Hexokinase and Glycolysis: Between Brain Cells Life and Death

Page: [91 - 123] Pages: 33

  • * (Excluding Mailing and Handling)

Abstract

Hexokinase catalyses the first regulatory step of the glycolytic pathway. We can say without any exaggeration that both hexokinase and glycolysis are involved in the control of brain cells' life and death. To perform these pivotal roles, hexokinase occurs in four different isoforms in mammalian cells. Type I isozyme is best suited for energy generation, introducing glucose in glycolysis. In contrast, Type II and Type III isoforms product is directed to generation of NADPH through the pentose phosphate pathway, utilized in biosynthetic processes. Nevertheless, hexokinase has another unique property to accomplish its multiple functions: the capacity for mitochondrial binding. Linked to its role in apoptosis control, the binding of hexokinase inhibits the action of apoptosis inducers, such as Bax, from initiating the release of intramitochondrial proteins. Akt mediates HKII binding to mitochondria. Overexpression of the phosphatase SHIP2 reduces Akt activity and enhances apoptosis, emphasizing the role of hexokinase in cell death. Furthermore, hexokinase also participates in cellular signaling and functional regulation. Adding complexity to this multidimensional enzyme´s attributes, glycolysis occurs in aerobic or anaerobic situations. “Aerobic glycolysis” participates in the control of cell excitability, in synapse formation and neurite growth. Here we provide an overview of the multiple roles of hexokinase and glycolysis in neuronal metabolic association with astrocytes, oligodendrocytes, and microglia. We also provide an update on the role of hexokinase and glycolysis in microglia activation and in brain aging and neurodegenerative diseases.

Graphical Abstract

[1]
Rose, J.; Brian, C.; Pappa, A.; Panayiotidis, M.I.; Franco, R. Mitochondrial metabolism in astrocytes regulates brain bioenergetics, neurotransmission and redox balance. Front. Neurosci., 2020, 14, 536682.
[http://dx.doi.org/10.3389/fnins.2020.536682] [PMID: 33224019]
[2]
Shulman, R.G.; Rothman, D.L.; Behar, K.L.; Hyder, F. Energetic basis of brain activity: Implications for neuroimaging. Trends Neurosci., 2004, 27(8), 489-495.
[http://dx.doi.org/10.1016/j.tins.2004.06.005] [PMID: 15271497]
[3]
Jakkamsetti, V.; Marin-Valencia, I.; Ma, Q.; Good, L.B.; Terrill, T.; Rajasekaran, K.; Pichumani, K.; Khemtong, C.; Hooshyar, M.A.; Sundarrajan, C.; Patel, M.S.; Bachoo, R.M.; Malloy, C.R.; Pascual, J.M. Brain metabolism modulates neuronal excitability in a mouse model of pyruvate dehydrogenase deficiency. Sci. Transl. Med., 2019, 11(480), eaan0457.
[http://dx.doi.org/10.1126/scitranslmed.aan0457] [PMID: 30787166]
[4]
Zhang, S.; Zuo, W.; Guo, X.F.; He, W.B.; Chen, N.H. Cerebral glucose transporter: The possible therapeutic target for ischemic stroke. Neurochem. Int., 2014, 70, 22-29.
[http://dx.doi.org/10.1016/j.neuint.2014.03.007] [PMID: 24657444]
[5]
Simpson, I.A.; Appel, N.M.; Hokari, M.; Oki, J.; Holman, G.D.; Maher, F.; Koehler-Stec, E.M.; Vannucci, S.J.; Smith, Q.R. Blood-brain barrier glucose transporter: Effects of hypo- and hyperglycemia revisited. J. Neurochem., 1999, 72(1), 238-247.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0720238.x] [PMID: 9886075]
[6]
Brown, A.M.; Ransom, B.R. Astrocyte glycogen and brain energy metabolism. Glia, 2007, 55(12), 1263-1271.
[http://dx.doi.org/10.1002/glia.20557] [PMID: 17659525]
[7]
Wang, L.; Pavlou, S.; Du, X.; Bhuckory, M.; Xu, H.; Chen, M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol. Neurodegener., 2019, 14(1), 2.
[http://dx.doi.org/10.1186/s13024-019-0305-9] [PMID: 30634998]
[8]
Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; Holtzman, D.M.; Nathan, D.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat. Rev. Neurol., 2018, 14(3), 168-181.
[http://dx.doi.org/10.1038/nrneurol.2017.185] [PMID: 29377010]
[9]
Jurcovicova, J. Glucose transport in brain-effect of inflammation. Endocr. Regul., 2014, 48(1), 35-48.
[http://dx.doi.org/10.4149/endo_2014_01_35] [PMID: 24524374]
[10]
Apelt, J.; Mehlhorn, G.; Schliebs, R. Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain. J. Neurosci. Res., 1999, 57(5), 693-705.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19990901)57:5<693:AID-JNR11>3.0.CO;2-X] [PMID: 10462693]
[11]
Gabbouj, S.; Ryhänen, S.; Marttinen, M.; Wittrahm, R.; Takalo, M.; Kemppainen, S.; Martiskainen, H.; Tanila, H.; Haapasalo, A.; Hiltunen, M.; Natunen, T. Altered insulin signaling in Alzheimer’s disease brain-ppecial emphasis on PI3K-Akt pathway. Front. Neurosci., 2019, 13, 629.
[http://dx.doi.org/10.3389/fnins.2019.00629] [PMID: 31275108]
[12]
Wilson, J.E. Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function. J. Exp. Biol., 2003, 206(12), 2049-2057.
[http://dx.doi.org/10.1242/jeb.00241] [PMID: 12756287]
[13]
de Cerqueira Cesar, M.; Wilson, J.E. Functional characteristics of hexokinase bound to the type a and type B sites of bovine brain mitochondria. Arch. Biochem. Biophys., 2002, 397(1), 106-112.
[http://dx.doi.org/10.1006/abbi.2001.2639] [PMID: 11747316]
[14]
César Rosa, J.; de Cerqueira César, M. Role of hexokinase and VDAC in neurological disorders. Curr. Mol. Pharmacol., 2016, 9(4), 320-331.
[http://dx.doi.org/10.2174/1874467209666160112123036] [PMID: 26758954]
[15]
Roberts, D.J.; Miyamoto, S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ., 2015, 22(2), 248-257.
[http://dx.doi.org/10.1038/cdd.2014.173] [PMID: 25323588]
[16]
Li, Y.; Yang, Y.; Zhao, Y.; Zhang, J.; Liu, B.; Jiao, S.; Zhang, X. Astragaloside IV reduces neuronal apoptosis and parthanatos in ischemic injury by preserving mitochondrial hexokinase-II. Free Radic. Biol. Med., 2019, 131, 251-263.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.11.033] [PMID: 30502455]
[17]
Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci., 2013, 36(10), 587-597.
[http://dx.doi.org/10.1016/j.tins.2013.07.001] [PMID: 23968694]
[18]
Cisternas, P.; Inestrosa, N.C. Brain glucose metabolism: Role of Wnt signaling in the metabolic impairment in Alzheimer’s disease. Neurosci. Biobehav. Rev., 2017, 80, 316-328.
[http://dx.doi.org/10.1016/j.neubiorev.2017.06.004] [PMID: 28624434]
[19]
Cisternas, P.; Salazar, P.; Silva-Álvarez, C.; Barros, L.F.; Inestrosa, N.C. Activation of Wnt signaling in cortical neurons enhances glucose utilization through glycolysis. J. Biol. Chem., 2016, 291(50), 25950-25964.
[http://dx.doi.org/10.1074/jbc.M116.735373] [PMID: 27703002]
[20]
BeltrandelRio, H.; Wilson, J.E. Coordinated regulation of cerebral glycolytic and oxidative metabolism, mediated by mitochondrially bound hexokinase dependent on intramitochondrially generated ATP. Arch. Biochem. Biophys., 1992, 296(2), 667-677.
[http://dx.doi.org/10.1016/0003-9861(92)90625-7] [PMID: 1632653]
[21]
BeltrandelRio, H.; Wilson, J.E. Interaction of mitochondrially bound rat brain hexokinase with intramitochondrial compartments of ATP generated by oxidative phosphorylation and creatine kinase. Arch. Biochem. Biophys., 1992, 299(1), 116-124.
[http://dx.doi.org/10.1016/0003-9861(92)90252-R] [PMID: 1444444]
[22]
de Cerqueira Cesar, M.; Wilson, J.E. Application of a double isotopic labeling method to a study of the interaction of mitochondrially bound rat brain hexokinase with intramitochondrial compartments of ATP generated by oxidative phosphorylation. Arch. Biochem. Biophys., 1995, 324(1), 9-14.
[http://dx.doi.org/10.1006/abbi.1995.9936] [PMID: 7503565]
[23]
de Cerqueira Cesar, M.; Wilson, J.E. Further studies on the coupling of mitochondrially bound hexokinase to intramitochondrially compartmented ATP, generated by oxidative phosphorylation. Arch. Biochem. Biophys., 1998, 350(1), 109-117.
[http://dx.doi.org/10.1006/abbi.1997.0497] [PMID: 9466827]
[24]
Hashimoto, M.; Wilson, J.E. Membrane potential-dependent conformational changes in mitochondrially bound hexokinase of brain. Arch. Biochem. Biophys., 2000, 384(1), 163-173.
[http://dx.doi.org/10.1006/abbi.2000.2085] [PMID: 11147827]
[25]
Arora, K.K.; Pedersen, P.L. Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J. Biol. Chem., 1988, 263(33), 17422-17428.
