Kidney Yang Deficiency Syndrome Exacerbates Aβ25-35-Induced Pathological Changes, and Ginsenoside Re Ameliorates Synapse Lesions in Aβ25-35- Injected Rats with Kidney Yang Deficiency Syndrome

Page: [48 - 58] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Traditional Chinese medicine (TCM) indicates that Alzheimer's disease (AD) is considered the consequence produced by Kidney Yang Deficiency Syndrome (KDS-Yang), which has similar clinical characteristics to glucocorticoid withdrawal syndrome. Ginsenoside Re (G-Re) has been found to ameliorate the symptoms and pathological impairments of AD. However, it’s not clear whether G-Re could protect memory and synapse lesions against kidney deficiency dementia.

Methods: Subcutaneous injection of hydrocortisone for 14 days was used to produce KDS-Yang. On the 15th day, Aβ25-35 peptide was injected into the intracerebroventricular (icv) of KDS-Yang rats. Spine density was analyzed by Golgi staining and the ultrastructural morphology of the synapse was detected using Transmission Electron Microscopy (TEM). Western blot was used to examine the expression of pS396, pS404, Tau-5, tGSK-3β, pS9GSK-3β, Syt, Syn I, GluA1, GluN2B, PSD93, PSD95, β2-AR and pS346-b2-AR.

Results: Hyperphosphorylation of tau in Aβ25-35-injected rats with KDS-Yang was stronger than in Aβ25-35-injected rats at the sites of Ser396 and Ser404. G-Re improved spatial memory damage detected by Morris water-maze (MWM), enhanced spines density, the thickness of postsynaptic density (PSD) and increased the expression of Syt, Syn I, GluA1, GluN2B, PSD93 and PSD95. Moreover, GRe decreased the hyperphosphorylation of β2-AR at serine 346 in Aβ25-35-injected rats with KDS-Yang.

Conclusion: KDS-Yang might exacerbate AD pathological lesions. Importantly, G-Re is a potential ingredient for protecting against memory and synapse deficits in kidney deficiency dementia.

