Curcumin-conjugated Nanoparticles: An Approach to Target Mitochondria

Article ID: e150523216927 Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Unconjugated nanoparticles used in the treatment of cancer and various metabolic and neurodegenerative disorders exhibit extended blood circulation time, inhibition of enzymatic degradation, and increased chemical stability of the encapsulated therapeutic molecules. However, the unconjugated nanoparticles often show off-target effects and lack of specificity, which limit their applications in the healthcare system.

Objective: Curcumin, a polyphenolic compound known for its proficiency to scavenge reactive oxygen species attributed to antioxidant activity and anticancer effects associated with mitochondrial dysfunction, is one of the most effective therapeutic agents. Therefore, with respect to chemotherapeutic strategies, the development of mitochondrial targeting curcumin nanoparticles for target-specific drug delivery has been extensively studied.

Conclusion: The present review has focused on diverse curcumin-loaded nanoparticles targeting mitochondria along with their improved delivery potential, enhanced localization and biodistribution profile.

Graphical Abstract

[1]
Kroemer, G. Mitochondrial control of apoptosis: An introduction. Biochem. Biophys. Res. Commun., 2003, 304(3), 433-435.
[http://dx.doi.org/10.1016/S0006-291X(03)00614-4] [PMID: 12729576]
[2]
Smith, R.A.J.; Hartley, R.C.; Cochemé, H.M.; Murphy, M.P. Mitochondrial pharmacology. Trends Pharmacol. Sci., 2012, 33(6), 341-352.
[http://dx.doi.org/10.1016/j.tips.2012.03.010] [PMID: 22521106]
[3]
Tabish, T.A.; Hamblin, M.R. Mitochondria-targeted nanoparticles (mitoNANO): An emerging therapeutic shortcut for cancer. Biomater. Biosyst., 2021, 3, 100023.
[http://dx.doi.org/10.1016/j.bbiosy.2021.100023] [PMID: 36824307]
[4]
Trujillo, J.; Granados-Castro, L.F.; Zazueta, C.; Andérica-Romero, A.C.; Chirino, Y.I.; Pedraza-Chaverrí, J. Mitochondria as a target in the therapeutic properties of curcumin. Arch. Pharm. (Weinheim), 2014, 347(12), 873-884.
[http://dx.doi.org/10.1002/ardp.201400266] [PMID: 25243820]
[5]
Kundu, S.; Ghosh, P.; Datta, S.; Ghosh, A.; Chattopadhyay, S.; Chatterjee, M. Oxidative stress as a potential biomarker for determining disease activity in patients with Rheumatoid Arthritis. Free Radic. Res., 2012, 46(12), 1482-1489.
[http://dx.doi.org/10.3109/10715762.2012.727991] [PMID: 22998065]
[6]
Ahmad, S.; Habib, S. Moinuddin.; Ali, A. Preferential recognition of epitopes on AGE–IgG by the autoantibodies in rheumatoid arthritis patients. Hum. Immunol., 2013, 74(1), 23-27.
[http://dx.doi.org/10.1016/j.humimm.2012.10.008] [PMID: 23073292]
[7]
Harty, L.C.; Biniecka, M.; O’Sullivan, J.; Fox, E.; Mulhall, K.; Veale, D.J.; Fearon, U. Mitochondrial mutagenesis correlates with the local inflammatory environment in arthritis. Ann. Rheum. Dis., 2012, 71(4), 582-588.
[http://dx.doi.org/10.1136/annrheumdis-2011-200245] [PMID: 22121133]
[8]
Kwak, S.H.; Park, K.S.; Lee, K.U.; Lee, H.K. Mitochondrial metabolism and diabetes. J. Diabetes Investig., 2010, 1(5), 161-169.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00047.x] [PMID: 24843427]
[9]
Victor, V.; Rocha, M.; Solá, E.; Bañuls, C.; Garcia-Malpartida, K. Hernández- Mijares, A. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr. Pharm. Des., 2009, 15(26), 2988-3002.