[http://dx.doi.org/10.1016/S0021-9258(19)77853-3] [PMID: 3182854]
[26]
Pedersen, P.L. Voltage dependent anion channels (VDACs): A brief introduction with a focus on the outer mitochondrial compartment’s roles together with hexokinase-2 in the “Warburg effect” in cancer. J. Bioenerg. Biomembr., 2008, 40(3), 123-126.
[http://dx.doi.org/10.1007/s10863-008-9165-7] [PMID: 18780167]
[27]
Bustamante, E.; Pedersen, P.L. Mitochondrial hexokinase of rat hepatoma cells in culture: Solubilization and kinetic properties. Biochemistry, 1980, 19(22), 4972-4977.
[http://dx.doi.org/10.1021/bi00563a006] [PMID: 6779859]
[28]
Kabir, F.; Wilson, J.E. Mitochondrial hexokinase in brain of various species: Differences in sensitivity to solubilization by glucose 6-phosphate. Arch. Biochem. Biophys., 1993, 300(2), 641-650.
[http://dx.doi.org/10.1006/abbi.1993.1089] [PMID: 8434944]
[29]
Kabir, F.; Wilson, J.E. Mitochondrial hexokinase in brain: Coexistence of forms differing in sensitivity to solubilization by glucose-6-phosphate on the same mitochondria. Arch. Biochem. Biophys., 1994, 310(2), 410-416.
[http://dx.doi.org/10.1006/abbi.1994.1186] [PMID: 8179326]
[30]
Cesar, M.C.; Wilson, J.E. All three isoforms of the voltage-dependent anion channel (VDAC1, VDAC2, and VDAC3) are present in mitochondria from bovine, rabbit, and rat brain. Arch. Biochem. Biophys., 2004, 422(2), 191-196.
[http://dx.doi.org/10.1016/j.abb.2003.12.030] [PMID: 14759607]
[31]
Poleti, M.D.; Tesch, A.C.; Crepaldi, C.R.; Souza, G.H.M.F.; Eberlin, M.N.; de Cerqueira César, M. Relationship between expression of voltage-dependent anion channel (VDAC) isoforms and type of hexokinase binding sites on brain mitochondria. J. Mol. Neurosci., 2010, 41(1), 48-54.
[http://dx.doi.org/10.1007/s12031-009-9278-4] [PMID: 19688190]
[32]
Crepaldi, C.R.; Vitale, P.A.M.; Tesch, A.C.; Laure, H.J.; Rosa, J.C.; de Cerqueira César, M. Application of 2D BN/SDS-PAGE coupled with mass spectrometry for identification of VDAC-associated protein complexes related to mitochondrial binding sites for type I brain hexokinase. Mitochondrion, 2013, 13(6), 823-830.
[http://dx.doi.org/10.1016/j.mito.2013.05.009] [PMID: 23719229]
[33]
Crepaldi, C.R.; Laure, H.J.; Rosa, J.C.; Cerqueira Cesar, M. VDAC differential interactome in chicken brain: Possible hints to an intrinsically distinct metabolism. J. Transl. Neurosci., 2016, 1, 1.
[34]
Manczak, M.; Sheiko, T.; Craigen, W.J.; Reddy, P.H. Reduced VDAC1 protects against Alzheimer’s disease, mitochondria, and synaptic deficiencies. J. Alzheimers Dis., 2013, 37(4), 679-690.
[http://dx.doi.org/10.3233/JAD-130761] [PMID: 23948905]
[35]
Rao, V.K.; Carlson, E.A.; Yan, S.S. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1267-1272.
[http://dx.doi.org/10.1016/j.bbadis.2013.09.003] [PMID: 24055979]
[36]
Chiara, F.; Castellaro, D.; Marin, O.; Petronilli, V.; Brusilow, W.S.; Juhaszova, M.; Sollott, S.J.; Forte, M.; Bernardi, P.; Rasola, A. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One, 2008, 3(3), e1852.
[http://dx.doi.org/10.1371/journal.pone.0001852] [PMID: 18350175]
[37]
Machida, K.; Ohta, Y.; Osada, H. Suppression of apoptosis by cyclophilin D via stabilization of hexokinase II mitochondrial binding in cancer cells. J. Biol. Chem., 2006, 281(20), 14314-14320.
[http://dx.doi.org/10.1074/jbc.M513297200] [PMID: 16551620]
[38]
Wei, L.; Zhou, Y.; Dai, Q.; Qiao, C.; Zhao, L.; Hui, H.; Lu, N.; Guo, Q-L. Oroxylin A induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis., 2013, 4(4), e601.
[http://dx.doi.org/10.1038/cddis.2013.131] [PMID: 23598413]
[39]
Yang, Y.L.; Li, J.; Liu, K.; Zhang, L.; Liu, Q.; Liu, B.; Qi, L.W. Ginsenoside Rg5 increases cardiomyocyte resistance to ischemic injury through regulation of mitochondrial hexokinase-II and dynamin-related protein 1. Cell Death Dis., 2017, 8(2), e2625.
[http://dx.doi.org/10.1038/cddis.2017.43] [PMID: 28230856]
[40]
Sun, L.; Shukair, S.; Naik, T.J.; Moazed, F.; Ardehali, H. Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol. Cell. Biol., 2008, 28(3), 1007-1017.
[http://dx.doi.org/10.1128/MCB.00224-07] [PMID: 18039843]
[41]
Rathmell, J.C.; Fox, C.J.; Plas, D.R.; Hammerman, P.S.; Cinalli, R.M.; Thompson, C.B. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol. Cell. Biol., 2003, 23(20), 7315-7328.
[http://dx.doi.org/10.1128/MCB.23.20.7315-7328.2003] [PMID: 14517300]
[42]
Mailloux, R.J.; Dumouchel, T.; Aguer, C.; deKemp, R.; Beanlands, R.; Harper, M.E. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. Biochem. J., 2011, 437(2), 301-311.
[http://dx.doi.org/10.1042/BJ20110571] [PMID: 21554247]
[43]
Vyssokikh, M.Y.; Zorova, L.; Zorov, D.; Heimlich, G.; Jürgensmeier, J.M.; Brdiczka, D. Bax releases cytochrome c preferentially from a complex between porin and adenine nucleotide translocator. Hexokinase activity suppresses this effect. Mol. Biol. Rep., 2002, 29(1/2), 93-96.
[http://dx.doi.org/10.1023/A:1020383108620] [PMID: 12243190]
[44]
Pastorino, J.G.; Shulga, N.; Hoek, J.B. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem., 2002, 277(9), 7610-7618.
[http://dx.doi.org/10.1074/jbc.M109950200] [PMID: 11751859]
[45]
Pastorino, J.; Hoek, J.; Hexokinase, I.I. The integration of energy metabolism and control of apoptosis. Curr. Med. Chem., 2003, 10(16), 1535-1551.
[http://dx.doi.org/10.2174/0929867033457269] [PMID: 12871125]
[46]
Candelise, N.; Salvatori, I.; Scaricamazza, S.; Nesci, V.; Zenuni, H.; Ferri, A.; Valle, C. Mechanistic insights of mitochondrial dysfunction in amyotrophic lateral sclerosis: An update on a lasting relationship. Metabolites, 2022, 12(3), 233.
[http://dx.doi.org/10.3390/metabo12030233] [PMID: 35323676]
[47]
Azoulay-Zohar, H.; Israelson, A.; Abu-Hamad, S.; Shoshan-Barmatz, V. In self-defence: Hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. Biochem. J., 2004, 377(2), 347-355.
[http://dx.doi.org/10.1042/bj20031465] [PMID: 14561215]
[48]
Arzoine, L.; Zilberberg, N.; Ben-Romano, R.; Shoshan-Barmatz, V. Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity. J. Biol. Chem., 2009, 284(6), 3946-3955.
[http://dx.doi.org/10.1074/jbc.M803614200] [PMID: 19049977]
[49]
Abu-Hamad, S.; Zaid, H.; Israelson, A.; Nahon, E.; Shoshan-Barmatz, V. Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: Mapping the site of binding. J. Biol. Chem., 2008, 283(19), 13482-13490.
[http://dx.doi.org/10.1074/jbc.M708216200] [PMID: 18308720]
[50]
Lemeshko, V.V. VDAC electronics: 5. Mechanism and computational model of hexokinase-dependent generation of the outer membrane potential in brain mitochondria. Biochim. Biophys. Acta Biomembr., 2018, 1860(12), 2599-2607.
[http://dx.doi.org/10.1016/j.bbamem.2018.10.004] [PMID: 30291922]
[51]
Baines, C.P.; Kaiser, R.A.; Sheiko, T.; Craigen, W.J.; Molkentin, J.D. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell Biol., 2007, 9(5), 550-555.
[http://dx.doi.org/10.1038/ncb1575] [PMID: 17417626]
[52]
Kokoszka, J.E.; Waymire, K.G.; Levy, S.E.; Sligh, J.E.; Cai, J.; Jones, D.P.; MacGregor, G.R.; Wallace, D.C. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature, 2004, 427(6973), 461-465.
[http://dx.doi.org/10.1038/nature02229] [PMID: 14749836]
[53]
Giorgio, V.; von Stockum, S.; Antoniel, M.; Fabbro, A.; Fogolari, F.; Forte, M.; Glick, G.D.; Petronilli, V.; Zoratti, M.; Szabó, I.; Lippe, G.; Bernardi, P. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl. Acad. Sci. USA, 2013, 110(15), 5887-5892.