[1]
Wilcock GK, Esiri MM. Plaques, tangles and dementia. J Neurol Sci 1982; 56(2-3): 343-56.
[http://dx.doi.org/10.1016/0022-510X(82)90155-1] [PMID: 7175555]
[2]
Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992; 42(3): 631-9.
[http://dx.doi.org/10.1212/WNL.42.3.631] [PMID: 1549228]
[3]
Gao Y, Tan L, Yu JT, Tan L. Tau in Alzheimer’s disease: Mechanisms and therapeutic strategies. Curr Alzheimer Res 2018; 15(3): 283-300.
[http://dx.doi.org/10.2174/1567205014666170417111859] [PMID: 28413986]
[4]
Blennow K, Bogdanovic N, Alafuzoff I, Ekman R, Davidsson P. Synaptic pathology in Alzheimer’s disease: Relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm 1996; 103(5): 603-18.
[http://dx.doi.org/10.1007/BF01273157] [PMID: 8811505]
[5]
DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: Correlation with cognitive severity. Ann Neurol 1990; 27(5): 457-64.
[http://dx.doi.org/10.1002/ana.410270502] [PMID: 2360787]
[6]
Lassmann H, Fischer P, Jellinger K. Synaptic pathology of Alzheimer’s disease. Ann N Y Acad Sci 1993; 695(1): 59-64.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb23028.x] [PMID: 8239314]
[7]
Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002; 298(5594): 789-91.
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[8]
Unschuld PU. Huang Di Nei Jing Su Wen: Nature, Knowledge, Imagery in an Ancient Chinese Medical Text. Oakland, CA, USA: University of California Press 2003.
[9]
Li L, Wei HF, Zhang L, Chu J, Zhao L. Modern biological basis of Chinese medical theory that “kidney nourishes marrow and brain is sea of marrow”. Zhongguo Zhongyao Zazhi 2006; 31(17): 1397-400.
[PMID: 17087074]
[10]
Shi Y, Liu Z. A novel perspective linkage between kidney function and Alzheimer’s disease. Front Cell Neurosci 2018; 12: 384.
[http://dx.doi.org/10.3389/fncel.2018.00384]
[11]
Bugnicourt JM, Godefroy O, Chillon JM, Choukroun G, Massy ZA. Cognitive disorders and dementia in CKD: The neglected kidney-brain axis. J Am Soc Nephrol 2013; 24(3): 353-63.
[http://dx.doi.org/10.1681/ASN.2012050536] [PMID: 23291474]
[12]
Coppolino G, Bolignano D, Gareri P, et al. Kidney function and cognitive decline in frail elderly: Two faces of the same coin? Int Urol Nephrol 2018; 50(8): 1505-10.
[http://dx.doi.org/10.1007/s11255-018-1900-3] [PMID: 29868939]
[13]
Yao CP. Huangdi Neijing. Chinese Publishing House 2010.
[14]
Guo Z, Liu X, Cao Y, et al. Common 1H-MRS characteristics in patients with Alzheimer’s disease and vascular dementia diagnosed with kidney essence deficiency syndrome: A preliminary study. Altern Ther Health Med 2017; 23(3): 12-8.
[PMID: 28236618]
[15]
Miao YC, Tian JZ, Shi J, et al. Correlation between cognitive functions and syndromes of traditional Chinese medicine in amnestic mild cognitive impairment. J Chin Integr Med 2009; 7(3): 205-11.
[http://dx.doi.org/10.3736/jcim20090302] [PMID: 19284947]
[16]
Qi D, Qiao Y, Zhang X, Yu H, Cheng B, Qiao H. Aβ damages learning and memory in Alzheimer’s disease rats with kidney-yang deficiency Evid Based Complement Alternat Med 2012; 2012: 132829.
[http://dx.doi.org/10.1155/2012/132829] [PMID: 22645624]
[17]
Zhao L, Wu H, Qiu M, et al. Metabolic signatures of Kidney yang deficiency syndrome and protective effects of two herbal extracts in rats using GC/TOF MS. Evid Based Complement Alternat Med 2013; 2013: 540957.
[http://dx.doi.org/10.1155/2013/540957] [PMID: 24159348]
[18]
Lu X, Xiong Z, Li J, Zheng S, Huo T, Li F. Metabonomic study on ‘Kidney-Yang Deficiency syndrome’ and intervention effects of Rhizoma Drynariae extracts in rats using ultra performance liquid chromatography coupled with mass spectrometry. Talanta 2011; 83(3): 700-8.
[http://dx.doi.org/10.1016/j.talanta.2010.09.026] [PMID: 21147309]
[19]
Chen M, Zhao L, Jia W. Metabonomic study on the biochemical profiles of a hydrocortisone-induced animal model. J Proteome Res 2005; 4(6): 2391-6.
[http://dx.doi.org/10.1021/pr050158o] [PMID: 16335992]
[20]
Reheman A, Gao Z, Tursun X, et al. Optimization of extraction technology of Majun Mupakhi Ela and its effect on hydrocortisone-induced kidney Yang deficiency in mice. Sci Rep 2019; 9(1): 4628.
[http://dx.doi.org/10.1038/s41598-019-41006-6] [PMID: 30874604]
[21]
Xiufeng W, Lei Z, Rongbo H, et al. Regulatory mechanism of hormones of the pituitary-target gland axes in kidney-Yang deficiency based on a support vector machine model. J Tradit Chin Med 2015; 35(2): 238-43.
[http://dx.doi.org/10.1016/S0254-6272(15)30035-2] [PMID: 25975060]
[22]
Cho IH. Effects of Panax ginseng in Neurodegenerative Diseases. J Ginseng Res 2012; 36(4): 342-53.
[http://dx.doi.org/10.5142/jgr.2012.36.4.342] [PMID: 23717136]
[23]
Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 2013; 37(1): 8-29.
[http://dx.doi.org/10.5142/jgr.2013.37.8] [PMID: 23717153]
[24]
Chen LM, Zhou XM, Cao YL, Hu WX. Neuroprotection of ginsenoside Re in cerebral ischemia-reperfusion injury in rats. J Asian Nat Prod Res 2008; 10(5): 439-45.
[http://dx.doi.org/10.1080/10286020801892292] [PMID: 18464084]
