Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Kajal Sharma, Nidhi Puranik and Dhananjay Yadav*

DOI: 10.2174/1871530323666230512121416

Neural Stem Cell-based Regenerative Therapy: A New Approach to Diabetes Treatment

Page: [531 - 540] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Diabetes mellitus (DM) is the most common metabolic disorder that occurs due to the loss, or impaired function of insulin-secreting pancreatic beta cells, which are of two types - type 1 (T1D) and type 2 (T2D). To cure DM, the replacement of the destroyed pancreatic beta cells of islet of Langerhans is the most widely practiced treatment. For this, isolating neuronal stem cells and cultivating them as a source of renewable beta cells is a significant breakthrough in medicine. The functions, growth, and gene expression of insulin-producing pancreatic beta cells and neurons are very similar in many ways. A diabetic patient's neural stem cells (obtained from the hippocampus and olfactory bulb) can be used as a replacement source of beta cells for regenerative therapy to treat diabetes. The same protocol used to create functional neurons from progenitor cells can be used to create beta cells. Recent research suggests that replacing lost pancreatic beta cells with autologous transplantation of insulin-producing neural progenitor cells may be a perfect therapeutic strategy for diabetes, allowing for a safe and normal restoration of function and a reduction in potential risks and a long-term cure.

Graphical Abstract

[1]
Kohsaka, S.; Morita, N.; Okami, S.; Kidani, Y.; Yajima, T. Current trends in diabetes mellitus database research in Japan. Diabetes Obes. Metab., 2021, 23(S2), 3-18.
[http://dx.doi.org/10.1111/dom.14325] [PMID: 33835639]
[2]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[3]
Gregory, J.M.; Moore, D.J.; Simmons, J.H. Type 1 diabetes mellitus. Pediatr. Rev., 2013, 34(5), 203-215.
[http://dx.doi.org/10.1542/pir.34.5.203] [PMID: 23637249]
[4]
Aghazadeh, Y.; Nostro, M.C. Cell therapy for type 1 diabetes: Current and future strategies. Curr. Diab. Rep., 2017, 17(6), 37.
[http://dx.doi.org/10.1007/s11892-017-0863-6] [PMID: 28432571]
[5]
Lytrivi, M.; Castell, A.L.; Poitout, V.; Cnop, M. Recent insights into mechanisms of β-cell lipo-and glucolipotoxicity in type 2 diabetes. J. Mol. Biol., 2020, 432(5), 1514-1534.
[http://dx.doi.org/10.1016/j.jmb.2019.09.016] [PMID: 31628942]
[6]
Heinemann, L.; Freckmann, G.; Ehrmann, D.; Faber-Heinemann, G.; Guerra, S.; Waldenmaier, D.; Hermanns, N. Real-time continuous glucose monitoring in adults with type 1 diabetes and impaired hypoglycaemia awareness or severe hypoglycaemia treated with multiple daily insulin injections (HypoDE): A multicentre, randomised controlled trial. Lancet, 2018, 391(10128), 1367-1377.
[http://dx.doi.org/10.1016/S0140-6736(18)30297-6] [PMID: 29459019]
[7]
Han, D.J.; Sutherland, D.E.R. Pancreas transplantation. Gut Liver, 2010, 4(4), 450-465.
[http://dx.doi.org/10.5009/gnl.2010.4.4.450] [PMID: 21253293]
[8]
Christoffersson, G. Towards effective beta-cell replacement through understanding and targeting of the autoreactive immune response during onset of type 1 diabetes. J. Immunol. Regen. Med., 2022, 15, 100057.
[http://dx.doi.org/10.1016/j.regen.2021.100057]
[9]
Schuetz, C. Anazawa, T.; Cross, S.E.; Labriola, L.; Meier, R.P.H.; Redfield, R.R., III; Scholz, H.; Stock, P.G.; Zammit, N.W.; Committee, I.Y.Y.I. β cell replacement therapy: The next 10 years. Transplantation, 2018, 102(2), 215-229.
[http://dx.doi.org/10.1097/TP.0000000000001937] [PMID: 28885496]
[10]
Larsen, J.L. Pancreas transplantation: Indications and consequences. Endocr. Rev., 2004, 25(6), 919-946.
[http://dx.doi.org/10.1210/er.2002-0036] [PMID: 15583023]
[11]
Schechter, R.; Whitmire, J.; Holtzclaw, L.; George, M.; Harlow, R.; Devaskar, S.U. Developmental regulation of insulin in the mammalian central nervous system. Brain Res., 1992, 582(1), 27-37.
[http://dx.doi.org/10.1016/0006-8993(92)90313-X] [PMID: 1482442]
[12]
Triolo, T.M.; Bellin, M.D. Lessons from human islet transplantation inform stem cell-based approaches in the treatment of diabetes. Front. Endocrinol., 2021, 12, 636824.
[http://dx.doi.org/10.3389/fendo.2021.636824] [PMID: 33776933]
[13]
Lathia, J.D.; Liu, H. Overview of cancer stem cells and stemness for community oncologists. Target. Oncol., 2017, 12(4), 387-399.
[http://dx.doi.org/10.1007/s11523-017-0508-3] [PMID: 28664387]
[14]
Han, Y.; Yang, J.; Fang, J.; Zhou, Y.; Candi, E.; Wang, J.; Hua, D.; Shao, C.; Shi, Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct. Target. Ther., 2022, 7(1), 92.
[http://dx.doi.org/10.1038/s41392-022-00932-0] [PMID: 35314676]
[15]
Kuwabara, T.; Kagalwala, M.N.; Onuma, Y.; Ito, Y.; Warashina, M.; Terashima, K.; Sanosaka, T.; Nakashima, K.; Gage, F.H.; Asashima, M. Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb. EMBO Mol. Med., 2011, 3(12), 742-754.