[http://dx.doi.org/10.1073/pnas.1217823110] [PMID: 23530243]
[54]
Majewski, N.; Nogueira, V.; Bhaskar, P.; Coy, P.E.; Skeen, J.E.; Gottlob, K.; Chandel, N.S.; Thompson, C.B.; Robey, R.B.; Hay, N. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell, 2004, 16(5), 819-830.
[http://dx.doi.org/10.1016/j.molcel.2004.11.014] [PMID: 15574336]
[55]
Majewski, N.; Nogueira, V.; Robey, R.B.; Hay, N. Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol. Cell. Biol., 2004, 24(2), 730-740.
[http://dx.doi.org/10.1128/MCB.24.2.730-740.2004] [PMID: 14701745]
[56]
Roberts, D.J.; Tan-Sah, V.P.; Smith, J.M.; Miyamoto, S. Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes. J. Biol. Chem., 2013, 288(33), 23798-23806.
[http://dx.doi.org/10.1074/jbc.M113.482026] [PMID: 23836898]
[57]
Gottlob, K.; Majewski, N.; Kennedy, S.; Kandel, E.; Robey, R.B.; Hay, N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev., 2001, 15(11), 1406-1418.
[http://dx.doi.org/10.1101/gad.889901] [PMID: 11390360]
[58]
Pastorino, J.G.; Hoek, J.B.; Shulga, N. Activation of glycogen synthase kinase 3β disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res., 2005, 65(22), 10545-10554.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1925] [PMID: 16288047]
[59]
Brognard, J.; Sierecki, E.; Gao, T.; Newton, A.C. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol. Cell, 2007, 25(6), 917-931.
[http://dx.doi.org/10.1016/j.molcel.2007.02.017] [PMID: 17386267]
[60]
Shoshan-Barmatz, V.; Anand, U.; Nahon-Crystal, E.; Di Carlo, M.; Shteinfer-Kuzmine, A. Adverse effects of metformin from diabetes to COVID-19, cancer, neurodegenerative diseases, and aging: Is VDAC1 a common target? Front. Physiol., 2021, 12, 730048.
[http://dx.doi.org/10.3389/fphys.2021.730048] [PMID: 34671273]
[61]
Pantic, B.; Trevisan, E.; Citta, A.; Rigobello, M.P.; Marin, O.; Bernardi, P.; Salvatori, S.; Rasola, A. Myotonic dystrophy protein kinase (DMPK) prevents ROS-induced cell death by assembling a hexokinase II-Src complex on the mitochondrial surface. Cell Death Dis., 2013, 4(10), e858.
[http://dx.doi.org/10.1038/cddis.2013.385] [PMID: 24136222]
[62]
Cheung, E.C.; Ludwig, R.L.; Vousden, K.H. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc. Natl. Acad. Sci. USA, 2012, 109(50), 20491-20496.
[http://dx.doi.org/10.1073/pnas.1206530109] [PMID: 23185017]
[63]
Roberts, D.J.; Tan-Sah, V.P.; Ding, E.Y.; Smith, J.M.; Miyamoto, S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol. Cell, 2014, 53(4), 521-533.
[http://dx.doi.org/10.1016/j.molcel.2013.12.019] [PMID: 24462113]
[64]
Moon, J.S.; Hisata, S.; Park, M.A.; DeNicola, G.M.; Ryter, S.W.; Nakahira, K.; Choi, A.M.K. mTORC1-induced HK1-Dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep., 2015, 12(1), 102-115.
[http://dx.doi.org/10.1016/j.celrep.2015.05.046] [PMID: 26119735]
[65]
Li, Y.; Lu, B.; Sheng, L.; Zhu, Z.; Sun, H.; Zhou, Y.; Yang, Y.; Xue, D.; Chen, W.; Tian, X.; Du, Y.; Yan, M.; Zhu, W.; Xing, F.; Li, K.; Lin, S.; Qiu, P.; Su, X.; Huang, Y.; Yan, G.; Yin, W. Hexokinase 2-dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. J. Neurochem., 2018, 144(2), 186-200.
[http://dx.doi.org/10.1111/jnc.14267] [PMID: 29205357]
[66]
Wolf, A.J.; Reyes, C.N.; Liang, W.; Becker, C.; Shimada, K.; Wheeler, M.L.; Cho, H.C.; Popescu, N.I.; Coggeshall, K.M.; Arditi, M.; Underhill, D.M. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell, 2016, 166(3), 624-636.
[http://dx.doi.org/10.1016/j.cell.2016.05.076] [PMID: 27374331]
[67]
Barros, L.F. Metabolic signaling by lactate in the brain. Trends Neurosci., 2013, 36(7), 396-404.
[http://dx.doi.org/10.1016/j.tins.2013.04.002] [PMID: 23639382]
[68]
Yang, J.; Ruchti, E.; Petit, J.M.; Jourdain, P.; Grenningloh, G.; Allaman, I.; Magistretti, P.J. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc. Natl. Acad. Sci. USA, 2014, 111(33), 12228-12233.
[http://dx.doi.org/10.1073/pnas.1322912111] [PMID: 25071212]
[69]
Magistretti, P.J.; Allaman, I. Lactate in the brain: From metabolic end-product to signalling molecule. Nat. Rev. Neurosci., 2018, 19(4), 235-249.
[http://dx.doi.org/10.1038/nrn.2018.19] [PMID: 29515192]
[70]
Sivanand, S.; Viney, I.; Wellen, K.E. Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem. Sci., 2018, 43(1), 61-74.
[http://dx.doi.org/10.1016/j.tibs.2017.11.004] [PMID: 29174173]
[71]
Brown, A.M.; Baltan Tekkök, S.; Ransom, B.R. Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem. Int., 2004, 45(4), 529-536.
[http://dx.doi.org/10.1016/j.neuint.2003.11.005] [PMID: 15186919]
[72]
Goyal, M.S.; Vlassenko, A.G.; Blazey, T.M.; Su, Y.; Couture, L.E.; Durbin, T.J.; Bateman, R.J.; Benzinger, T.L.S.; Morris, J.C.; Raichle, M.E. Loss of brain aerobic glycolysis in normal human aging. Cell Metab., 2017, 26(2), 353-360.e3.
[http://dx.doi.org/10.1016/j.cmet.2017.07.010] [PMID: 28768174]
[73]
Shannon, B.J.; Vaishnavi, S.N.; Vlassenko, A.G.; Shimony, J.S.; Rutlin, J.; Raichle, M.E. Brain aerobic glycolysis and motor adaptation learning. Proc. Natl. Acad. Sci. USA, 2016, 113(26), E3782-E3791.
[http://dx.doi.org/10.1073/pnas.1604977113] [PMID: 27217563]
[74]
Goyal, M.S.; Hawrylycz, M.; Miller, J.A.; Snyder, A.Z.; Raichle, M.E. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab., 2014, 19(1), 49-57.
[http://dx.doi.org/10.1016/j.cmet.2013.11.020] [PMID: 24411938]
[75]
Maffezzini, C.; Calvo-Garrido, J.; Wredenberg, A.; Freyer, C. Metabolic regulation of neurodifferentiation in the adult brain. Cell. Mol. Life Sci., 2020, 77(13), 2483-2496.
[http://dx.doi.org/10.1007/s00018-019-03430-9] [PMID: 31912194]
[76]
Zheng, X.; Boyer, L.; Jin, M.; Mertens, J.; Kim, Y.; Ma, L.; Ma, L.; Hamm, M.; Gage, F.H.; Hunter, T. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife, 2016, 5, e13374.
[http://dx.doi.org/10.7554/eLife.13374] [PMID: 27282387]
[77]
Zhou, W.; Zhao, T.; Du, J.; Ji, G.; Li, X.; Ji, S.; Tian, W.; Wang, X.; Hao, A. TIGAR promotes neural stem cell differentiation through acetyl-CoA-mediated histone acetylation. Cell Death Dis., 2019, 10(3), 198.
[http://dx.doi.org/10.1038/s41419-019-1434-3] [PMID: 30814486]
[78]
Afridi, R.; Kim, J.H.; Rahman, M.H.; Suk, K. Metabolic regulation of glial phenotypes: Implications in neuron-glia interactions and neurological disorders. Front. Cell. Neurosci., 2020, 14, 20.
[http://dx.doi.org/10.3389/fncel.2020.00020] [PMID: 32116564]
[79]
Rama Rao, K.V.; Kielian, T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. Clin. Exp. Neuroimmunol., 2015, 6(3), 245-263.
[http://dx.doi.org/10.1111/cen3.12237] [PMID: 26543505]
[80]
Lundgaard, I.; Li, B.; Xie, L.; Kang, H.; Sanggaard, S.; Haswell, J.D.R.; Sun, W.; Goldman, S.; Blekot, S.; Nielsen, M.; Takano, T.; Deane, R.; Nedergaard, M. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat. Commun., 2015, 6(1), 6807.
[http://dx.doi.org/10.1038/ncomms7807] [PMID: 25904018]
[81]
Müller, M.S.; Fouyssac, M.; Taylor, C.W. Effective glucose uptake by human astrocytes requires its sequestration in the endoplasmic reticulum by glucose-6-phosphatase-&#946. Curr. Biol., 2018, 28(21), 3481-3486.e4.
[http://dx.doi.org/10.1016/j.cub.2018.08.060] [PMID: 30415704]
[82]
Chuquet, J.; Quilichini, P.; Nimchinsky, E.A.; Buzsáki, G. Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. J. Neurosci., 2010, 30(45), 15298-15303.