[http://dx.doi.org/10.2174/138161209789058093] [PMID: 19754375]
[10]
Exner, N.; Lutz, A.K.; Haass, C.; Winklhofer, K.F. Mitochondrial dysfunction in Parkinson’s disease: Molecular mechanisms and pathophysiological consequences. EMBO J., 2012, 31(14), 3038-3062.
[http://dx.doi.org/10.1038/emboj.2012.170] [PMID: 22735187]
[11]
Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1240-1247.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[12]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[13]
Yang, R.; Fang, X.L.; Zhen, Q.; Chen, Q.Y.; Feng, C. Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASN. Colloids Surf. B Biointerfaces, 2019, 182, 110405.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110405] [PMID: 31377611]
[14]
Pignanelli, C.; Ma, D.; Noel, M.; Ropat, J.; Mansour, F.; Curran, C.; Pupulin, S.; Larocque, K.; Wu, J.; Liang, G.; Wang, Y.; Pandey, S. Selective targeting of cancer cells by oxidative vulnerabilities with novel curcumin analogs. Sci. Rep., 2017, 7(1), 1105.
[http://dx.doi.org/10.1038/s41598-017-01230-4] [PMID: 28439094]
[15]
Mukhopadhyay, A.; Bueso-Ramos, C.; Chatterjee, D.; Pantazis, P.; Aggarwal, B.B. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 2001, 20(52), 7597-7609.
[http://dx.doi.org/10.1038/sj.onc.1204997] [PMID: 11753638]
[16]
Hilchie, A.L.; Furlong, S.J.; Sutton, K.; Richardson, A.; Robichaud, M.R.J.; Giacomantonio, C.A.; Ridgway, N.D.; Hoskin, D.W. Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria. Nutr. Cancer, 2010, 62(3), 379-389.
[http://dx.doi.org/10.1080/01635580903441238] [PMID: 20358476]
[17]
Jung, K.H.; Lee, J.H.; Park, J.W.; Moon, S.H.; Cho, Y.S.; Choe, Y.S.; Lee, K.H. Effects of curcumin on cancer cell mitochondrial function and potential monitoring with 18F-FDG uptake. Oncol. Rep., 2016, 35(2), 861-868.
[http://dx.doi.org/10.3892/or.2015.4460] [PMID: 26718769]
[18]
Liao, L.; Jin, F. Mitochondria-Targeted Nanoparticles: A Promising Drug Delivery System. J. Nanosci. Nanotechnol., 2016, 16(7), 6690-6696.
[http://dx.doi.org/10.1166/jnn.2016.11375]
[19]
Shan, M.; Meng, F.; Tang, C.; Zhou, L. Surfactin effectively improves bioavailability of curcumin by formation of nano-capsulation. Colloids Surf. B Biointerfaces, 2022, 215, 112521. Available Fromhttps://pubmed.ncbi.nlm.nih.gov/35490540/
[20]
Li, Z.; Liu, W.; Sun, C.; Wei, X.; Liu, S.; Jiang, Y. Gastrointestinal pH-sensitive pickering emulsions stabilized by zein nanoparticles coated with bioactive glycyrrhizic acid for improving oral bioaccessibility of curcumin. ACS Appl. Mater. Interfaces, 2023, 15(11), acsami.2c21549.
[http://dx.doi.org/10.1021/acsami.2c21549] [PMID: 36884340]
[21]
Indo, H.P.; Yen, H.C.; Nakanishi, I.; Matsumoto, K.; Tamura, M.; Nagano, Y.; Matsui, H.; Gusev, O.; Cornette, R.; Okuda, T.; Minamiyama, Y.; Ichikawa, H.; Suenaga, S.; Oki, M.; Sato, T.; Ozawa, T.; Clair, D.K.S.; Majima, H.J. A mitochondrial superoxide theory for oxidative stress diseases and aging. J. Clin. Biochem. Nutr., 2015, 56(1), 1-7.
[http://dx.doi.org/10.3164/jcbn.14-42] [PMID: 25834301]
[22]
Reddy, P.H.; Reddy, T.P. Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr. Alzheimer Res., 2011, 8(4), 393-409.