[http://dx.doi.org/10.1002/emmm.201100177] [PMID: 21984534]
[16]
Ricci, S.; Cacialli, P. Stem Cell research tools in human metabolic disorders: An overview. Cells, 2021, 10(10), 2681.
[http://dx.doi.org/10.3390/cells10102681] [PMID: 34685661]
[17]
Chen, S.; Du, K.; Zou, C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res. Ther., 2020, 11(1), 275.
[http://dx.doi.org/10.1186/s13287-020-01793-6] [PMID: 32641151]
[18]
de Klerk, E.; Hebrok, M. Stem cell-based clinical trials for diabetes mellitus. Front. Endocrinol., 2021, 12, 631463.
[http://dx.doi.org/10.3389/fendo.2021.631463] [PMID: 33716982]
[19]
Stemple, D.L.; Anderson, D.J. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell, 1992, 71(6), 973-985.
[http://dx.doi.org/10.1016/0092-8674(92)90393-Q] [PMID: 1458542]
[20]
Pan, G.; Mu, Y.; Hou, L.; Liu, J. Examining the therapeutic potential of various stem cell sources for differentiation into insulinproducing cells to treat diabetes. Ann. Endocrinol, 2019, 80(1), 47-53.
[21]
Srinivasan, P.; Huang, G.C.; Amiel, S.A.; Heaton, N.D. Islet cell transplantation. Postgrad. Med. J., 2007, 83(978), 224-229.
[http://dx.doi.org/10.1136/pgmj.2006.053447] [PMID: 17403947]
[22]
Veit, M.; van Asten, R.; Olie, A.; Prinz, P. The role of dietary sugars, overweight, and obesity in type 2 diabetes mellitus: A narrative review. Eur. J. Clin. Nutr., 2022, 76(11), 1497-1501.
[http://dx.doi.org/10.1038/s41430-022-01114-5] [PMID: 35314768]
[23]
Vannucci, S.J.; Koehler-Stec, E.M.; Li, K.; Reynolds, T.H.; Clark, R.; Simpson, I.A. GLUT4 glucose transporter expression in rodent brain: effect of diabetes. Brain Res., 1998, 797(1), 1-11.
[http://dx.doi.org/10.1016/S0006-8993(98)00103-6] [PMID: 9630471]
[24]
Rogers, R.C.; Burke, S.J.; Collier, J.J.; Ritter, S.; Hermann, G.E. Evidence that hindbrain astrocytes in the rat detect low glucose with a glucose transporter 2-phospholipase C-calcium release mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2020, 318(1), R38-R48.
[http://dx.doi.org/10.1152/ajpregu.00133.2019] [PMID: 31596114]
[25]
Hinds, J.W. Autoradiographic study of histogenesis in the mouse olfactory bulb I. Time of origin of neurons and neuroglia. J. Comp. Neurol., 1968, 134(3), 287-304.
[http://dx.doi.org/10.1002/cne.901340304] [PMID: 5721256]
[26]
Templeman, N.M.; Mehran, A.E.; Johnson, J.D. Hyper-variability in circulating insulin, high fat feeding outcomes, and effects of reducing Ins2 dosage in male ins1-null mice in a specific pathogen-free facility. PLoS One, 2016, 11(4), e0153280.
[http://dx.doi.org/10.1371/journal.pone.0153280] [PMID: 27055260]
[27]
Abbott, L.C.; Nigussie, F. Adult neurogenesis in the mammalian dentate gyrus. Anat. Histol. Embryol., 2020, 49(1), 3-16.
[http://dx.doi.org/10.1111/ahe.12496] [PMID: 31568602]
[28]
Molnár, G.; Faragó, N.; Kocsis, Á.K.; Rózsa, M.; Lovas, S.; Boldog, E.; Báldi, R.; Csajbók, É.; Gardi, J.; Puskás, L.G.; Tamás, G. GABAergic neurogliaform cells represent local sources of insulin in the cerebral cortex. J. Neurosci., 2014, 34(4), 1133-1137.
[http://dx.doi.org/10.1523/JNEUROSCI.4082-13.2014] [PMID: 24453306]
[29]
Devaskar, S.U.; Giddings, S.J.; Rajakumar, P.A.; Carnaghi, L.R.; Menon, R.K.; Zahm, D.S. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem., 1994, 269(11), 8445-8454.
[http://dx.doi.org/10.1016/S0021-9258(17)37214-9] [PMID: 8132571]
[30]
Anapindi, K.D.B.; Romanova, E.V.; Checco, J.W.; Sweedler, J.V. Mass spectrometry approaches empowering neuropeptide discovery and therapeutics. Pharmacol. Rev., 2022, 74(3), 662-679.
[http://dx.doi.org/10.1124/pharmrev.121.000423] [PMID: 35710134]
[31]
Havrankova, J.; Roth, J.; Brownstein, M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature, 1978, 272(5656), 827-829.
[http://dx.doi.org/10.1038/272827a0] [PMID: 205798]
[32]
Gray, S.M.; Barrett, E.J. Insulin transport into the brain. Am. J. Physiol. Cell Physiol., 2018, 315(2), C125-C136.
[http://dx.doi.org/10.1152/ajpcell.00240.2017] [PMID: 29847142]
[33]
Duarte, A.I.; Moreira, P.I.; Oliveira, C.R. Insulin in central nervous system: more than just a peripheral hormone. J. Aging Res., 2012, 2012, 1-21.
[http://dx.doi.org/10.1155/2012/384017] [PMID: 22500228]
[34]
Milstein, J.L.; Ferris, H.A. The brain as an insulin-sensitive metabolic organ. Mol. Metab., 2021, 52, 101234.
