; Li, C. Formal fluorine atom transfer radical addition: silver-catalyzed carbofluorination of unactivated alkenes with ketones in aqueous solution. Org. Chem. Front., 2014, 1(11), 1299-1305.
[http://dx.doi.org/10.1039/C4QO00256C]
[97]
Liu, Y.Y.; Yang, J.; Song, R.J.; Li, J.H. Synthesis of 5-(fluoromethyl)-4,5-dihydroisoxazoles by silver-catalyzed oxyfluorination of unactivated alkenes. Adv. Synth. Catal., 2014, 356(14-15), 2913-2918.
[http://dx.doi.org/10.1002/adsc.201400242]
[98]
Liu, P.; Gao, Y.; Gu, W.; Shen, Z.; Sun, P. Regioselective fluorination of imidazo [1, 2-a] pyridines with Selectfluor in aqueous condition. J. Org. Chem., 2015, 80(22), 11559-11565.
[http://dx.doi.org/10.1021/acs.joc.5b01961] [PMID: 26523829]
[99]
Li, J.L.; Lin, E.; Han, X.L.; Li, Q.; Wang, H. Synthesis of α-Fluorinated Imides via Direct Fluorohydroxylation of Ynamides. Org. Lett., 2019, 21(11), 4255-4258.
[http://dx.doi.org/10.1021/acs.orglett.9b01428] [PMID: 31095399]
[100]
Krishna Swaroop, D.; Ravi Kumar, N.; Reddy, N.S.; Punna, N.; Jagadeesh Babu, N.; Narsaiah, B. Synthesis of α-fluoroamides with a C-F quaternary stereogenic center by electrophilic fluorination: One-pot four-component strategy. Eur. J. Org. Chem., 2019, 2019(22), 3654-3657.
[http://dx.doi.org/10.1002/ejoc.201900482]
[101]
(a) Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev., 2000, 100(3), 1025-1074.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257];
(b) Zangade, S.; Patil, P. A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 2020, 23(21), 2295-2318.
[http://dx.doi.org/10.2174/1385272823666191016165532];
(c) Jain, K.; Chaudhuri, S.; Pal, K.; Das, K. The Knoevenagel condensation using quinine as an organocatalyst under solvent-free conditions. New J. Chem., 2019, 43(3), 1299-1304.
[http://dx.doi.org/10.1039/C8NJ04219E]
[102]
Stavber, G.; Zupan, M.; Stavber, S. Solvent-free fluorination of organic compounds using N–F reagents. Tetrahedron Lett., 2007, 48(15), 2671-2673.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.077]
[103]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Solvent-free and catalysts-free chemistry: A benign pathway to sustainability. ChemSusChem, 2014, 7(1), 24-44.
[http://dx.doi.org/10.1002/cssc.201300485] [PMID: 24357535]
[104]
Brahmachari, G.; Banerjee, B. Catalyst-free organic synthesis at room temperature in aqueous and non-aqueous media: An emerging field of green chemistry practice and sustainability. Curr. Green Chem., 2015, 2(3), 274-305.
[http://dx.doi.org/10.2174/2213346102666150218195142]
[105]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Benign by design: Catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[106]
Bi, J.; Zhang, Z.; Liu, Q.; Zhang, G. Catalyst-free and highly selective electrophilic mono-fluorination of acetoacetamides: Facile and efficient preparation of 2-fluoroacetoacetamides in PEG-400. Green Chem., 2012, 14(4), 1159-1162.
[http://dx.doi.org/10.1039/c2gc16661e]
[107]
Lv, J.; Cheng, Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem. Soc. Rev., 2021, 50(9), 5435-5467.
[http://dx.doi.org/10.1039/D0CS00258E] [PMID: 33687034]
[108]
Monkovic, J.M.; Gibson, H.; Sun, J.W.; Montclare, J.K. Fluorinated protein and peptide materials for biomedical applications. Pharmaceuticals, 2022, 15(10), 1201.
[http://dx.doi.org/10.3390/ph15101201] [PMID: 36297312]
[109]
Richardson, P. Fluorination methods for drug discovery and development. Expert Opin. Drug Discov., 2016, 11(10), 983-999.
[http://dx.doi.org/10.1080/17460441.2016.1223037] [PMID: 27548817]
[110]
Shibata, N.; Ishimaru, T.; Suzuki, E.; Kirk, K.L. Enantioselective fluorination mediated by N-fluoroammonium salts of cinchona alkaloids: First enantioselective synthesis of BMS-204352 (MaxiPost). J. Org. Chem., 2003, 68(6), 2494-2497.
[http://dx.doi.org/10.1021/jo026792s] [PMID: 12636425]
[111]
Zhang, X.; Guo, S.; Tang, P. Transition-metal free oxidative aliphatic C–H fluorination. Org. Chem. Front., 2015, 2(7), 806-810.
[http://dx.doi.org/10.1039/C5QO00095E]
[112]
Borodkin, G.I.; Elanov, I.R.; Gatilov, Y.V.; Shubin, V.G. Direct electrophilic fluorination of naproxen with NF-reagents. J. Fluor. Chem., 2019, 228, 109412.
[http://dx.doi.org/10.1016/j.jfluchem.2019.109412]