[http://dx.doi.org/10.2174/156720511795745401] [PMID: 21470101]
[23]
Zielonka, J.; Joseph, J.; Sikora, A.; Hardy, M.; Ouari, O.; Vasquez-Vivar, J.; Cheng, G.; Lopez, M.; Kalyanaraman, B. Mitochondria-targeted triphenylphosphonium-based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev., 2017, 117(15), 10043-10120.
[http://dx.doi.org/10.1021/acs.chemrev.7b00042] [PMID: 28654243]
[24]
Zhang, Y.; Zhang, C.; Chen, J.; Liu, L.; Hu, M.; Li, J.; Bi, H. Trackable mitochondria-targeting nanomicellar loaded with doxorubicin for overcoming drug resistance. ACS Appl. Mater. Interfaces, 2017, 9(30), 25152-25163.
[http://dx.doi.org/10.1021/acsami.7b07219] [PMID: 28697306]
[25]
Wallace, D.C. Mitochondria and cancer: Warburg addressed. Cold Spring Harb. Symp. Quant. Biol., 2005, 70(0), 363-374.
[http://dx.doi.org/10.1101/sqb.2005.70.035] [PMID: 16869773]
[26]
Battogtokh, G.; Cho, Y.Y.; Lee, J.Y.; Lee, H.S.; Kang, H.C. Mitochondrial-targeting anticancer agent conjugates and nanocarrier systems for cancer treatment. Front. Pharmacol., 2018, 9, 922. Available From:https://www.frontiersin.org/article/10.3389/fphar.2018.00922
[http://dx.doi.org/10.3389/fphar.2018.00922] [PMID: 30174604]
[27]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398.
[PMID: 12680238]
[28]
Li, W.; Chen, Y.; He, K.; Cao, T.; Song, D.; Yang, H.; Li, L.; Lin, J. The apoptosis of liver cancer cells promoted by curcumin/tpp-czl nanomicelles with mitochondrial targeting function Front. Bioeng. Biotechnol., 2022, 10, 804513. Available From:https://www.frontiersin.org/article/10.3389/fbioe.2022.804513
[http://dx.doi.org/10.3389/fbioe.2022.804513]
[29]
Shi, L.; Gao, L.; Cai, S.; Xiong, Q.; Ma, Z. A novel selective mitochondrial-targeted curcumin analog with remarkable cytotoxicity in glioma cells. Eur. J. Med. Chem., 2021, 221, 113528.
[http://dx.doi.org/10.1016/j.ejmech.2021.113528] [PMID: 34020339]
[30]
Reddy, C.A.; Somepalli, V.; Golakoti, T.; Kanugula, A.K.; Karnewar, S.; Rajendiran, K.; Vasagiri, N.; Prabhakar, S.; Kuppusamy, P.; Kotamraju, S.; Kutala, V.K. Mitochondrial-targeted curcuminoids: A strategy to enhance bioavailability and anticancer efficacy of curcumin. PLoS One, 2014, 9(3), e89351.
[http://dx.doi.org/10.1371/journal.pone.0089351] [PMID: 24622734]
[31]
Hasan, W.; Kori, R.K.; Thakre, K.; Yadav, R.S.; Jat, D. Synthesis, characterization and efficacy of mitochondrial targeted delivery of TPP-curcumin in rotenone-induced toxicity. Daru, 2019, 27(2), 557-570.
[http://dx.doi.org/10.1007/s40199-019-00283-2] [PMID: 31264184]
[32]
Banik, B.; Ashokan, A.; Choi, J.H.; Surnar, B.; Dhar, S. Platin- C containing nanoparticles: A recipe for the delivery of curcumin–cisplatin combination chemotherapeutics to mitochondria. Dalton Trans., 2023, 52(12), 3575-3585.
[http://dx.doi.org/10.1039/D2DT03149C] [PMID: 36723189]
[33]
Lee, W.H.; Loo, C.Y.; Traini, D.; Young, P.M. Development and evaluation of paclitaxel and curcumin dry powder for inhalation lung cancer treatment. Pharmaceutics, 2020, 13(1), 9.