[http://dx.doi.org/10.1016/j.molmet.2021.101234] [PMID: 33845179]
[35]
Ordaz, R.P.; Garay, E.; Limon, A.; Pérez-Samartín, A.; Sánchez-Gómez, M.V.; Robles-Martínez, L.; Cisneros-Mejorado, A.; Matute, C.; Arellano, R.O. GABAA receptors expressed in oligodendrocytes cultured from the neonatal rat contain α3 and γ1 subunits and present differential functional and pharmacological properties. Mol. Pharmacol., 2021, 99(2), 133-146.
[http://dx.doi.org/10.1124/molpharm.120.000091] [PMID: 33288547]
[36]
Birch, N.P.; Christie, D.L.; Renwick, A.G.C. Proinsulin-like material in mouse foetal brain cell cultures. FEBS Lett., 1984, 168(2), 299-302.
[http://dx.doi.org/10.1016/0014-5793(84)80266-5] [PMID: 6373366]
[37]
Kuang, J.; Huang, T.; Pei, D. The art of reprogramming for regenerative medicine. Front. Cell Dev. Biol., 2022, 10, 927555.
[http://dx.doi.org/10.3389/fcell.2022.927555] [PMID: 35846373]
[38]
Devaskar, S.U.; Singh, B.S.; Carnaghi, L.R.; Rajakumar, P.A.; Giddings, S.J. Insulin II gene expression in rat central nervous system. Regul. Pept., 1993, 48(1-2), 55-63.
[http://dx.doi.org/10.1016/0167-0115(93)90335-6] [PMID: 8265817]
[39]
Proshchina, A.E.; Krivova, Y.S.; Barabanov, V.M.; Saveliev, S.V. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas. Front. Endocrinol. (Lausanne), 2014, 5, 57-57.
[http://dx.doi.org/10.3389/fendo.2014.00057] [PMID: 24795697]
[40]
Beletskiy, A.; Chesnokova, E.; Bal, N. Insulin-like growth factor 2 as a possible neuroprotective agent and memory enhancer-Its comparative expression, processing and signaling in mammalian CNS. Int. J. Mol. Sci., 2021, 22(4), 1849.
[http://dx.doi.org/10.3390/ijms22041849] [PMID: 33673334]
[41]
Unger, J.; McNeill, T.H.; Moxley, R.T., III; White, M.; Moss, A.; Livingston, J.N. Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience, 1989, 31(1), 143-157.
[http://dx.doi.org/10.1016/0306-4522(89)90036-5] [PMID: 2771055]
[42]
Shaughness, M.; Acs, D.; Brabazon, F.; Hockenbury, N.; Byrnes, K.R. Role of insulin in neurotrauma and neurodegeneration: A review. Front. Neurosci., 2020, 14, 547175.
[http://dx.doi.org/10.3389/fnins.2020.547175] [PMID: 33100956]
[43]
Faragó, N.; Kocsis, Á.K.; Lovas, S.; Molnár, G.; Boldog, E.; Rózsa, M.; Szemenyei, V.; Vámos, E.; Nagy, L.I.; Tamás, G.; Puskás, L.G. Digital PCR to determine the number of transcripts from single neurons after patch-clamp recording. Biotechniques, 2013, 54(6), 327-336.
[http://dx.doi.org/10.2144/000114029] [PMID: 23750542]
[44]
Souto, S.B.; Campos, J.R.; Fangueiro, J.F.; Silva, A.M.; Cicero, N.; Lucarini, M.; Durazzo, A.; Santini, A.; Souto, E.B. Multiple cell signalling pathways of human proinsulin c-peptide in vasculopathy protection. Int. J. Mol. Sci., 2020, 21(2), 645.
[http://dx.doi.org/10.3390/ijms21020645] [PMID: 31963760]
[45]
Dorn, A.; Bernstein, H.G.; Rinne, A.; Ziegler, M.; Hahn, H.J.; Ansorge, S. Insulin- and glucagonlike peptides in the brain. Anat. Rec., 1983, 207(1), 69-77.
[http://dx.doi.org/10.1002/ar.1092070108] [PMID: 6356989]
[46]
Ribeiro, I.M.R.; Antunes, V.R. The role of insulin at brain-liver axis in the control of glucose production. Am. J. Physiol. Gastrointest. Liver Physiol., 2018, 315(4), G538-G543.
[http://dx.doi.org/10.1152/ajpgi.00290.2017] [PMID: 29878846]
[47]
Pearse, A.G.E.; Polak, J.M. Neural crest origin of the endocrine polypeptide (APUD) cells of the gastrointestinal tract and pancreas. Gut, 1971, 12(10), 783-788.
[http://dx.doi.org/10.1136/gut.12.10.783] [PMID: 5123259]
[48]
Fujita, T.; Kobayashi, S.; Yui, R. Paraneuron concept and its current implications. Adv. Biochem. Psychopharmacol., 1980, 25, 321-325.
[PMID: 6108685]
[49]
Le Roith, D.; Shiloach, J.; Roth, J. Is there an earlier phylogenetic precursor that is common to both the nervous and endocrine systems? Peptides, 1982, 3(3), 211-215.
[http://dx.doi.org/10.1016/0196-9781(82)90080-8] [PMID: 6126861]
[50]
Kemp, D.M.; Lin, J.C.; Habener, J.F. Regulation of Pax4 paired homeodomain gene by neuron-restrictive silencer factor. J. Biol. Chem., 2003, 278(37), 35057-35062.
[http://dx.doi.org/10.1074/jbc.M305891200] [PMID: 12829700]
[51]
Aigha, I.I.; Abdelalim, E.M. NKX6.1 transcription factor: A crucial regulator of pancreatic β cell development, identity, and proliferation. Stem Cell Res. Ther., 2020, 11(1), 459.
