Comparative Pharmacokinetics of Scoparone and its Metabolite Scopoletin in Normal and ANIT-induced Intrahepatic Cholestatic Rats

Page: [303 - 311] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Scoparone, the principal natural active ingredient of Artemisia capillaries (Yin Chen), can effectively treat cholestatic diseases, but the pharmacokinetic properties of scoparone are rarely studied in intrahepatic cholestatic rats.

Objective: A sensitive and rapid LC-MS/MS method was established to detect scoparone and its metabolite of scopoletin in rat plasma and then compare their plasma pharmacokinetic differences between the normal and ANITinduced cholestasis rats.

Methods: Positive ionization was used to separate scoparone and scopoletin using acetonitrile and 0.1 % formic acid water as the mobile phase on a Hypersil ODS-BP column.

Results: The calibration curves presented good linearity (R=0.9983 and 0.9989) in the concentration range of 10- 10000 ng/mL and 0.5-500 ng/mL for scoparone and scopoletin, respectively. The precision of ≤ 9.4% and the accuracy ranged from -6.4% to 6.8% were recorded over three validation runs, and the recovery was higher than 83.9%. Under different storage conditions, scoparone and scopoletin were stable. Therefore, we studied the pharmacokinetic properties of scoparone and scopoletin in rats after a single oral administration with the above method. According to the results, the pharmacokinetic parameters of AUC, t1/2, and Cmax values of scoparone in the ANIT group were increased by 106%, 75%, and 44%, respectively, while these values of scopoletin were increased by 142%, 62%, and 65%.

Conclusion: The findings indicated that the pharmacokinetic properties of scoparone and scopoletin were significantly different between the normal and ANIT-induced cholestasis rats, which suggested that the clinical application dosage of scoparone should be adjusted according to the liver function of patients.