[http://dx.doi.org/10.1523/JNEUROSCI.0762-10.2010] [PMID: 21068334]
[83]
Supplie, L.M.; Düking, T.; Campbell, G.; Diaz, F.; Moraes, C.T.; Götz, M.; Hamprecht, B.; Boretius, S.; Mahad, D.; Nave, K.A. Respiration-deficient astrocytes survive as glycolytic cells in vivo. J. Neurosci., 2017, 37(16), 4231-4242.
[http://dx.doi.org/10.1523/JNEUROSCI.0756-16.2017] [PMID: 28314814]
[84]
Halim, N.D.; Mcfate, T.; Mohyeldin, A.; Okagaki, P.; Korotchkina, L.G.; Patel, M.S.; Jeoung, N.H.; Harris, R.A.; Schell, M.J.; Verma, A. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia, 2010, 58(10), 1168-1176.
[http://dx.doi.org/10.1002/glia.20996] [PMID: 20544852]
[85]
Fu, W.; Shi, D.; Westaway, D.; Jhamandas, J.H. Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity. J. Biol. Chem., 2015, 290(20), 12504-12513.
[http://dx.doi.org/10.1074/jbc.M114.618157] [PMID: 25814669]
[86]
Schönfeld, P.; Reiser, G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J. Cereb. Blood Flow Metab., 2013, 33(10), 1493-1499.
[http://dx.doi.org/10.1038/jcbfm.2013.128] [PMID: 23921897]
[87]
Herrero-Mendez, A.; Almeida, A.; Fernández, E.; Maestre, C.; Moncada, S.; Bolaños, J.P. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nat. Cell Biol., 2009, 11(6), 747-752.
[http://dx.doi.org/10.1038/ncb1881] [PMID: 19448625]
[88]
Hertz, L.; Peng, L.; Dienel, G.A. Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J. Cereb. Blood Flow Metab., 2007, 27(2), 219-249.
[http://dx.doi.org/10.1038/sj.jcbfm.9600343] [PMID: 16835632]
[89]
Lovatt, D.; Sonnewald, U.; Waagepetersen, H.S.; Schousboe, A.; He, W.; Lin, J.H.C.; Han, X.; Takano, T.; Wang, S.; Sim, F.J.; Goldman, S.A.; Nedergaard, M. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J. Neurosci., 2007, 27(45), 12255-12266.
[http://dx.doi.org/10.1523/JNEUROSCI.3404-07.2007] [PMID: 17989291]
[90]
Jiang, T.; Cadenas, E. Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell, 2014, 13(6), 1059-1067.
[http://dx.doi.org/10.1111/acel.12268] [PMID: 25233945]
[91]
Zamanian, J.L.; Xu, L.; Foo, L.C.; Nouri, N.; Zhou, L.; Giffard, R.G.; Barres, B.A. Genomic analysis of reactive astrogliosis. J. Neurosci., 2012, 32(18), 6391-6410.
[http://dx.doi.org/10.1523/JNEUROSCI.6221-11.2012] [PMID: 22553043]
[92]
Boisvert, M.M.; Erikson, G.A.; Shokhirev, M.N.; Allen, N.J. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep., 2018, 22(1), 269-285.
[http://dx.doi.org/10.1016/j.celrep.2017.12.039] [PMID: 29298427]
[93]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[94]
Motori, E.; Puyal, J.; Toni, N.; Ghanem, A.; Angeloni, C.; Malaguti, M.; Cantelli-Forti, G.; Berninger, B.; Conzelmann, K.K.; Götz, M.; Winklhofer, K.F.; Hrelia, S.; Bergami, M. Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. Cell Metab., 2013, 18(6), 844-859.
[http://dx.doi.org/10.1016/j.cmet.2013.11.005] [PMID: 24315370]
[95]
Allaman, I.; Gavillet, M.; Bélanger, M.; Laroche, T.; Viertl, D.; Lashuel, H.A.; Magistretti, P.J. Amyloid-β aggregates cause alterations of astrocytic metabolic phenotype: Impact on neuronal viability. J. Neurosci., 2010, 30(9), 3326-3338.
[http://dx.doi.org/10.1523/JNEUROSCI.5098-09.2010] [PMID: 20203192]
[96]
Oksanen, M.; Petersen, A.J.; Naumenko, N.; Puttonen, K.; Lehtonen, Š.; Gubert Olivé, M.; Shakirzyanova, A.; Leskelä, S.; Sarajärvi, T.; Viitanen, M.; Rinne, J.O.; Hiltunen, M.; Haapasalo, A.; Giniatullin, R.; Tavi, P.; Zhang, S.C.; Kanninen, K.M.; Hämäläinen, R.H.; Koistinaho, J. PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Reports, 2017, 9(6), 1885-1897.
[http://dx.doi.org/10.1016/j.stemcr.2017.10.016] [PMID: 29153989]
[97]
Cassina, P.; Cassina, A.; Pehar, M.; Castellanos, R.; Gandelman, M.; de León, A.; Robinson, K.M.; Mason, R.P.; Beckman, J.S.; Barbeito, L.; Radi, R. Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: Prevention by mitochondrial-targeted antioxidants. J. Neurosci., 2008, 28(16), 4115-4122.
[http://dx.doi.org/10.1523/JNEUROSCI.5308-07.2008] [PMID: 18417691]
[98]
Halestrap, A.P. Monocarboxylic acid transport. Compr. Physiol., 2013, 3(4), 1611-1643.
[http://dx.doi.org/10.1002/cphy.c130008] [PMID: 24265240]
[99]
Rosafio, K.; Pellerin, L. Oxygen tension controls the expression of the monocarboxylate transporter MCT4 in cultured mouse cortical astrocytes via a hypoxia-inducible factor-1α-mediated transcriptional regulation. Glia, 2014, 62(3), 477-490.
[http://dx.doi.org/10.1002/glia.22618] [PMID: 24375723]
[100]
Pérez de Heredia, F.; Wood, I.S.; Trayhurn, P. Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes. Pflugers Arch., 2010, 459(3), 509-518.
[http://dx.doi.org/10.1007/s00424-009-0750-3] [PMID: 19876643]
[101]
Pellerin, L.; Magistretti, P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA, 1994, 91(22), 10625-10629.
[http://dx.doi.org/10.1073/pnas.91.22.10625] [PMID: 7938003]
[102]
Pellerin, L.; Magistretti, P.J. Sweet Sixteen for ANLS. J. Cereb. Blood Flow Metab., 2012, 32(7), 1152-1166.
[http://dx.doi.org/10.1038/jcbfm.2011.149] [PMID: 22027938]
[103]
Camandola, S.; Mattson, M.P. Brain metabolism in health, aging, and neurodegeneration. EMBO J., 2017, 36(11), 1474-1492.
[http://dx.doi.org/10.15252/embj.201695810] [PMID: 28438892]
[104]
Mächler, P.; Wyss, M.T.; Elsayed, M.; Stobart, J.; Gutierrez, R.; von Faber-Castell, A.; Kaelin, V.; Zuend, M.; San Martín, A.; Romero-Gómez, I.; Baeza-Lehnert, F.; Lengacher, S.; Schneider, B.L.; Aebischer, P.; Magistretti, P.J.; Barros, L.F.; Weber, B. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab., 2016, 23(1), 94-102.
[http://dx.doi.org/10.1016/j.cmet.2015.10.010] [PMID: 26698914]
[105]
Bouzier-Sore, A.K.; Voisin, P.; Canioni, P.; Magistretti, P.J.; Pellerin, L. Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J. Cereb. Blood Flow Metab., 2003, 23(11), 1298-1306.
[http://dx.doi.org/10.1097/01.WCB.0000091761.61714.25] [PMID: 14600437]
[106]
Bouzier-Sore, A.K.; Voisin, P.; Bouchaud, V.; Bezancon, E.; Franconi, J.M.; Pellerin, L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: A comparative NMR study. Eur. J. Neurosci., 2006, 24(6), 1687-1694.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05056.x] [PMID: 17004932]
[107]
Bittar, P.G.; Charnay, Y.; Pellerin, L.; Bouras, C.; Magistretti, P.J. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J. Cereb. Blood Flow Metab., 1996, 16(6), 1079-1089.
[http://dx.doi.org/10.1097/00004647-199611000-00001] [PMID: 8898679]
[108]
Bolaños, J.P.; Almeida, A.; Moncada, S. Glycolysis: A bioenergetic or a survival pathway? Trends Biochem. Sci., 2010, 35(3), 145-149.
[http://dx.doi.org/10.1016/j.tibs.2009.10.006] [PMID: 20006513]
[109]
Takahashi, S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology, 2020, 40(2), 121-137.
[http://dx.doi.org/10.1111/neup.12639] [PMID: 32037635]
[110]
Brix, B.; Mesters, J.R.; Pellerin, L.; Jöhren, O. Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation. J. Neurosci., 2012, 32(28), 9727-9735.
[http://dx.doi.org/10.1523/JNEUROSCI.0879-12.2012] [PMID: 22787058]
[111]
Almeida, A.; Almeida, J.; Bolaños, J.P.; Moncada, S. Different responses of astrocytes and neurons to nitric oxide: The role of glycolytically generated ATP in astrocyte protection. Proc. Natl. Acad. Sci. USA, 2001, 98(26), 15294-15299.