[http://dx.doi.org/10.1186/s13287-020-01977-0] [PMID: 33121533]
[52]
Atouf, F.; Czernichow, P.; Scharfmann, R. Expression of neuronal traits in pancreatic beta cells. Implication of neuron-restrictive silencing factor/repressor element silencing transcription factor, a neuron-restrictive silencer. J. Biol. Chem., 1997, 272(3), 1929-1934.
[http://dx.doi.org/10.1074/jbc.272.3.1929] [PMID: 8999882]
[53]
Silva, I.B.B.; Kimura, C.H.; Colantoni, V.P.; Sogayar, M.C. Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges. Stem Cell Res. Ther., 2022, 13(1), 309.
[http://dx.doi.org/10.1186/s13287-022-02977-y] [PMID: 35840987]
[54]
Fukuyama, H.; Ogawa, M.; Yamauchi, H.; Yamaguchi, S.; Kimura, J.; Yonekura, Y.; Konishi, J. Altered cerebral energy metabolism in Alzheimer’s disease: A PET study. J. Nucl. Med., 1994, 35(1), 1-6.
[PMID: 8271029]
[55]
Park, J.; Jeong, W.; Yun, C.; Kim, H.; Oh, C.M. Serotonergic regulation of hepatic energy metabolism. Endocrinol. Metab., 2021, 36(6), 1151-1160.
[http://dx.doi.org/10.3803/EnM.2021.1331] [PMID: 34911172]
[56]
Rulifson, E.J.; Kim, S.K.; Nusse, R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science, 2002, 296(5570), 1118-1120.
[http://dx.doi.org/10.1126/science.1070058] [PMID: 12004130]
[57]
Teller, J.K.; Pilc, L. Insulin in insects: Analysis of immunoreactivity in tissue extracts. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. Comp. Biochem. Phys. B, 1985, 81, 493-497.
[58]
Urbański, A.; Johnston, P.; Bittermann, E.; Keshavarz, M.; Paris, V.; Walkowiak-Nowicka, K.; Konopińska, N.; Marciniak, P.; Rolff, J. Tachykinin-related peptides modulate immune-gene expression in the mealworm beetle Tenebrio molitor L. Sci. Rep., 2022, 12(1), 17277.
[http://dx.doi.org/10.1038/s41598-022-21605-6] [PMID: 36241888]
[59]
Nunes, C.; Sucena, É.; Koyama, T. Endocrine regulation of immunity in insects. FEBS J., 2021, 288(13), 3928-3947.
[http://dx.doi.org/10.1111/febs.15581] [PMID: 33021015]
[60]
Kuwabara, T.; Asashima, M. Regenerative medicine using adult neural stem cells: the potential for diabetes therapy and other pharmaceutical applications. J. Mol. Cell Biol., 2012, 4(3), 133-139.
[http://dx.doi.org/10.1093/jmcb/mjs016] [PMID: 22577214]
[61]
Jensen, J. Gene regulatory factors in pancreatic development. Dev. Dyn., 2004, 229(1), 176-200.
[http://dx.doi.org/10.1002/dvdy.10460] [PMID: 14699589]
[62]
Mimeault, M.; Batra, S.K. Concise review: Recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells, 2006, 24(11), 2319-2345.
[http://dx.doi.org/10.1634/stemcells.2006-0066] [PMID: 16794264]
[63]
Ushiki, T.; Watanabe, S. Distribution and ultrastructure of the autonomic nerves in the mouse pancreas. Microsc. Res. Tech., 1997, 37(5-6), 399-406.
[http://dx.doi.org/10.1002/(SICI)1097-0029(19970601)37:5/6<399:AID-JEMT4>3.0.CO;2-9] [PMID: 9220419]
[64]
Jansson, L.; Barbu, A.; Bodin, B.; Drott, C.J.; Espes, D.; Gao, X.; Grapensparr, L.; Källskog, Ö.; Lau, J.; Liljebäck, H.; Palm, F.; Quach, M.; Sandberg, M.; Strömberg, V.; Ullsten, S.; Carlsson, P.O. Pancreatic islet blood flow and its measurement. Ups. J. Med. Sci., 2016, 121(2), 81-95.
[http://dx.doi.org/10.3109/03009734.2016.1164769] [PMID: 27124642]
[65]
Tecott, L.H. Serotonin and the orchestration of energy balance. Cell Metab., 2007, 6(5), 352-361.
[http://dx.doi.org/10.1016/j.cmet.2007.09.012] [PMID: 17983581]
[66]
Nekrep, N.; Wang, J.; Miyatsuka, T.; German, M.S. Signals from the neural crest regulate beta-cell mass in the pancreas. Development, 2008, 135(12), 2151-2160.
[http://dx.doi.org/10.1242/dev.015859] [PMID: 18506029]
[67]
Persson-Sjögren, S. Neuroinsular complex type I: Morphology and frequency in lean and genetically obese mice. Pancreas, 2001, 23(1), 40-48.
[http://dx.doi.org/10.1097/00006676-200107000-00006] [PMID: 11451146]
[68]
Olerud, J.; Kanaykina, N.; Vasilovska, S.; King, D.; Sandberg, M.; Jansson, L.; Kozlova, E.N. Neural crest stem cells increase beta cell proliferation and improve islet function in co-transplanted murine pancreatic islets. Diabetologia, 2009, 52(12), 2594-2601.
[http://dx.doi.org/10.1007/s00125-009-1544-z] [PMID: 19823803]
[69]
Huising, M.O. Paracrine regulation of insulin secretion. Diabetologia, 2020, 63(10), 2057-2063.