[25]
Liu YW, Zhu X, Li W, et al. Ginsenoside Re attenuates diabetes-associated cognitive deficits in rats. Pharmacol Biochem Behav 2012; 101(1): 93-8.
[http://dx.doi.org/10.1016/j.pbb.2011.12.003] [PMID: 22197711]
[26]
Madhi I, Kim JH, Shin JE, Kim Y. Ginsenoside Re exhibits neuroprotective effects by inhibiting neuroinflammation via CAMK/MAPK/NF-κB signaling in microglia. Mol Med Rep 2021; 24(4): 698.
[http://dx.doi.org/10.3892/mmr.2021.12337] [PMID: 34368872]
[27]
Liu M, Bai X, Yu S, et al. Ginsenoside Re inhibits ROS/ASK-1 dependent mitochondrial apoptosis pathway and activation of Nrf2-antioxidant response in beta-amyloid-challenged SH-SY5Y cells. Molecules 2019; 24(15): 2687.
[http://dx.doi.org/10.3390/molecules24152687] [PMID: 31344860]
[28]
Chen F, Eckman EA, Eckman CB, Chen F, Eckman EA, Eckman CB. Reductions in levels of the Alzheimer’s amyloid β peptide after oral administration of ginsenosides. FASEB J 2006; 20(8): 1269-71.
[http://dx.doi.org/10.1096/fj.05-5530fje] [PMID: 16636099]
[29]
Cao G, Su P, Zhang S, et al. Ginsenoside Re reduces Aβ production by activating PPARγ to inhibit BACE1 in N2a/APP695 cells. Eur J Pharmacol 2016; 793: 101-8.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.006] [PMID: 27840193]
[30]
Wang H, Lv J, Jiang N, Huang H, Wang Q, Liu X. Ginsenoside Re protects against chronic restraint stress‐induced cognitive deficits through regulation of NLRP3 and Nrf2 pathways in mice. Phytother Res 2021; 35(5): 2523-35.
[http://dx.doi.org/10.1002/ptr.6947] [PMID: 33783035]
[31]
Nguyen BT, Shin EJ, Jeong JH, et al. Ginsenoside Re attenuates memory impairments in aged Klotho deficient mice via interactive modulations of angiotensin II AT1 receptor, Nrf2 and GPx-1 gene. Free Radic Biol Med 2022; 189: 2-19.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.07.003] [PMID: 35840016]
[32]
Li J, Liu Y, Li W, et al. Metabolic profiling of the effects of ginsenoside Re in an Alzheimer’s disease mouse model. Behav Brain Res 2018; 337: 160-72.
[http://dx.doi.org/10.1016/j.bbr.2017.09.027] [PMID: 28927718]
[33]
Jiang X, Chen LL, Lan Z, et al. Icariin ameliorates amyloid pathologies by maintaining homeostasis of autophagic systems in Aβ1-42-injected rats. Neurochem Res 2019; 44(12): 2708-22.
[http://dx.doi.org/10.1007/s11064-019-02889-z] [PMID: 31612304]
[34]
Joiner MA, Lisé MF, Yuen EY, et al. Assembly of a β2-adrenergic receptor—GluR1 signalling complex for localized cAMP signalling. EMBO J 2010; 29(2): 482-95.
[http://dx.doi.org/10.1038/emboj.2009.344] [PMID: 19942860]
[35]
Daly CJ, McGrath JC. Previously unsuspected widespread cellular and tissue distribution of β-adrenoceptors and its relevance to drug action. Trends Pharmacol Sci 2011; 32(4): 219-26.
[http://dx.doi.org/10.1016/j.tips.2011.02.008] [PMID: 21429599]
[36]
Vistein R, Puthenveedu MA. Reprogramming of G protein-coupled receptor recycling and signaling by a kinase switch. Proc Natl Acad Sci USA 2013; 110(38): 15289-94.
[http://dx.doi.org/10.1073/pnas.1306340110] [PMID: 24003153]
[37]
Qian H, Matt L, Zhang M, et al. β 2 -Adrenergic receptor supports prolonged theta tetanus-induced LTP. J Neurophysiol 2012; 107(10): 2703-12.
[http://dx.doi.org/10.1152/jn.00374.2011] [PMID: 22338020]
[38]
Yu JT, Tan L, Ou JR, et al. Polymorphisms at the β2-adrenergic receptor gene influence Alzheimer’s disease susceptibility. Brain Res 2008; 1210: 216-22.
[http://dx.doi.org/10.1016/j.brainres.2008.03.019] [PMID: 18423577]
[39]
Manaye KF, Mouton PR, Xu G, et al. Age-related loss of noradrenergic neurons in the brains of triple transgenic mice. Age 2013; 35(1): 139-47.
[http://dx.doi.org/10.1007/s11357-011-9343-0] [PMID: 22127507]
[40]
Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA. Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer’s disease and dementia with Lewy bodies. J Neurosci 2006; 26(2): 467-78.
[http://dx.doi.org/10.1523/JNEUROSCI.4265-05.2006] [PMID: 16407544]
[41]
Kalaria RN, Andorn AC, Tabaton M, Whitehouse PJ, Harik SI, Unnerstall JR. Adrenergic receptors in aging and Alzheimer’s disease: Increased beta 2-receptors in prefrontal cortex and hippocampus. J Neurochem 1989; 53(6): 1772-81.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb09242.x] [PMID: 2553864]
[42]
Ni Y, Zhao X, Bao G, et al. Activation of β2-adrenergic receptor stimulates γ-secretase activity and accelerates amyloid plaque formation. Nat Med 2006; 12(12): 1390-6.
[http://dx.doi.org/10.1038/nm1485] [PMID: 17115048]
[43]
Li S, Jin M, Zhang D, et al. Environmental novelty activates β2-adrenergic signaling to prevent the impairment of hippocampal LTP by Aβ oligomers. Neuron 2013; 77(5): 929-41.
[http://dx.doi.org/10.1016/j.neuron.2012.12.040] [PMID: 23473322]
[44]
Chai G, Wang Y, Zhu D, Yasheng A, Zhao P. Activation of β2-adrenergic receptor promotes dendrite ramification and spine generation in APP/PS1 mice. Neurosci Lett 2017; 636: 158-64.
[http://dx.doi.org/10.1016/j.neulet.2016.11.022] [PMID: 27838449]