[http://dx.doi.org/10.1073/pnas.261560998] [PMID: 11742096]
[112]
Maezawa, I.; Zimin, P.I.; Wulff, H.; Jin, L.W. Amyloid-beta protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J. Biol. Chem., 2011, 286(5), 3693-3706.
[http://dx.doi.org/10.1074/jbc.M110.135244] [PMID: 20971854]
[113]
San Martín, A.; Arce-Molina, R.; Galaz, A.; Pérez-Guerra, G.; Barros, L.F. Nanomolar nitric oxide concentrations quickly and reversibly modulate astrocytic energy metabolism. J. Biol. Chem., 2017, 292(22), 9432-9438.
[http://dx.doi.org/10.1074/jbc.M117.777243] [PMID: 28341740]
[114]
Harris, R.A.; Tindale, L.; Cumming, R.C. Age-dependent metabolic dysregulation in cancer and Alzheimer’s disease. Biogerontology, 2014, 15(6), 559-577.
[http://dx.doi.org/10.1007/s10522-014-9534-z] [PMID: 25305052]
[115]
Bolaños, J.P. Bioenergetics and redox adaptations of astrocytes to neuronal activity. J. Neurochem., 2016, 139(Suppl. 2), 115-125.
[http://dx.doi.org/10.1111/jnc.13486] [PMID: 26968531]
[116]
Dienel, G.A. Brain lactate metabolism: The discoveries and the controversies. J. Cereb. Blood Flow Metab., 2012, 32(7), 1107-1138.
[http://dx.doi.org/10.1038/jcbfm.2011.175] [PMID: 22186669]
[117]
Merlini, M.; Meyer, E.P.; Ulmann-Schuler, A.; Nitsch, R.M. Vascular β-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAβ mice. Acta Neuropathol., 2011, 122(3), 293-311.
[http://dx.doi.org/10.1007/s00401-011-0834-y] [PMID: 21688176]
[118]
Madji Hounoum, B.; Mavel, S.; Coque, E.; Patin, F.; Vourc’h, P.; Marouillat, S.; Nadal-Desbarats, L.; Emond, P.; Corcia, P.; Andres, C.R.; Raoul, C.; Blasco, H. Wildtype motoneurons, ALS-Linked SOD1 mutation and glutamate profoundly modify astrocyte metabolism and lactate shuttling. Glia, 2017, 65(4), 592-605.
[http://dx.doi.org/10.1002/glia.23114] [PMID: 28139855]
[119]
Le Douce, J.; Maugard, M.; Veran, J.; Matos, M.; Jégo, P.; Vigneron, P.A.; Faivre, E.; Toussay, X.; Vandenberghe, M.; Balbastre, Y.; Piquet, J.; Guiot, E.; Tran, N.T.; Taverna, M.; Marinesco, S.; Koyanagi, A.; Furuya, S.; Gaudin-Guérif, M.; Goutal, S.; Ghettas, A.; Pruvost, A.; Bemelmans, A.P.; Gaillard, M.C.; Cambon, K.; Stimmer, L.; Sazdovitch, V.; Duyckaerts, C.; Knott, G.; Hérard, A.S.; Delzescaux, T.; Hantraye, P.; Brouillet, E.; Cauli, B.; Oliet, S.H.R.; Panatier, A.; Bonvento, G. Impairment of glycolysis-derived l-serine production in astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell Metab., 2020, 31(3), 503-517.e8.
[http://dx.doi.org/10.1016/j.cmet.2020.02.004] [PMID: 32130882]
[120]
Yoo, I.D.; Park, M.W.; Cha, H.W.; Yoon, S.; Boonpraman, N.; Yi, S.S.; Moon, J.S. Elevated CLOCK and BMAL1 contribute to the impairment of aerobic glycolysis from astrocytes in Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(21), 7862.
[http://dx.doi.org/10.3390/ijms21217862] [PMID: 33114015]
[121]
Verhoog, Q.P.; Holtman, L.; Aronica, E.; van Vliet, E.A. Astrocytes as guardians of neuronal excitability: Mechanisms underlying epileptogenesis. Front. Neurol., 2020, 11, 591690.
[http://dx.doi.org/10.3389/fneur.2020.591690] [PMID: 33324329]
[122]
de Castro Abrantes, H.; Briquet, M.; Schmuziger, C.; Restivo, L.; Puyal, J.; Rosenberg, N.; Rocher, A.B.; Offermanns, S.; Chatton, J.Y. The lactate receptor HCAR1 modulates neuronal network activity through the activation of G α and G βγ subunits. J. Neurosci., 2019, 39(23), 4422-4433.
[http://dx.doi.org/10.1523/JNEUROSCI.2092-18.2019] [PMID: 30926749]
[123]
Suzuki, A.; Stern, S.A.; Bozdagi, O.; Huntley, G.W.; Walker, R.H.; Magistretti, P.J.; Alberini, C.M. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell, 2011, 144(5), 810-823.
[http://dx.doi.org/10.1016/j.cell.2011.02.018] [PMID: 21376239]
[124]
Steinman, M.Q.; Gao, V.; Alberini, C.M. The role of lactate-mediated metabolic coupling between astrocytes and neurons in long-term memory formation. Front. Integr. Nuerosci., 2016, 10, 10.
[http://dx.doi.org/10.3389/fnint.2016.00010] [PMID: 26973477]
[125]
Gibbs, M.E.; Anderson, D.G.; Hertz, L. Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia, 2006, 54(3), 214-222.
[http://dx.doi.org/10.1002/glia.20377] [PMID: 16819764]
[126]
Margineanu, M.B.; Mahmood, H.; Fiumelli, H.; Magistretti, P.J. L-Lactate regulates the expression of synaptic plasticity and neuroprotection genes in cortical neurons: A transcriptome analysis. Front. Mol. Neurosci., 2018, 11, 375.
[http://dx.doi.org/10.3389/fnmol.2018.00375] [PMID: 30364173]
[127]
Harris, R.A.; Tindale, L.; Lone, A.; Singh, O.; Macauley, S.L.; Stanley, M.; Holtzman, D.M.; Bartha, R.; Cumming, R.C. Aerobic glycolysis in the frontal cortex correlates with memory performance in wild-type mice but not the APP/PS1 mouse model of cerebral amyloidosis. J. Neurosci., 2016, 36(6), 1871-1878.
[http://dx.doi.org/10.1523/JNEUROSCI.3131-15.2016] [PMID: 26865611]
[128]
Drulis-Fajdasz, D.; Gizak, A.; Wójtowicz, T. Wiśniewski, J.R.; Rakus, D. Aging-associated changes in hippocampal glycogen metabolism in mice. Evidence for and against astrocyte-to-neuron lactate shuttle. Glia, 2018, 66(7), 1481-1495.
[http://dx.doi.org/10.1002/glia.23319] [PMID: 29493012]
[129]
Weightman Potter, P.G.; Vlachaki Walker, J.M.; Robb, J.L.; Chilton, J.K.; Williamson, R.; Randall, A.D.; Ellacott, K.L.J.; Beall, C. Basal fatty acid oxidation increases after recurrent low glucose in human primary astrocytes. Diabetologia, 2019, 62(1), 187-198.
[http://dx.doi.org/10.1007/s00125-018-4744-6] [PMID: 30293112]
[130]
Ioannou, M.S.; Jackson, J.; Sheu, S.H.; Chang, C.L.; Weigel, A.V.; Liu, H.; Pasolli, H.A.; Xu, C.S.; Pang, S.; Matthies, D.; Hess, H.F.; Lippincott-Schwartz, J.; Liu, Z. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell, 2019, 177(6), 1522-1535.e14.
[http://dx.doi.org/10.1016/j.cell.2019.04.001] [PMID: 31130380]
[131]
Zhang, S.; Lachance, B.B.; Mattson, M.P.; Jia, X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog. Neurobiol., 2021, 204, 102089.
[http://dx.doi.org/10.1016/j.pneurobio.2021.102089] [PMID: 34118354]
[132]
Morrison, B.M.; Lee, Y.; Rothstein, J.D. Oligodendroglia: Metabolic supporters of axons. Trends Cell Biol., 2013, 23(12), 644-651.
[http://dx.doi.org/10.1016/j.tcb.2013.07.007] [PMID: 23988427]
[133]
Zhou, P.; Guan, T.; Jiang, Z.; Namaka, M.; Huang, Q.J.; Kong, J.M. Monocarboxylate transporter 1 and the vulnerability of oligodendrocyte lineage cells to metabolic stresses. CNS Neurosci. Ther., 2018, 24(2), 126-134.
[http://dx.doi.org/10.1111/cns.12782] [PMID: 29205833]
[134]
Lee, Y.; Morrison, B.M.; Li, Y.; Lengacher, S.; Farah, M.H.; Hoffman, P.N.; Liu, Y.; Tsingalia, A.; Jin, L.; Zhang, P.W.; Pellerin, L.; Magistretti, P.J.; Rothstein, J.D. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 2012, 487(7408), 443-448.
[http://dx.doi.org/10.1038/nature11314] [PMID: 22801498]
[135]
Yan, H.; Rivkees, S.A. Hypoglycemia influences oligodendrocyte development and myelin formation. Neuroreport, 2006, 17(1), 55-59.
[http://dx.doi.org/10.1097/01.wnr.0000192733.00535.b6] [PMID: 16361950]
[136]
Amaral, A.I.; Hadera, M.G.; Tavares, J.M.; Kotter, M.R.N.; Sonnewald, U. Characterization of glucose&#8208;related metabolic pathways in differentiated rat oligodendrocyte lineage cells. Glia, 2016, 64(1), 21-34.