[http://dx.doi.org/10.1007/s00125-020-05213-5] [PMID: 32894316]
[70]
Plank, J.L.; Mundell, N.A.; Frist, A.Y.; LeGrone, A.W.; Kim, T.; Musser, M.A.; Walter, T.J.; Labosky, P.A. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation. Dev. Biol., 2011, 349(2), 321-330.
[http://dx.doi.org/10.1016/j.ydbio.2010.11.013] [PMID: 21081123]
[71]
Merkle, F.T.; Alvarez-Buylla, A. Neural stem cells in mammalian development. Curr. Opin. Cell Biol., 2006, 18(6), 704-709.
[http://dx.doi.org/10.1016/j.ceb.2006.09.008] [PMID: 17046226]
[72]
Minami, K.; Seino, S. Current status of regeneration of pancreatic β-cells. J. Diabetes Investig., 2013, 4(2), 131-141.
[http://dx.doi.org/10.1111/jdi.12062] [PMID: 24843642]
[73]
Seaberg, R.M.; Smukler, S.R.; Kieffer, T.J.; Enikolopov, G.; Asghar, Z.; Wheeler, M.B.; Korbutt, G.; van der Kooy, D. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol., 2004, 22(9), 1115-1124.
[http://dx.doi.org/10.1038/nbt1004] [PMID: 15322557]
[74]
Miyata, T.; Maeda, T.; Lee, J.E. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev., 1999, 13(13), 1647-1652.
[http://dx.doi.org/10.1101/gad.13.13.1647] [PMID: 10398678]
[75]
Lee, T.; Cho, I.S.; Bashyal, N.; Naya, F.J.; Tsai, M.J.; Yoon, J.S.; Choi, J.M.; Park, C.H.; Kim, S.S.; Suh-Kim, H. ERK Regulates NeuroD1-mediated neurite outgrowth via proteasomal degradation. Exp. Neurobiol., 2020, 29(3), 189-206.
[http://dx.doi.org/10.5607/en20021] [PMID: 32606250]
[76]
de Pablo, F.; de la Rosa, E.J. The developing CNS: A scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci., 1995, 18(3), 143-150.
[http://dx.doi.org/10.1016/0166-2236(95)93892-2] [PMID: 7754526]
[77]
Fujimaki, S.; Kuwabara, T. Diabetes-induced dysfunction of mitochondria and stem cells in skeletal muscle and the nervous system. Int. J. Mol. Sci., 2017, 18(10), 2147.
[http://dx.doi.org/10.3390/ijms18102147] [PMID: 29036909]
[78]
Seri, B.; García-Verdugo, J.M.; McEwen, B.S.; Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci., 2001, 21(18), 7153-7160.
[http://dx.doi.org/10.1523/JNEUROSCI.21-18-07153.2001] [PMID: 11549726]
[79]
Guo, T.; Hebrok, M. Stem cells to pancreatic β-cells: New sources for diabetes cell therapy. Endocr. Rev., 2009, 30(3), 214-227.
[http://dx.doi.org/10.1210/er.2009-0004] [PMID: 19389995]
[80]
Rezania, A.; Bruin, J.E.; Riedel, M.J.; Mojibian, M.; Asadi, A.; Xu, J.; Gauvin, R.; Narayan, K.; Karanu, F.; O’Neil, J.J.; Ao, Z.; Warnock, G.L.; Kieffer, T.J. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes, 2012, 61(8), 2016-2029.
[http://dx.doi.org/10.2337/db11-1711] [PMID: 22740171]
[81]
Shahjalal, H.M.; Abdal Dayem, A.; Lim, K.M.; Jeon, T.; Cho, S.G. Generation of pancreatic β cells for treatment of diabetes: Advances and challenges. Stem Cell Res. Ther., 2018, 9(1), 355.
[http://dx.doi.org/10.1186/s13287-018-1099-3] [PMID: 30594258]
[82]
Silva, I.B.B.; Kimura, C.H.; Colantoni, V.P.; Sogayar, M.C. Correction: Stem cells differentiation into insulin-producing cells (IPCs): Recent advances and current challenges. Stem Cell Res. Ther., 2022, 13(1), 520.
[http://dx.doi.org/10.1186/s13287-022-03206-2] [PMID: 36380390]
[83]
Weiss, S.; Reynolds, B.A.; Vescovi, A.L.; Morshead, C.; Craig, C.G.; der Kooy, D. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci., 1996, 19(9), 387-393.
[http://dx.doi.org/10.1016/S0166-2236(96)10035-7] [PMID: 8873356]
[84]
Llorente, V.; Velarde, P.; Desco, M.; Gómez-Gaviro, M.V. Current understanding of the neural stem cell niches. Cells, 2022, 11(19), 3002.
[http://dx.doi.org/10.3390/cells11193002] [PMID: 36230964]
[85]
Rietze, R.L.; Valcanis, H.; Brooker, G.F.; Thomas, T.; Voss, A.K.; Bartlett, P.F. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature, 2001, 412(6848), 736-739.
[http://dx.doi.org/10.1038/35089085] [PMID: 11507641]
[86]
Horgusluoglu, E.; Nudelman, K.; Nho, K.; Saykin, A.J. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2017, 174(1), 93-112.
[http://dx.doi.org/10.1002/ajmg.b.32429] [PMID: 26879907]
[87]
Adamo, A.M.; Zago, M.P.; Mackenzie, G.G.; Aimo, L.; Keen, C.L.; Keenan, A.; Oteiza, P.I. The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotox. Res., 2010, 17(1), 1-14.
[http://dx.doi.org/10.1007/s12640-009-9067-4] [PMID: 19784710]
[88]
Wakabayashi, T.; Hidaka, R.; Fujimaki, S.; Asashima, M.; Kuwabara, T. Diabetes impairs Wnt3 protein-induced neurogenesis in olfactory bulbs via glutamate transporter 1 inhibition. J. Biol. Chem., 2016, 291(29), 15196-15211.