Graphical Abstract

[1]
Chen, H.L.; Wu, S.H.; Hsu, S.H.; Liou, B.Y.; Chen, H.L.; Chang, M.H. Jaundice revisited: Recent advances in the diagnosis and treatment of inherited cholestatic liver diseases. J. Biomed. Sci., 2018, 25(1), 75.
[http://dx.doi.org/10.1186/s12929-018-0475-8] [PMID: 30367658]
[2]
Goldstein, J.; Levy, C. Novel and emerging therapies for cholestatic liver diseases. Liver Int., 2018, 38(9), 1520-1535.
[3]
van IJzendoorn, S.C.D.; Li, Q.; Qiu, Y.; Wang, J.S.; Overeem, A.W. Unequal effects of myosin 5B mutations in liver and intestine determine the clinical presentation of low‐gamma‐glutamyltransferase cholestasis. Hepatology, 2020, 72(4), 1461-1468.
[http://dx.doi.org/10.1002/hep.31430] [PMID: 32583448]
[4]
Zhu, Y.D.; Pang, H.L.; Zhou, Q.H.; Qin, Z.F.; Jin, Q.; Finel, M.; Wang, Y.N.; Qin, W.W.; Lu, Y.; Wang, D.D.; Ge, G.B. An ultrasensitive and easy-to-use assay for sensing human UGT1A1 activities in biological systems. J. Pharm. Anal., 2020, 10(3), 263-270.
[http://dx.doi.org/10.1016/j.jpha.2020.05.005] [PMID: 32612873]
[5]
Hilscher, M.B.; Kamath, P.S.; Eaton, J.E. Cholestatic liver diseases. Mayo Clin. Proc., 2020, 95(10), 2263-2279.
[http://dx.doi.org/10.1016/j.mayocp.2020.01.015] [PMID: 33012354]
[6]
Yu, Z.; Zhu, K.; Wang, L.; Liu, Y.; Sun, J. Association of neonatal hyperbilirubinemia with ugt1a1 gene polymorphisms: A meta-analysis. Med. Sci. Monit., 2015, 21, 3104-3114.
[http://dx.doi.org/10.12659/MSM.894043] [PMID: 26467199]
[7]
Panagopoulos, P.; Maltezos, E.; Hatzakis, A.; Paraskevis, D. Hyperbilirubinemia in atazanavir treated HIV-infected patients: The impact of the UGT1A1*28 allele. Pharm. Genomics Pers. Med., 2017, 10, 205-208.
[http://dx.doi.org/10.2147/PGPM.S107152] [PMID: 28790862]
[8]
Chen, Z.; Ma, X.; Zhao, Y.; Wang, J.; Zhang, Y.; Li, J.; Wang, R.; Zhu, Y.; Wang, L.; Xiao, X. Yinchenhao decoction in the treatment of cholestasis: A systematic review and meta-analysis. J. Ethnopharmacol., 2015, 168, 208-216.
[http://dx.doi.org/10.1016/j.jep.2015.03.058] [PMID: 25849734]
[9]
Yang, D.; Yang, J.; Shi, D.; Deng, R.; Yan, B. Scoparone potentiates transactivation of the bile salt export pump gene and this effect is enhanced by cytochrome P450 metabolism but abolished by a PKC inhibitor. Br. J. Pharmacol., 2011, 164(5), 1547-1557.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01522.x] [PMID: 21649640]
[10]
Huang, W.; Zhang, J.; Moore, D.D. A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR. J. Clin. Invest., 2004, 113(1), 137-143.
[http://dx.doi.org/10.1172/JCI200418385] [PMID: 14702117]
[11]
Hoult, J.R.S.; Payá, M. Pharmacological and biochemical actions of simple coumarins: Natural products with therapeutic potential. Gen. Pharmacol., 1996, 27(4), 713-722.
[http://dx.doi.org/10.1016/0306-3623(95)02112-4] [PMID: 8853310]
[12]
Juvonen, R.; Novák, F.; Emmanouilidou, E.; Auriola, S.; Timonen, J.; Heikkinen, A.; Küblbeck, J.; Finel, M.; Raunio, H. Metabolism of scoparone in experimental animals and humans. Planta Med., 2019, 85(6), 453-464.
[http://dx.doi.org/10.1055/a-0835-2301] [PMID: 30736072]
[13]
Lv, J.L.; Li, R.S.; Jin, S.Y.; Yuan, H.L.; Fu, S.S.; Han, J.; Jin, S.X.; Xiao, X.H. Changes of pharmacokinetics of 6,7-dimethoxycoumarin in a rat model of alpha-naphthylisothiocyanate-induced experimental hepatic injury after Yinchenhao Decoction treatment. Chin. J. Integr. Med., 2012, 18(11), 831-836.
[http://dx.doi.org/10.1007/s11655-012-1272-8] [PMID: 23086487]
[14]
Wang, Y.; Xing, X.; Cao, Y.; Zhao, L.; Sun, S.; Chen, Y.; Chai, Y.; Chen, S.; Zhu, Z. Development and application of an UHPLC-MS/MS method for comparative pharmacokinetic study of eight major bioactive components from yin chen hao tang in normal and acute liver injured rats. Evid. Based Complement. Alternat. Med., 2018, 2018, 3239785.
[15]
Yin, Q.; Sun, H.; Zhang, A.; Wang, X. Pharmacokinetics and tissue distribution study of scoparone in rats by ultraperformance liquid-chromatography with tandem high-definition mass spectrometry. Fitoterapia, 2012, 83(4), 795-800.
[http://dx.doi.org/10.1016/j.fitote.2012.03.010] [PMID: 22465507]
[16]
Lv, H.; Sun, H.; Sun, W.; Liu, L.; Wang, P.; Wang, X.; Cao, H. Pharmacokinetic studies of a Chinese triple herbal drug formula. Phytomedicine, 2008, 15(11), 993-1001.
[http://dx.doi.org/10.1016/j.phymed.2008.01.006] [PMID: 18339526]
[17]
Zhang, A.; Sun, H.; Wang, X.; Jiao, G.; Yuan, Y.; Sun, W. Simultaneous in vivo RP-HPLC-DAD quantification of multiple-component and drug-drug interaction by pharmacokinetics, using 6,7-dimethylesculetin, geniposide and rhein as examples. Biomed. Chromatogr., 2012, 26(7), 844-850.
[http://dx.doi.org/10.1002/bmc.1739] [PMID: 22068685]
[18]