[http://dx.doi.org/10.3390/pharmaceutics13010009] [PMID: 33375181]
[34]
Gong, J.; Chen, M.; Zheng, Y.; Wang, S.; Wang, Y. Polymeric micelles drug delivery system in oncology. J. Control. Release, 2012, 159(3), 312-323.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.012] [PMID: 22285551]
[35]
Jones, M.C.; Leroux, J.C. Polymeric micelles – a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm., 1999, 48(2), 101-111.
[http://dx.doi.org/10.1016/S0939-6411(99)00039-9] [PMID: 10469928]
[36]
Zhang, L.; Pan, X.; Xu, L.; Zhang, L.; Huang, H. Mitochondria-targeted curcumin loaded CTPP–PEG–PCL self-assembled micelles for improving liver fibrosis therapy. RSC Advances, 2021, 11(10), 5348-5360.
[http://dx.doi.org/10.1039/D0RA09589C] [PMID: 35423083]
[37]
Yin-Hua, Y.; Qi, G.; Shan-Shan, Z.; Mi, T. Preparation of curcumin TPP-PEG-PE nanomicelles with mitochondrial targeting and lysosomal escape functions and its effect on promoting breast cancer cell apoptosis. Zhongguo Zhongyao Zazhi, 2020, 45(22), 5495-5503.
[PMID: 33350211]
[38]
Momekova, D.; Ugrinova, I.; Slavkova, M.; Momekov, G.; Grancharov, G.; Gancheva, V.; Petrov, P.D. Superior proapoptotic activity of curcumin-loaded mixed block copolymer micelles with mitochondrial targeting properties. Biomater. Sci., 2018, 6(12), 3309-3317.
[http://dx.doi.org/10.1039/C8BM00644J] [PMID: 30357130]
[39]
Hong, W.; Shi, H.; Qiao, M.; Zhang, Z.; Yang, W.; Dong, L.; Xie, F.; Zhao, C.; Kang, L. pH-sensitive micelles for the intracellular co-delivery of curcumin and Pluronic L61 unimers for synergistic reversal effect of multidrug resistance. Sci. Rep., 2017, 7(1), 42465.
[http://dx.doi.org/10.1038/srep42465] [PMID: 28195164]
[40]
Fang, L.; Fan, H.; Guo, C.; Cui, L.; Zhang, P.; Mu, H. Novel mitochondrial targeting multifunctional surface charge-reversal polymeric nanoparticles for cancer treatment. J. Biomed. Nanotechnol., 2019, 15(11), 2151-2163.
[41]
Wang, K.; Qi, M.; Guo, C.; Yu, Y.; Wang, B.; Fang, L.; Liu, M.; Wang, Z.; Fan, X.; Chen, D. Novel dual mitochondrial and cd44 receptor targeting nanoparticles for redox stimuli-triggered release. Nanoscale Res. Lett., 2018, 13(1), 32.
[http://dx.doi.org/10.1186/s11671-018-2445-1] [PMID: 29396830]
[42]
Tian, S.; Li, P.; Sheng, S.; Jin, X. Upregulation of pyruvate kinase M2 expression by fatty acid synthase contributes to gemcitabine resistance in pancreatic cancer. Oncol. Lett., 2018, 15(2), 2211-2217.
[PMID: 29434927]
[43]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[44]
Yu, Z.; Sun, Q.; Pan, W.; Li, N.; Tang, B. A near-infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy. ACS Nano, 2015, 9(11), 11064-11074.
[http://dx.doi.org/10.1021/acsnano.5b04501] [PMID: 26456218]
[45]
Khaing Oo, M.K.; Yang, Y.; Hu, Y.; Gomez, M.; Du, H.; Wang, H. Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano, 2012, 6(3), 1939-1947.
[http://dx.doi.org/10.1021/nn300327c] [PMID: 22385214]
[46]
Wang, D.; Fei, B.; Halig, L.V.; Qin, X.; Hu, Z.; Xu, H.; Wang, Y.A.; Chen, Z.; Kim, S.; Shin, D.M.; Chen, Z.G. Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano, 2014, 8(7), 6620-6632.