[http://dx.doi.org/10.1002/glia.22900] [PMID: 26352325]
[137]
Stratoulias, V.; Venero, J.L.; Tremblay, M.È.; Joseph, B. Microglial subtypes: Diversity within the microglial community. EMBO J., 2019, 38(17), e101997.
[http://dx.doi.org/10.15252/embj.2019101997] [PMID: 31373067]
[138]
Lauro, C.; Chece, G.; Monaco, L.; Antonangeli, F.; Peruzzi, G.; Rinaldo, S.; Paone, A.; Cutruzzolà, F.; Limatola, C. Fractalkine modulates microglia metabolism in brain ischemia. Front. Cell. Neurosci., 2019, 13, 414.
[http://dx.doi.org/10.3389/fncel.2019.00414] [PMID: 31607865]
[139]
Cartier, N.; Lewis, C.A.; Zhang, R.; Rossi, F.M.V. The role of microglia in human disease: Therapeutic tool or target? Acta Neuropathol., 2014, 128(3), 363-380.
[http://dx.doi.org/10.1007/s00401-014-1330-y] [PMID: 25107477]
[140]
Baik, S.H.; Kang, S.; Son, S.M.; Mook-Jung, I. Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer’s disease mouse model. Glia, 2016, 64(12), 2274-2290.
[http://dx.doi.org/10.1002/glia.23074] [PMID: 27658617]
[141]
Mehta, M.M.; Weinberg, S.E.; Chandel, N.S. Mitochondrial control of immunity: Beyond ATP. Nat. Rev. Immunol., 2017, 17(10), 608-620.
[http://dx.doi.org/10.1038/nri.2017.66] [PMID: 28669986]
[142]
Gorter, R.P.; Stephenson, J.; Nutma, E.; Anink, J.; Jonge, J.C.; Baron, W. Jahreiβ M.C.; Belien, J.A.M.; Noort, J.M.; Mijnsbergen, C.; Aronica, E.; Amor, S. Rapidly progressive amyotrophic lateral sclerosis is associated with microglial reactivity and small heat shock protein expression in reactive astrocytes. Neuropathol. Appl. Neurobiol., 2019, 45(5), 459-475.
[http://dx.doi.org/10.1111/nan.12525] [PMID: 30346063]
[143]
Voloboueva, L.A.; Emery, J.F.; Sun, X.; Giffard, R.G. Inflammatory response of microglial BV-2 cells includes a glycolytic shift and is modulated by mitochondrial glucose-regulated protein 75/mortalin. FEBS Lett., 2013, 587(6), 756-762.
[http://dx.doi.org/10.1016/j.febslet.2013.01.067] [PMID: 23395614]
[144]
Orihuela, R.; McPherson, C.A.; Harry, G.J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol., 2016, 173(4), 649-665.
[http://dx.doi.org/10.1111/bph.13139] [PMID: 25800044]
[145]
Baik, S.H.; Kang, S.; Lee, W.; Choi, H.; Chung, S.; Kim, J.I.; Mook-Jung, I. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab., 2019, 30(3), 493-507.e6.
[http://dx.doi.org/10.1016/j.cmet.2019.06.005] [PMID: 31257151]
[146]
Finucane, O.M.; Sugrue, J.; Rubio-Araiz Guillot-Sestier, M.V.; Lynch, M.A. The NLRP3 inflammasome modulates glycolysis by increasing PFKFB3 in an IL-1β-dependent manner in macrophages. Sci. Rep., 2019, 9(1), 4034.
[147]
Banati, R.B.; Egensperger, R.; Maassen, A.; Hager, G.; Kreutzberg, G.W.; Manuel, B. Graeber, Mitochondria in activated microglia in vitro. J. Neurocytol., 2004, 33(5), 535-541.
[http://dx.doi.org/10.1007/s11068-004-0515-7] [PMID: 15906160]
[148]
Nair, S.; Sobotka, K.S.; Joshi, P.; Gressens, P.; Fleiss, B.; Thornton, C.; Mallard, C.; Hagberg, H. Lipopolysaccharide&#8208;induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 2019, 67(6), 1047-1061.
[http://dx.doi.org/10.1002/glia.23587] [PMID: 30637805]
[149]
Joshi, A.U.; Minhas, P.S.; Liddelow, S.A.; Haileselassie, B.; Andreasson, K.I.; Dorn, G.W., II; Mochly-Rosen, D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci., 2019, 22(10), 1635-1648.
[http://dx.doi.org/10.1038/s41593-019-0486-0] [PMID: 31551592]
[150]
Aguilar-López, B.A.; Moreno-Altamirano, M.M.B.; Dockrell, H.M.; Duchen, M.R.; Sánchez-García, F.J. Mitochondria: An integrative hub coordinating circadian rhythms, metabolism, the microbiome, and immunity. Front. Cell Dev. Biol., 2020, 8, 51.
[http://dx.doi.org/10.3389/fcell.2020.00051] [PMID: 32117978]
[151]
Carrillo-Jimenez, A.; Deniz, Ö.; Niklison-Chirou, M.V.; Ruiz, R.; Bezerra-Salomão, K.; Stratoulias, V.; Amouroux, R.; Yip, P.K.; Vilalta, A.; Cheray, M.; Scott-Egerton, A.M.; Rivas, E.; Tayara, K.; García-Domínguez, I.; Garcia-Revilla, J.; Fernandez-Martin, J.C.; Espinosa-Oliva, A.M.; Shen, X.; St George-Hyslop, P.; Brown, G.C.; Hajkova, P.; Joseph, B.; Venero, J.L.; Branco, M.R.; Burguillos, M.A. TET2 regulates the neuroinflammatory response in microglia. Cell Rep., 2019, 29(3), 697-713.e8.
[http://dx.doi.org/10.1016/j.celrep.2019.09.013] [PMID: 31618637]
[152]
Kelly, B.; O’Neill, L.A.J. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res., 2015, 25(7), 771-784.
[http://dx.doi.org/10.1038/cr.2015.68] [PMID: 26045163]
[153]
Afridi, R.; Lee, W.H.; Suk, K. Microglia Gone Awry: Linking immunometabolism to neurodegeneration. Front. Cell. Neurosci., 2020, 14, 246.
[http://dx.doi.org/10.3389/fncel.2020.00246] [PMID: 32903682]
[154]
Cho, S.H.; Sun, B.; Zhou, Y.; Kauppinen, T.M.; Halabisky, B.; Wes, P.; Ransohoff, R.M.; Gan, L. CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J. Biol. Chem., 2011, 286(37), 32713-32722.
[http://dx.doi.org/10.1074/jbc.M111.254268] [PMID: 21771791]
[155]
Cardona, A.E.; Pioro, E.P.; Sasse, M.E.; Kostenko, V.; Cardona, S.M.; Dijkstra, I.M.; Huang, D.; Kidd, G.; Dombrowski, S.; Dutta, R.; Lee, J.C.; Cook, D.N.; Jung, S.; Lira, S.A.; Littman, D.R.; Ransohoff, R.M. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci., 2006, 9(7), 917-924.
[http://dx.doi.org/10.1038/nn1715] [PMID: 16732273]
[156]
Pan, R.Y.; Ma, J.; Kong, X.X.; Wang, X.F.; Li, S.S.; Qi, X.L.; Yan, Y.H.; Cheng, J.; Liu, Q.; Jin, W.; Tan, C.H.; Yuan, Z. Sodium rutin ameliorates Alzheimer’s disease–like pathology by enhancing microglial amyloid-β clearance. Sci. Adv., 2019, 5(2), eaau6328.
[http://dx.doi.org/10.1126/sciadv.aau6328] [PMID: 30820451]
[157]
Wang, J.; Cui, Y.; Yu, Z.; Wang, W.; Cheng, X.; Ji, W.; Guo, S.; Zhou, Q.; Wu, N.; Chen, Y.; Chen, Y.; Song, X.; Jiang, H.; Wang, Y.; Lan, Y.; Zhou, B.; Mao, L.; Li, J.; Yang, H.; Guo, W.; Yang, X. Brain endothelial cells maintain lactate homeostasis and control adult hippocampal neurogenesis. Cell Stem Cell, 2019, 25(6), 754-767.e9.
[http://dx.doi.org/10.1016/j.stem.2019.09.009] [PMID: 31761722]
[158]
Gimeno-Bayón, J.; López-López, A.; Rodríguez, M.J.; Mahy, N. Glucose pathways adaptation supports acquisition of activated microglia phenotype. J. Neurosci. Res., 2014, 92(6), 723-731.
[http://dx.doi.org/10.1002/jnr.23356] [PMID: 24510633]
[159]
Eelen, G.; de Zeeuw, P.; Treps, L.; Harjes, U.; Wong, B.W.; Carmeliet, P. Endothelial cell metabolism. Physiol. Rev., 2018, 98(1), 3-58.
[http://dx.doi.org/10.1152/physrev.00001.2017] [PMID: 29167330]
[160]
Cucullo, L.; Hossain, M.; Puvenna, V.; Marchi, N.; Janigro, D. The role of shear stress in blood-brain barrier endothelial physiology. BMC Neurosci., 2011, 12(1), 40.
[http://dx.doi.org/10.1186/1471-2202-12-40] [PMID: 21569296]
[161]
Pasdois, P.; Parker, J.E.; Halestrap, A.P. Extent of mitochondrial hexokinase II dissociation during ischemia correlates with mitochondrial cytochrome c release, reactive oxygen species production, and infarct size on reperfusion. J. Am. Heart Assoc., 2013, 2(1), e005645.