[http://dx.doi.org/10.1074/jbc.M115.672857] [PMID: 27226528]
[89]
Obernier, K.; Alvarez-Buylla, A. Neural stem cells: Origin, heterogeneity and regulation in the adult mammalian brain. Development, 2019, 146(4), dev156059.
[http://dx.doi.org/10.1242/dev.156059] [PMID: 30777863]
[90]
Ottoboni, L.; von Wunster, B.; Martino, G. Therapeutic plasticity of neural stem cells. Front. Neurol., 2020, 11, 148.
[http://dx.doi.org/10.3389/fneur.2020.00148] [PMID: 32265815]
[91]
Naya, F.J.; Huang, H.P.; Qiu, Y.; Mutoh, H.; DeMayo, F.J.; Leiter, A.B.; Tsai, M.J. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes Dev., 1997, 11(18), 2323-2334.
[http://dx.doi.org/10.1101/gad.11.18.2323] [PMID: 9308961]
[92]
Vicario-Abejón, C.; Yusta-Boyo, M.J.; Fernández-Moreno, C.; de Pablo, F. Locally born olfactory bulb stem cells proliferate in response to insulin-related factors and require endogenous insulin-like growth factor-I for differentiation into neurons and glia. J. Neurosci., 2003, 23(3), 895-906.
[http://dx.doi.org/10.1523/JNEUROSCI.23-03-00895.2003] [PMID: 12574418]
[93]
Lee, T.K.; Chen, B.H.; Lee, J.C.; Shin, M.C.; Cho, J.H.; Lee, H.A.; Choi, J.H.; Hwang, I.K.; Kang, I.J.; Ahn, J.H.; Park, J.H.; Choi, S.Y.; Won, M.H. Age dependent decreases in insulin like growth factor-I and its receptor expressions in the gerbil olfactory bulb. Mol. Med. Rep., 2018, 17(6), 8161-8166.
[http://dx.doi.org/10.3892/mmr.2018.8886] [PMID: 29658594]
[94]
Deem, J.D.; Muta, K.; Scarlett, J.M.; Morton, G.J.; Schwartz, M.W. How should we think about the role of the brain in glucose homeostasis and diabetes? Diabetes, 2017, 66(7), 1758-1765.
[http://dx.doi.org/10.2337/dbi16-0067] [PMID: 28603139]
[95]
Godoy-Parejo, C.; Deng, C.; Liu, W.; Chen, G. Insulin stimulates PI3K/AKT and cell adhesion to promote the survival of individualized human embryonic stem cells. Stem Cells, 2019, 37(8), 1030-1041.
[http://dx.doi.org/10.1002/stem.3026] [PMID: 31021484]
[96]
Asrican, B.; Wooten, J.; Li, Y.D.; Quintanilla, L.; Zhang, F.; Wander, C.; Bao, H.; Yeh, C.Y.; Luo, Y.J.; Olsen, R.; Lim, S.A.; Hu, J.; Jin, P.; Song, J. Neuropeptides modulate local astrocytes to regulate adult hippocampal neural stem cells. Neuron, 2020, 108(2), 349-366.e6.
[http://dx.doi.org/10.1016/j.neuron.2020.07.039] [PMID: 32877641]
[97]
Sun, G.J.; Zhou, Y.; Stadel, R.P.; Moss, J.; Yong, J.H.A.; Ito, S.; Kawasaki, N.K.; Phan, A.T.; Oh, J.H.; Modak, N.; Reed, R.R.; Toni, N.; Song, H.; Ming, G. Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proc. Natl. Acad. Sci., 2015, 112(30), 9484-9489.
[http://dx.doi.org/10.1073/pnas.1508545112] [PMID: 26170290]
[98]
Fuentealba, L.C.; Rompani, S.B.; Parraguez, J.I.; Obernier, K.; Romero, R.; Cepko, C.L.; Alvarez-Buylla, A. Embryonic origin of postnatal neural stem cells. Cell, 2015, 161(7), 1644-1655.
[http://dx.doi.org/10.1016/j.cell.2015.05.041] [PMID: 26091041]
[99]
Bond, A.M.; Ming, G.; Song, H. Adult mammalian neural stem cells and neurogenesis: Five decades later. Cell Stem Cell, 2015, 17(4), 385-395.
[http://dx.doi.org/10.1016/j.stem.2015.09.003] [PMID: 26431181]
[100]
Sakamoto, M.; Ieki, N.; Miyoshi, G.; Mochimaru, D.; Miyachi, H.; Imura, T.; Yamaguchi, M.; Fishell, G.; Mori, K.; Kageyama, R.; Imayoshi, I. Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. J. Neurosci., 2014, 34(17), 5788-5799.
[http://dx.doi.org/10.1523/JNEUROSCI.0674-14.2014] [PMID: 24760839]
[101]
Brookmeyer, R.; Johnson, E.; Ziegler-Graham, K.; Arrighi, H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement., 2007, 3(3), 186-191.
[http://dx.doi.org/10.1016/j.jalz.2007.04.381] [PMID: 19595937]
[102]
Lim, D.A.; Alvarez-Buylla, A. The adult ventricular–subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harb. Perspect. Biol., 2016, 8(5), a018820.
[http://dx.doi.org/10.1101/cshperspect.a018820] [PMID: 27048191]
[103]
Johansson, C.B.; Momma, S.; Clarke, D.L.; Risling, M.; Lendahl, U.; Frisén, J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell, 1999, 96(1), 25-34.