[http://dx.doi.org/10.1021/nn501652j] [PMID: 24923902]
[47]
Jiang, S.; Zhu, R.; He, X.; Wang, J.; Wang, M.; Qian, Y.; Wang, S. Enhanced photocytotoxicity of curcumin delivered by solid lipid nanoparticles. Int. J. Nanomed., 2016, 12, 167-178.
[http://dx.doi.org/10.2147/IJN.S123107] [PMID: 28053531]
[48]
Derakhshankhah, H.; Hajipour, M.J.; Barzegari, E.; Lotfabadi, A.; Ferdousi, M.; Saboury, A.A.; Ng, E.P.; Raoufi, M.; Awala, H.; Mintova, S.; Dinarvand, R.; Mahmoudi, M. Zeolite nanoparticles inhibit aβ–fibrinogen interaction and formation of a consequent abnormal structural clot. ACS Appl. Mater. Interfaces, 2016, 8(45), 30768-30779.
[http://dx.doi.org/10.1021/acsami.6b10941] [PMID: 27766857]
[49]
Smith, E.E.; Greenberg, S.M. Beta-amyloid, blood vessels, and brain function. Stroke, 2009, 40(7), 2601-2606.
[http://dx.doi.org/10.1161/STROKEAHA.108.536839] [PMID: 19443808]
[50]
Swerdlow, R.H.; Khan, S.M.A. “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses, 2004, 63(1), 8-20.
[http://dx.doi.org/10.1016/j.mehy.2003.12.045] [PMID: 15193340]
[51]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[52]
Shafiei, S.S.; Guerrero-Muñoz, M.J.; Castillo-Carranza, D.L. Tau Oligomers: Cytotoxicity, Propagation, and Mitochondrial Damage Front. Aging Neurosci., 2017, 9, 83. Available From:https://www.frontiersin.org/articles/10.3389/fnagi.2017.00083
[http://dx.doi.org/10.3389/fnagi.2017.00083] [PMID: 28420982]
[53]
Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv. Exp. Med. Biol., 2007, 595, 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8] [PMID: 17569212]
[54]
Hamaguchi, T.; Ono, K.; Yamada, M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci. Ther., 2010, 16(5), 285-297.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00147.x] [PMID: 20406252]
[55]
Kaur, I.P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control. Release, 2008, 127(2), 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[56]
Gao, C.; Wang, Y.; Sun, J.; Han, Y.; Gong, W.; Li, Y.; Feng, Y.; Wang, H.; Yang, M.; Li, Z.; Yang, Y.; Gao, C. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater., 2020, 108, 285-299.
[http://dx.doi.org/10.1016/j.actbio.2020.03.029] [PMID: 32251785]
[57]
Muntimadugu, E.; Kommineni, N.; Khan, W. Exploring the potential of nanotherapeutics in targeting tumor microenvironment for cancer therapy. Pharmacol. Res., 2017, 126, 109-122.
[http://dx.doi.org/10.1016/j.phrs.2017.05.010] [PMID: 28511988]
[58]
Luo, G.F.; Chen, W.H.; Liu, Y.; Lei, Q.; Zhuo, R.X.; Zhang, X.Z. Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide. Sci. Rep., 2014, 4(1), 6064.
[http://dx.doi.org/10.1038/srep06064] [PMID: 25317538]
[59]
Tarn, D.; Ashley, C.E.; Xue, M.; Carnes, E.C.; Zink, J.I.; Brinker, C.J. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc. Chem. Res., 2013, 46(3), 792-801.
[http://dx.doi.org/10.1021/ar3000986] [PMID: 23387478]
[60]
Luo, Z.; Ding, X.; Hu, Y.; Wu, S.; Xiang, Y.; Zeng, Y.; Zhang, B.; Yan, H.; Zhang, H.; Zhu, L.; Liu, J.; Li, J.; Cai, K.; Zhao, Y. Engineering a hollow nanocontainer platform with multifunctional molecular machines for tumor-targeted therapy in vitro and in vivo. ACS Nano, 2013, 7(11), 10271-10284.