[http://dx.doi.org/10.1161/JAHA.112.005645] [PMID: 23525412]
[162]
Schaafsma, A.; de Jong, B.M.; Bams, J.L.; Haaxma-Reiche, H.; Pruim, J.; Zijlstra, J.G. Cerebral perfusion and metabolism in resuscitated patients with severe post-hypoxic encephalopathy. J. Neurol. Sci., 2003, 210(1-2), 23-30.
[http://dx.doi.org/10.1016/S0022-510X(03)00063-7] [PMID: 12736083]
[163]
Putzu, A.; Valtorta, S.; Di Grigoli, G.; Haenggi, M.; Belloli, S.; Malgaroli, A.; Gemma, M.; Landoni, G.; Beretta, L.; Moresco, R.M. Regional differences in cerebral glucose metabolism after cardiac arrest and resuscitation in rats using [18F]FDG positron emission tomography and autoradiography. Neurocrit. Care, 2018, 28(3), 370-378.
[http://dx.doi.org/10.1007/s12028-017-0445-0] [PMID: 28875429]
[164]
Li, Y.Q.; Liao, X.X.; Lu, J.H.; Liu, R.; Hu, C.L.; Dai, G.; Zhang, X.S.; Shi, X.C.; Li, X. Assessing the early changes of cerebral glucose metabolism via dynamic 18FDG-PET/CT during cardiac arrest. Metab. Brain Dis., 2015, 30(4), 969-977.
[http://dx.doi.org/10.1007/s11011-015-9658-0] [PMID: 25703241]
[165]
Backes, H.; Walberer, M.; Ladwig, A.; Rueger, M.A.; Neumaier, B.; Endepols, H.; Hoehn, M.; Fink, G.R.; Schroeter, M.; Graf, R. Glucose consumption of inflammatory cells masks metabolic deficits in the brain. Neuroimage, 2016, 128, 54-62.
[http://dx.doi.org/10.1016/j.neuroimage.2015.12.044] [PMID: 26747749]
[166]
Huynh, L.M.; Burns, M.P.; Taub, D.D.; Blackman, M.R.; Zhou, J. Chronic neurobehavioral impairments and decreased hippocampal expression of genes important for brain glucose utilization in a mouse model of mild TBI. Front. Endocrinol., 2020, 11, 556380.
[http://dx.doi.org/10.3389/fendo.2020.556380] [PMID: 33071972]
[167]
Laterza, C.; Uoshima, N.; Tornero, D.; Wilhelmsson, U.; Stokowska, A.; Ge, R.; Pekny, M.; Lindvall, O.; Kokaia, Z. Attenuation of reactive gliosis in stroke-injured mouse brain does not affect neurogenesis from grafted human iPSC-derived neural progenitors. PLoS One, 2018, 13(2), e0192118.
[http://dx.doi.org/10.1371/journal.pone.0192118] [PMID: 29401502]
[168]
Li, M.; Li, Z.; Yao, Y.; Jin, W.N.; Wood, K.; Liu, Q.; Shi, F.D.; Hao, J. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc. Natl. Acad. Sci. USA, 2017, 114(3), E396-E405.
[http://dx.doi.org/10.1073/pnas.1612930114] [PMID: 27994144]
[169]
Weise, C.M.; Chen, K.; Chen, Y.; Kuang, X.; Savage, C.R.; Reiman, E.M. Left lateralized cerebral glucose metabolism declines in amyloid-β positive persons with mild cognitive impairment. Neuroimage Clin., 2018, 20, 286-296.
[http://dx.doi.org/10.1016/j.nicl.2018.07.016] [PMID: 30101060]
[170]
Aldana, B.I.; Zhang, Y.; Jensen, P.; Chandrasekaran, A.; Christensen, S.K.; Nielsen, T.T.; Nielsen, J.E.; Hyttel, P.; Larsen, M.R.; Waagepetersen, H.S.; Freude, K.K. Glutamate-glutamine homeostasis is perturbed in neurons and astrocytes derived from patient iPSC models of frontotemporal dementia. Mol. Brain, 2020, 13(1), 125.
[http://dx.doi.org/10.1186/s13041-020-00658-6] [PMID: 32928252]
[171]
Qi, G.; Mi, Y.; Yin, F. Cellular specificity and inter-cellular coordination in the brain bioenergetic system: Implications for aging and neurodegeneration. Front. Physiol., 2020, 10, 1531.
[http://dx.doi.org/10.3389/fphys.2019.01531] [PMID: 31969828]
[172]
Wang, Y.; Shang, Y.; Mishra, A.; Bacon, E.; Yin, F.; Brinton, R. Midlife chronological and endocrinological transitions in brain metabolism: System biology basis for increased Alzheimer’s risk in female brain. Sci. Rep., 2020, 10(1), 8528.
[http://dx.doi.org/10.1038/s41598-020-65402-5] [PMID: 32444841]
[173]
Blonz, E.R. Alzheimer’s disease as the product of a progressive energy deficiency syndrome in the central nervous system: The neuroenergetic hypothesis. J. Alzheimers Dis., 2017, 60(4), 1223-1229.
[http://dx.doi.org/10.3233/JAD-170549] [PMID: 28946565]
[174]
Adams, J.N.; Lockhart, S.N.; Li, L.; Jagust, W.J. Relationships between tau and glucose metabolism reflect Alzheimer’s disease pathology in cognitively normal older adults. Cereb. Cortex, 2019, 29(5), 1997-2009.
[http://dx.doi.org/10.1093/cercor/bhy078] [PMID: 29912295]
[175]
Herholz, K.; Salmon, E.; Perani, D.; Baron, J-C.; Holthoff, V.; Frölich, L.; Schönknecht, P.; Ito, K.; Mielke, R.; Kalbe, E.; Zündorf, G.; Delbeuck, X.; Pelati, O.; Anchisi, D.; Fazio, F.; Kerrouche, N.; Desgranges, B.; Eustache, F.; Beuthien-Baumann, B.; Menzel, C.; Schröder, J.; Kato, T.; Arahata, Y.; Henze, M.; Heiss, W.D. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage, 2002, 17(1), 302-316.
[http://dx.doi.org/10.1006/nimg.2002.1208] [PMID: 12482085]
[176]
Reiman, E.M.; Chen, K.; Alexander, G.E.; Caselli, R.J.; Bandy, D.; Osborne, D.; Saunders, A.M.; Hardy, J. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc. Natl. Acad. Sci. USA, 2004, 101(1), 284-289.
[http://dx.doi.org/10.1073/pnas.2635903100] [PMID: 14688411]
[177]
Reiman, E.M.; Chen, K.; Alexander, G.E.; Caselli, R.J.; Bandy, D.; Osborne, D.; Saunders, A.M.; Hardy, J. Correlations between apolipoprotein E ε4 gene dose and brain-imaging measurements of regional hypometabolism. Proc. Natl. Acad. Sci. USA, 2005, 102(23), 8299-8302.
[http://dx.doi.org/10.1073/pnas.0500579102] [PMID: 15932949]
[178]
Mosconi, L.; Pupi, A.; De Leon, M.J. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2008, 1147(1), 180-195.
[http://dx.doi.org/10.1196/annals.1427.007] [PMID: 19076441]
[179]
Ferreira, I.L.; Resende, R.; Ferreiro, E.; Rego, A.C.; Pereira, C.F. Multiple defects in energy metabolism in Alzheimer’s disease. Curr. Drug Targets, 2010, 11(10), 1193-1206.
[http://dx.doi.org/10.2174/1389450111007011193] [PMID: 20840064]
[180]
Cunnane, S.; Nugent, S.; Roy, M.; Courchesne-Loyer, A.; Croteau, E.; Tremblay, S.; Castellano, A.; Pifferi, F.; Bocti, C.; Paquet, N.; Begdouri, H.; Bentourkia, M.; Turcotte, E.; Allard, M.; Barberger-Gateau, P.; Fulop, T.; Rapoport, S.I. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition, 2011, 27(1), 3-20.
[http://dx.doi.org/10.1016/j.nut.2010.07.021] [PMID: 21035308]
[181]
Chen, Z.; Zhong, C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Prog. Neurobiol., 2013, 108, 21-43.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.004] [PMID: 23850509]
[182]
Mosconi, L.; Andrews, R.D.; Matthews, D.C. Comparing brain amyloid deposition, glucose metabolism, and atrophy in mild cognitive impairment with and without a family history of dementia. J. Alzheimers Dis., 2013, 35(3), 509-524.
[http://dx.doi.org/10.3233/JAD-121867] [PMID: 23478305]
[183]
Nilsen, L.H.; Witter, M.P.; Sonnewald, U. Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer’s disease. J. Cereb. Blood Flow Metab., 2014, 34(5), 906-914.
[http://dx.doi.org/10.1038/jcbfm.2014.37] [PMID: 24594625]
[184]
An, Y.; Varma, V.R.; Varma, S.; Casanova, R.; Dammer, E.; Pletnikova, O.; Chia, C.W.; Egan, J.M.; Ferrucci, L.; Troncoso, J.; Levey, A.I.; Lah, J.; Seyfried, N.T.; Legido-Quigley, C.; O’Brien, R.; Thambisetty, M. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement., 2018, 14(3), 318-329.
[http://dx.doi.org/10.1016/j.jalz.2017.09.011] [PMID: 29055815]
[185]
Chornenkyy, Y.; Wang, W.X.; Wei, A.; Nelson, P.T. Alzheimer’s disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol., 2019, 29(1), 3-17.