[http://dx.doi.org/10.1016/S0092-8674(00)80956-3] [PMID: 9989494]
[104]
Reynolds, B.A.; Weiss, S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol., 1996, 175(1), 1-13.
[http://dx.doi.org/10.1006/dbio.1996.0090] [PMID: 8608856]
[105]
Richins, C.A. The innervation of the pancreas. J. Comp. Neurol., 1945, 83(3), 223-236.
[http://dx.doi.org/10.1002/cne.900830303] [PMID: 21009099]
[106]
Galiakberova, A.A.; Dashinimaev, E.B. Neural stem cells and methods for their generation from induced pluripotent stem cells in vitro. Front. Cell Dev. Biol., 2020, 8, 815.
[http://dx.doi.org/10.3389/fcell.2020.00815] [PMID: 33117792]
[107]
Gonzalez-Perez, O. Neural stem cells in the adult human brain. Biol. Biomed. Rep., 2012, 2(1), 59-69.
[PMID: 23181200]
[108]
Gingrich, E.C.; Case, K.; Garcia, A.D.R. A subpopulation of astrocyte progenitors defined by Sonic hedgehog signaling. Neural Dev., 2022, 17(1), 2.
[http://dx.doi.org/10.1186/s13064-021-00158-w] [PMID: 35027088]
[109]
Wang, J.; Gallagher, D.; DeVito, L.M.; Cancino, G.I.; Tsui, D.; He, L.; Keller, G.M.; Frankland, P.W.; Kaplan, D.R.; Miller, F.D. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell, 2012, 11(1), 23-35.
[http://dx.doi.org/10.1016/j.stem.2012.03.016] [PMID: 22770240]
[110]
Ameen, O.; Samaka, R.M.; Abo-Elsoud, R.A.A. Metformin alleviates neurocognitive impairment in aging via activation of AMPK/BDNF/PI3K pathway. Sci. Rep., 2022, 12(1), 17084.
[http://dx.doi.org/10.1038/s41598-022-20945-7] [PMID: 36224264]
[111]
Kempermann, G.; Song, H.; Gage, F.H. Neurogenesis in the Adult Hippocampus. Cold Spring Harb. Perspect. Biol., 2015, 7(9), a018812.
[http://dx.doi.org/10.1101/cshperspect.a018812] [PMID: 26330519]
[112]
Capela, A.; Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron, 2002, 35(5), 865-875.
[http://dx.doi.org/10.1016/S0896-6273(02)00835-8] [PMID: 12372282]
[113]
Basak, O.; Clevers, H. Neural stem cells for diabetes cell-based therapy. EMBO Mol. Med., 2011, 3(12), 698-700.
[http://dx.doi.org/10.1002/emmm.201100178] [PMID: 22238783]
[114]
Farzanehfar, P. Comparative review of adult midbrain and striatum neurogenesis with classical neurogenesis. Neurosci. Res., 2018, 134, 1-9.
[http://dx.doi.org/10.1016/j.neures.2018.01.002] [PMID: 29339103]
[115]
Doetsch, F.; Caillé, I.; Lim, D.A.; García-Verdugo, J.M.; Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 1999, 97(6), 703-716.
[http://dx.doi.org/10.1016/S0092-8674(00)80783-7] [PMID: 10380923]
[116]
Jackson-Guilford, J.; Leander, J.D.; Nisenbaum, L.K. The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neurosci. Lett., 2000, 293(2), 91-94.
[http://dx.doi.org/10.1016/S0304-3940(00)01502-0] [PMID: 11027841]
[117]
Van Hoof, D.; D’Amour, K.A.; German, M.S. Derivation of insulin-producing cells from human embryonic stem cells. Stem Cell Res., 2009, 3(2-3), 73-87.
[http://dx.doi.org/10.1016/j.scr.2009.08.003] [PMID: 19766074]
[118]
Mishra, P.K.; Singh, S.R.; Joshua, I.G.; Tyagi, S.C. Stem cells as a therapeutic target for diabetes. Front. Biosci., 2010, 15(1), 461-477.
[http://dx.doi.org/10.2741/3630] [PMID: 20036830]
[119]
Bachor, T.P.; Suburo, A.M. Neural stem cells in the diabetic brain. Stem Cells Int., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/820790] [PMID: 23213341]
[120]
Gabr, M.M.; Zakaria, M.M.; Refaie, A.F.; Khater, S.M.; Ashamallah, S.A.; Ismail, A.M.; El-Badri, N.; Ghoneim, M.A. Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: Comparison of three differentiation protocols. BioMed Res. Int., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/832736] [PMID: 24818157]
[121]
Carlsson, P.O.; Schwarcz, E.; Korsgren, O.; Le Blanc, K. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes, 2015, 64(2), 587-592.
[http://dx.doi.org/10.2337/db14-0656] [PMID: 25204974]
[122]
Meivar-Levy, I.; Ferber, S. Reprogramming of liver cells into insulin-producing cells. Best Pract. Res. Clin. Endocrinol. Metab., 2015, 29(6), 873-882.
[http://dx.doi.org/10.1016/j.beem.2015.10.006] [PMID: 26696516]
[123]
Millman, J.R.; Xie, C.; Van Dervort, A.; Gürtler, M.; Pagliuca, F.W.; Melton, D.A. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat. Commun., 2016, 7(1), 11463.
[http://dx.doi.org/10.1038/ncomms11463] [PMID: 27163171]
[124]
Kim, Y.; Kim, H.; Ko, U.H.; Oh, Y.; Lim, A.; Sohn, J.W.; Shin, J.H.; Kim, H.; Han, Y.M. Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo. Sci. Rep., 2016, 6(1), 35145.