[http://dx.doi.org/10.1021/nn404676w] [PMID: 24127723]
[61]
Gao, J.; Fan, K.; Jin, Y.; Zhao, L.; Wang, Q.; Tang, Y.; Xu, H.; Liu, Z.; Wang, S.; Lin, J.; Lin, D. PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. Eur. J. Pharm. Sci., 2019, 140, 105070.
[http://dx.doi.org/10.1016/j.ejps.2019.105070] [PMID: 31518679]
[62]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[63]
Widera, A.; Norouziyan, F.; Shen, W.C. Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv. Drug Deliv. Rev., 2003, 55(11), 1439-1466.
[http://dx.doi.org/10.1016/j.addr.2003.07.004] [PMID: 14597140]
[64]
Qian, Z.M.; Li, H.; Sun, H.; Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev., 2002, 54(4), 561-587.
[http://dx.doi.org/10.1124/pr.54.4.561] [PMID: 12429868]
[65]
Mulik, R.S.; Mönkkönen, J.; Juvonen, R.O.; Mahadik, K.R.; Paradkar, A.R. Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis. Int. J. Pharm., 2010, 398(1-2), 190-203.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.021] [PMID: 20655375]
[66]
Karan, S.; Debnath, S.; Kuotsu, K.; Chatterjee, T.K. In-vitro and in-vivo evaluation of polymeric microsphere formulation for colon targeted delivery of 5-fluorouracil using biocompatible natural gum katira. Int. J. Biol. Macromol., 2020, 158, 922-936.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.129] [PMID: 32335117]
[67]
Jin, F.; Liu, D.; Yu, H.; Qi, J.; You, Y.; Xu, X.; Kang, X.; Wang, X.; Lu, K.; Ying, X.; You, J.; Du, Y.; Ji, J. Sialic acid-functionalized peg–plga microspheres loading mitochondrial-targeting-modified curcumin for acute lung injury therapy. Mol. Pharm., 2019, 16(1), 71-85.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00861] [PMID: 30431285]
[68]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[69]
Owens, D., III; Peppas, N. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307(1), 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010] [PMID: 16303268]
[70]
Chroni, A.; Mavromoustakos, T.; Pispas, S. Curcumin-loaded PnBA-b-POEGA nanoformulations: A study of drug-polymer interactions and release behavior. Int. J. Mol. Sci., 2023, 24(5), 4621.
[http://dx.doi.org/10.3390/ijms24054621] [PMID: 36902057]
[71]
Huang, Y.; Zhan, Y.; Luo, G.; Zeng, Y.; McClements, D.J.; Hu, K. Curcumin encapsulated zein/caseinate-alginate nanoparticles: Release and antioxidant activity under in vitro simulated gastrointestinal digestion. Curr. Res. Food Sci., 2023, 6, 100463.
[http://dx.doi.org/10.1016/j.crfs.2023.100463] [PMID: 36860615]
[72]
Li, X.; He, Y.; Zhang, S.; Gu, Q.; McClements, D.J.; Chen, S.; Liu, X.; Liu, F. Lactoferrin-based ternary composite nanoparticles with enhanced dispersibility and stability for curcumin delivery. ACS Appl. Mater. Interfaces, 2023, acsami.2c20816.
[http://dx.doi.org/10.1021/acsami.2c20816] [PMID: 36893425]
[73]
Mallick, S.; Song, S.J.; Bae, Y.; Choi, J.S. Self-assembled nanoparticles composed of glycol chitosan-dequalinium for mitochondria-targeted drug delivery. Int. J. Biol. Macromol., 2019, 132, 451-460.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.215] [PMID: 30930268]
[74]
Kianamiri, S.; Dinari, A.; Sadeghizadeh, M.; Rezaei, M.; Daraei, B.; Bahsoun, N.E.H.; Nomani, A. Mitochondria-targeted polyamidoamine dendrimer–curcumin construct for hepatocellular cancer treatment. Mol. Pharm., 2020, 17(12), 4483-4498.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00566] [PMID: 33205974]
[75]
Fang, L.; Lin, H.; Wu, Z.; Wang, Z.; Fan, X.; Cheng, Z.; Hou, X.; Chen, D. In vitro/vivo evaluation of novel mitochondrial targeting charge-reversal polysaccharide-based antitumor nanoparticle. Carbohydr. Polym., 2020, 234, 115930.