Wang, X.; Lv, H.; Sun, H.; Sun, W.; Liu, L.; Wang, P.; Cao, H. Simultaneous determination of 6,7-dimethylesculetin and geniposide in rat plasma and its application to pharmacokinetic studies of Yin Chen Hao Tang preparation. Arzneimittelforschung, 2008, 58(7), 336-341.
[PMID: 18751499]
[19]
Zhao, M.; Qian, D.; Shang, E.; Jiang, S.; Guo, J.; Liu, P.; Su, S.; Duan, J.; Du, L.; Tao, J. Comparative pharmacokinetics of the main compounds of Shanzhuyu extract after oral administration in normal and chronic kidney disease rats. J. Ethnopharmacol., 2015, 173, 280-286.
[http://dx.doi.org/10.1016/j.jep.2015.07.037] [PMID: 26231452]
[20]
Lakshminarayana, S.B.; Huat, T.B.; Ho, P.C.; Manjunatha, U.H.; Dartois, V.; Dick, T.; Rao, S.P.S. Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. J. Antimicrob. Chemother., 2015, 70(3), 857-867.
[http://dx.doi.org/10.1093/jac/dku457] [PMID: 25587994]
[21]
Wang, H.; Zhang, C.; Wu, Y.; Ai, Y.; Lee, D.Y.W.; Dai, R. Comparative pharmacokinetic study of two boswellic acids in normal and arthritic rat plasma after oral administration of Boswellia serrata extract or Huo Luo Xiao Ling Dan by LC-MS. Biomed. Chromatogr., 2014, 28(10), 1402-1408.
[http://dx.doi.org/10.1002/bmc.3182] [PMID: 24806456]
[22]
Baek, J.S.; Hwang, C.J.; Jung, H.W.; Park, Y.K.; Kim, Y.H.; Kang, J.S.; Cho, C.W. Comparative pharmacokinetics of a marker compound, baicalin in KOB extract after oral administration to normal and allergic-induced rats. Drug Deliv., 2014, 21(6), 453-458.
[http://dx.doi.org/10.3109/10717544.2013.876561] [PMID: 24447164]
[23]
Zhang, A.; Sun, H.; Wu, G.; Sun, W.; Yuan, Y.; Wang, X. Proteomics analysis of hepatoprotective effects for scoparone using MALDITOF/TOF mass spectrometry with bioinformatics. OMICS, 2013, 17(4), 224-229.
[http://dx.doi.org/10.1089/omi.2012.0064] [PMID: 23514563]
[24]
Hsueh, T.P.; Tsai, T.H. Preclinical pharmacokinetics of scoparone, geniposide and rhein in an herbal medicine using a validated LCMS/MS method. Molecules, 2018, 23(10), 2716.
[http://dx.doi.org/10.3390/molecules23102716] [PMID: 30360359]
[25]
Mori, N.; Yokooji, T.; Kamio, Y.; Murakami, T. Increased intestinal absorption of mizoribine, an immunosuppressive agent, in cholestatic rats. Pharmazie, 2010, 65(7), 457-460.
[PMID: 20662310]
[26]
Wang, X.; Lv, H.; Sun, H.; Liu, L.; Sun, W.; Cao, H. Development of a rapid and validated method for investigating the metabolism of scoparone in rat using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 2007, 21(23), 3883-3890.
[http://dx.doi.org/10.1002/rcm.3296] [PMID: 17979104]
[27]
Chen, H.; Huang, X.; Min, J.; Li, W.; Zhang, R.; Zhao, W.; Liu, C.; Yi, L.; Mi, S.; Wang, N.; Wang, Q.; Zhu, C. Geniposidic acid protected against ANIT-induced hepatotoxity and acute intrahepatic cholestasis, due to Fxr-mediated regulation of Bsep and Mrp2. J. Ethnopharmacol., 2016, 179, 197-207.
[http://dx.doi.org/10.1016/j.jep.2015.12.033] [PMID: 26723467]
[28]
Kossor, D.C.; Handler, J.A.; Dulik, D.M.; Meunier, P.C.; Leonard, T.B.; Goldstein, R.S. Cholestatic potentials of α-naphthylisothiocyanate (anit) and β-naphthylisothiocyanate (bnit) in the isolated perfused rat liver. Biochem. Pharmacol., 1993, 46(11), 2061-2066.
[http://dx.doi.org/10.1016/0006-2952(93)90648-G] [PMID: 8267654]
[29]
Wang, L.; Wu, G.; Wu, F.; Jiang, N.; Lin, Y. Geniposide attenuates ANIT-induced cholestasis through regulation of transporters and enzymes involved in bile acids homeostasis in rats. J. Ethnopharmacol., 2017, 196, 178-185.
[http://dx.doi.org/10.1016/j.jep.2016.12.022] [PMID: 27988401]
[30]
Mori, Y.; Koide, A.; Tatematsu, K.; Sugie, S.; Mori, H. Effects of -naphthyl isothiocyanate and a heterocyclic amine, PhIP, on cytochrome P-450, mutagenic activation of various carcinogens and glucuronidation in rat liver. Mutagenesis, 2005, 20(1), 15-22.
[http://dx.doi.org/10.1093/mutage/gei001] [PMID: 15598703]
[31]
Fayyaz, A.; Makwinja, S.; Auriola, S.; Raunio, H.; Juvonen, R. Comparison of in vitro hepatic scoparone 7-O-demethylation between humans and experimental animals. Planta Med., 2018, 84(5), 320-328.
[http://dx.doi.org/10.1055/s-0043-119886] [PMID: 28950382]
[32]
Masubuchi, N.; Nishiya, T.; Imaoka, M.; Mizumaki, K.; Okazaki, O. Promising toxicological biomarkers for the diagnosis of liver injury types: Bile acid metabolic profiles and oxidative stress marker as screening tools in drug development. Chem. Biol. Interact., 2016, 255, 74-82.
[http://dx.doi.org/10.1016/j.cbi.2015.09.012] [PMID: 26365562]
[33]
Hui, Y.; Wang, X.; Yu, Z.; Fan, X.; Cui, B.; Zhao, T.; Mao, L.; Feng, H.; Lin, L.; Yu, Q.; Zhang, J.; Wang, B.; Chen, X.; Zhao, X.; Sun, C. Scoparone as a therapeutic drug in liver diseases: Pharmacology, pharmacokinetics and molecular mechanisms of action. Pharmacol. Res., 2020, 160, 105170.
[http://dx.doi.org/10.1016/j.phrs.2020.105170] [PMID: 32877694]