[http://dx.doi.org/10.1038/srep35145] [PMID: 27731367]
[125]
Kondo, Y.; Toyoda, T.; Inagaki, N.; Osafune, K. iPSC technology-based regenerative therapy for diabetes. J. Diabetes Investig., 2018, 9(2), 234-243.
[http://dx.doi.org/10.1111/jdi.12702] [PMID: 28609558]
[126]
Hwang, G.; Jeong, H.; Yang, H.K.; Kim, H.S.; Hong, H.; Kim, N.J.; Oh, I.H.; Yim, H.W. Efficacies of stem cell therapies for functional improvement of the β cell in patients with diabetes: A systematic review of controlled clinical trials. Int. J. Stem Cells, 2019, 12(2), 195-205.
[http://dx.doi.org/10.15283/ijsc18076] [PMID: 31022997]
[127]
Solis, M.A.; Moreno Velásquez, I.; Correa, R.; Huang, L.L.H. Stem cells as a potential therapy for diabetes mellitus: A call-to-action in Latin America. Diabetol. Metab. Syndr., 2019, 11(1), 20.
[http://dx.doi.org/10.1186/s13098-019-0415-0] [PMID: 30820250]
[128]
Wang, Q.; Donelan, W.; Ye, H.; Jin, Y.; Lin, Y.; Wu, X.; Wang, Y.; Xi, Y. Real-time observation of pancreatic beta cell differentiation from human induced pluripotent stem cells. Am. J. Transl. Res., 2019, 11(6), 3490-3504.
[PMID: 31312361]
[129]
Pixley, J.S. Mesenchymal stem cells to treat type 1 diabetes. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165315.
[http://dx.doi.org/10.1016/j.bbadis.2018.10.033] [PMID: 30508575]
[130]
Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S.; Eckert, A.; Harvey, J.; Jeggo, R.; Jhamandas, J.H.; Kann, O.; la Cour, C.M.; Martin, W.F.; Mithieux, G.; Moreira, P.I.; Murphy, M.P.; Nave, K.A.; Nuriel, T.; Oliet, S.H.R.; Saudou, F.; Mattson, M.P.; Swerdlow, R.H.; Millan, M.J. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov., 2020, 19(9), 609-633.
[http://dx.doi.org/10.1038/s41573-020-0072-x] [PMID: 32709961]
[131]
Sun, Y.; Ma, C.; Sun, H.; Wang, H.; Peng, W.; Zhou, Z.; Wang, H.; Pi, C.; Shi, Y.; He, X. Metabolism: A novel shared link between diabetes mellitus and Alzheimer’s disease. J. Diabetes Res., 2020, 2020
[http://dx.doi.org/10.1155/2020/4981814]
[132]
Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; Broich, K.; Cavedo, E.; Crutch, S.; Dartigues, J-F.; Duyckaerts, C.; Epelbaum, S.; Frisoni, G.B.; Gauthier, S.; Genthon, R.; Gouw, A.A.; Habert, M-O.; Holtzman, D.M.; Kivipelto, M.; Lista, S.; Molinuevo, J-L.; O’Bryant, S.E.; Rabinovici, G.D.; Rowe, C.; Salloway, S.; Schneider, L.S.; Sperling, R.; Teichmann, M.; Carrillo, M.C.; Cummings, J.; Jack, C.R. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement, 2016, 12(3), 292-323.
[133]
Moreira, P.I.; Duarte, A.I.; Santos, M.S.; Rego, A.C.; Oliveira, C.R. An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J. Alzheimers Dis., 2009, 16(4), 741-761.
[http://dx.doi.org/10.3233/JAD-2009-0972] [PMID: 19387110]
[134]
Zhang, X.X.; Tian, Y.; Wang, Z.T.; Ma, Y.H.; Tan, L.; Yu, J.T. The epidemiology of alzheimer’s disease modifiable risk factors and prevention. J. Prev. Alzheimers Dis., 2021, 8(3), 313-321.
[PMID: 34101789]
[135]
Li, L.; Hölscher, C. Common pathological processes in Alzheimer disease and type 2 diabetes: A review. Brain Res. Brain Res. Rev., 2007, 56(2), 384-402.
[http://dx.doi.org/10.1016/j.brainresrev.2007.09.001] [PMID: 17920690]
[136]
Barbagallo, M.; Dominguez, L.J. Type 2 diabetes mellitus and Alzheimer’s disease. World J. Diabetes, 2014, 5(6), 889-893.
[http://dx.doi.org/10.4239/wjd.v5.i6.889] [PMID: 25512792]
[137]
Freude, S.; Plum, L.; Schnitker, J.; Leeser, U.; Udelhoven, M.; Krone, W.; Bruning, J.C.; Schubert, M. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes, 2005, 54(12), 3343-3348.
[http://dx.doi.org/10.2337/diabetes.54.12.3343] [PMID: 16306348]
[138]
Li, X.; Leng, S.; Song, D. Link between type 2 diabetes and Alzheimer’s disease: From epidemiology to mechanism and treatment. Clin. Interv. Aging, 2015, 10, 549-560.
[http://dx.doi.org/10.2147/CIA.S74042] [PMID: 25792818]
[139]
Arntfield, M.E. van der Kooy, D. β-Cell evolution: How the pancreas borrowed from the brain. BioEssays, 2011, 33(8), 582-587.
[http://dx.doi.org/10.1002/bies.201100015] [PMID: 21681773]
[140]
Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1078-1089.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.018] [PMID: 27567931]
[141]
Rojas-Gutierrez, E.; Muñoz-Arenas, G.; Treviño, S.; Espinosa, B.; Chavez, R.; Rojas, K.; Flores, G.; Díaz, A.; Guevara, J. Alzheimer’s disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse, 2017, 71(10), e21990.
[http://dx.doi.org/10.1002/syn.21990] [PMID: 28650104]