[http://dx.doi.org/10.1016/j.carbpol.2020.115930] [PMID: 32070547]
[76]
Marrache, S.; Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA, 2012, 109(40), 16288-16293.
[http://dx.doi.org/10.1073/pnas.1210096109] [PMID: 22991470]
[77]
Feng, R.; Song, Z.; Zhai, G. Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles. Int. J. Nanomed., 2012, 7, 4089-4098.
[http://dx.doi.org/10.2147/IJN.S33607] [PMID: 22888245]
[78]
Junghanns, J.U.A.H.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed., 2008, 3(3), 295-309.
[PMID: 18990939]
[79]
Paunovic, V.; Ristic, B.; Markovic, Z.; Todorovic-Markovic, B.; Kosic, M.; Prekodravac, J.; Kravic-Stevovic, T.; Martinovic, T.; Micusik, M.; Spitalsky, Z.; Trajkovic, V.; Harhaji-Trajkovic, L. c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles. Biomed. Microdevices, 2016, 18(2), 37.
[http://dx.doi.org/10.1007/s10544-016-0062-2] [PMID: 27106025]
[80]
Tusskorn, O.; Khunluck, T.; Prawan, A.; Senggunprai, L.; Kukongviriyapan, V. Mitochondrial division inhibitor-1 potentiates cisplatin-induced apoptosis via the mitochondrial death pathway in cholangiocarcinoma cells. Biomed. Pharmacother., 2019, 111, 109-118.
[http://dx.doi.org/10.1016/j.biopha.2018.12.051] [PMID: 30579250]
[81]
Gong, N.; Ma, X.; Ye, X.; Zhou, Q.; Chen, X.; Tan, X.; Yao, S.; Huo, S.; Zhang, T.; Chen, S.; Teng, X.; Hu, X.; Yu, J.; Gan, Y.; Jiang, H.; Li, J.; Liang, X.J. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol., 2019, 14(4), 379-387.
[http://dx.doi.org/10.1038/s41565-019-0373-6] [PMID: 30778211]
[82]
Xu, L.; Tong, G.; Song, Q.; Zhu, C.; Zhang, H.; Shi, J.; Zhang, Z. Enhanced intracellular Ca2+ nanogenerator for tumor-specific synergistic therapy via disruption of Mitochondrial Ca2+ homeostasis and photothermal therapy. ACS Nano, 2018, 12(7), 6806-6818.
[http://dx.doi.org/10.1021/acsnano.8b02034] [PMID: 29966081]
[83]
Szabadkai, G.; Simoni, A.M.; Chami, M.; Wieckowski, M.R.; Youle, R.J.; Rizzuto, R. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol. Cell, 2004, 16(1), 59-68.
[http://dx.doi.org/10.1016/j.molcel.2004.09.026] [PMID: 15469822]
[84]
Pesakhov, S.; Nachliely, M.; Barvish, Z.; Aqaqe, N.; Schwartzman, B.; Voronov, E.; Sharoni, Y.; Studzinski, G.P.; Fishman, D.; Danilenko, M. Cancer-selective cytotoxic Ca2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget, 2016, 7(22), 31847-31861.
[http://dx.doi.org/10.18632/oncotarget.7240] [PMID: 26870993]
[85]
Zheng, P.; Ding, B.; Shi, R.; Jiang, Z.; Xu, W.; Li, G.; Ding, J.; Chen, X. A multichannel Ca 2+ nanomodulator for multilevel mitochondrial destruction‐mediated cancer therapy. Adv. Mater., 2021, 33(15), 2007426.
[http://dx.doi.org/10.1002/adma.202007426] [PMID: 33675268]
[86]
Zheng, P.; Ding, B.; Jiang, Z.; Xu, W.; Li, G.; Ding, J.; Chen, X. Ultrasound-augmented mitochondrial calcium Ion overload by calcium nanomodulator to induce immunogenic cell death. Nano Lett., 2021, 21(5), 2088-2093.
[http://dx.doi.org/10.1021/acs.nanolett.0c04778] [PMID: 33596078]