[http://dx.doi.org/10.1111/bpa.12655] [PMID: 30106209]
[186]
Berlanga-Acosta, J.; Guillén-Nieto, G.; Rodríguez-Rodríguez, N.; Bringas-Vega, M.L.; García-del-Barco-Herrera, D.; Berlanga-Saez, J.O.; García-Ojalvo, A.; Valdés-Sosa, M.J.; Valdés-Sosa, P.A. Insulin resistance at the crossroad of Alzheimer disease pathology: A review. Front. Endocrinol., 2020, 11, 560375.
[http://dx.doi.org/10.3389/fendo.2020.560375] [PMID: 33224105]
[187]
Keeney, J.T.R.; Ibrahimi, S.; Zhao, L. Human ApoE isoforms differentially modulate glucose and amyloid metabolic pathways in female brain: Evidence of the mechanism of neuroprotection by ApoE2 and implications for Alzheimer’s disease prevention and early intervention. J. Alzheimers Dis., 2015, 48(2), 411-424.
[http://dx.doi.org/10.3233/JAD-150348] [PMID: 26402005]
[188]
Wu, L.; Zhang, X.; Zhao, L. Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: Implications for Alzheimer’s disease risk reduction and early Intervention. J. Neurosci., 2018, 38(30), 6665-6681.
[http://dx.doi.org/10.1523/JNEUROSCI.2262-17.2018] [PMID: 29967007]
[189]
Szablewski, L. Glucose transporters in brain: In health and in Alzheimer’s disease. J. Alzheimers Dis., 2016, 55(4), 1307-1320.
[http://dx.doi.org/10.3233/JAD-160841] [PMID: 27858715]
[190]
Ott, A.; Stolk, R.P.; van Harskamp, F.; Pols, H.A.P.; Hofman, A.; Breteler, M.M.B. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology, 1999, 53(9), 1937-1942.
[http://dx.doi.org/10.1212/WNL.53.9.1937] [PMID: 10599761]
[191]
Luchsinger, J.A.; Tang, M.X.; Stern, Y.; Shea, S.; Mayeux, R. Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am. J. Epidemiol., 2001, 154(7), 635-641.
[http://dx.doi.org/10.1093/aje/154.7.635] [PMID: 11581097]
[192]
Duarte, AI; Santos, MS; Oliveira, CR; Moreira, PI Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology, 2018, 136(Pt B), 223-42.
[193]
Hayden, M.R. Type 2 diabetes mellitus increases the risk of late-onset Alzheimer’s disease: ultrastructural remodeling of the neurovascular unit and diabetic gliopathy. Brain Sci., 2019, 9(10), 262.
[http://dx.doi.org/10.3390/brainsci9100262] [PMID: 31569571]
[194]
Baker, L.D.; Cross, D.J.; Minoshima, S.; Belongia, D.; Watson, G.S.; Craft, S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch. Neurol., 2011, 68(1), 51-57.
[http://dx.doi.org/10.1001/archneurol.2010.225] [PMID: 20837822]
[195]
Duarte, A.I.; Santos, P.; Oliveira, C.R.; Santos, M.S.; Rego, A.C. Insulin neuroprotection against oxidative stress is mediated by Akt and GSK-3β signaling pathways and changes in protein expression. Biochim. Biophys. Acta Mol. Cell Res., 2008, 1783(6), 994-1002.
[http://dx.doi.org/10.1016/j.bbamcr.2008.02.016] [PMID: 18348871]
[196]
Simpson, I.A.; Chundu, K.R.; Davies-Hill, T.; Honer, W.G.; Davies, P. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann. Neurol., 1994, 35(5), 546-551.
[http://dx.doi.org/10.1002/ana.410350507] [PMID: 8179300]
[197]
Winkler, E.A.; Nishida, Y.; Sagare, A.P.; Rege, S.V.; Bell, R.D.; Perlmutter, D.; Sengillo, J.D.; Hillman, S.; Kong, P.; Nelson, A.R.; Sullivan, J.S.; Zhao, Z.; Meiselman, H.J.; Wenby, R.B.; Soto, J.; Abel, E.D.; Makshanoff, J.; Zuniga, E.; De Vivo, D.C.; Zlokovic, B.V. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci., 2015, 18(4), 521-530.
[http://dx.doi.org/10.1038/nn.3966] [PMID: 25730668]
[198]
Jais, A.; Solas, M.; Backes, H.; Chaurasia, B.; Kleinridders, A.; Theurich, S.; Mauer, J.; Steculorum, S.M.; Hampel, B.; Goldau, J.; Alber, J.; Förster, C.Y.; Eming, S.A.; Schwaninger, M.; Ferrara, N.; Karsenty, G.; Brüning, J.C. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell, 2016, 166(5), 1338-1340.
[http://dx.doi.org/10.1016/j.cell.2016.08.010] [PMID: 27565353]
[199]
Schubert, D.; Soucek, T.; Blouw, B. The induction of HIF-1 reduces astrocyte activation by amyloid beta peptide. Eur. J. Neurosci., 2009, 29(7), 1323-1334.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06712.x] [PMID: 19519624]
[200]
Zhang, Y. Yan, X.; Xu, S.; Pang, Z.; Li, L.; Yang, Y.; Fan, Y.; Wang, Z.; Yu, X.; Guo, C.; Ao, Q. α-lipoic acid maintains brain glucose metabolism via BDNF/TrkB/HIF-1α signaling pathway in P301S mice. Front. Aging Neurosci., 2020, 12, 262.
[http://dx.doi.org/10.3389/fnagi.2020.00262] [PMID: 32973490]
[201]
Sorbi, S.; Bird, E.D.; Blass, J.P. Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann. Neurol., 1983, 13(1), 72-78.
[http://dx.doi.org/10.1002/ana.410130116] [PMID: 6219611]
[202]
Iwangoff, P.; Armbruster, R.; Enz, A.; Meier-Ruge, W. Glycolytic enzymes from human autoptic brain cortex: Normal aged and demented cases. Mech. Ageing Dev., 1980, 14(1-2), 203-209.
[http://dx.doi.org/10.1016/0047-6374(80)90120-7] [PMID: 6259457]
[203]
Ding, F.; Yao, J.; Rettberg, J.R.; Chen, S.; Brinton, R.D. Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer’s mouse brain: Implication for bioenergetic intervention. PLoS One, 2013, 8(11), e79977.
[http://dx.doi.org/10.1371/journal.pone.0079977] [PMID: 24244584]
[204]
Cuadrado-Tejedor, M.; Vilariño, M.; Cabodevilla, F.; Del Río, J.; Frechilla, D.; Pérez-Mediavilla, A. Enhanced expression of the voltage-dependent anion channel 1 (VDAC1) in Alzheimer’s disease transgenic mice: An insight into the pathogenic effects of amyloid-&#946. J. Alzheimers Dis., 2011, 23(2), 195-206.
[http://dx.doi.org/10.3233/JAD-2010-100966] [PMID: 20930307]
[205]
Bigl, M.; Apelt, J.; Eschrich, K.; Schliebs, R. Cortical glucose metabolism is altered in aged transgenic Tg2576 mice that demonstrate Alzheimer plaque pathology. J. Neural Transm., 2003, 110(1), 77-94.
[http://dx.doi.org/10.1007/s00702-002-0772-x] [PMID: 12541014]
[206]
Mazzola, J.L.; Sirover, M.A. Subcellular alteration of glyceraldehyde-3-phosphate dehydrogenase in Alzheimer’s disease fibroblasts. J. Neurosci. Res., 2003, 71(2), 279-285.
[http://dx.doi.org/10.1002/jnr.10484] [PMID: 12503091]
[207]
Cumming, R.C.; Schubert, D. Amyloid&#8208;β induces disulfide bonding and aggregation of GAPDH in Alzheimer’s disease. FASEB J., 2005, 19(14), 2060-2062.
[http://dx.doi.org/10.1096/fj.05-4195fje] [PMID: 16186172]
[208]
Butterfield, D.A.; Lange, M.L.B. Multifunctional roles of enolase in Alzheimer’s disease brain: Beyond altered glucose metabolism. J. Neurochem., 2009, 111(4), 915-933.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06397.x] [PMID: 19780894]
[209]
Li, J.; Zhang, B.; Jia, W.; Yang, M.; Zhang, Y.; Zhang, J.; Li, L.; Jin, T.; Wang, Z.; Tao, J.; Chen, L.; Liang, S.; Liu, W. Activation of adenosine monophosphate-activated protein kinase drives the aerobic glycolysis in hippocampus for delaying cognitive decline following electroacupuncture treatment in APP/PS1 mice. Front. Cell. Neurosci., 2021, 15, 774569.
[http://dx.doi.org/10.3389/fncel.2021.774569] [PMID: 34867206]
[210]
Demarest, T.G.; Varma, V.R.; Estrada, D.; Babbar, M.; Basu, S.; Mahajan, U.V.; Moaddel, R.; Croteau, D.L.; Thambisetty, M.; Mattson, M.P.; Bohr, V.A. Biological sex and DNA repair deficiency drive Alzheimer’s disease via systemic metabolic remodeling and brain mitochondrial dysfunction. Acta Neuropathol., 2020, 140(1), 25-47.
[http://dx.doi.org/10.1007/s00401-020-02152-8] [PMID: 32333098]
[211]
Blass, J.P.; Sheu, R.K.F.; Gibson, G. Inherent abnormalities in energy metabolism in Alzheimer disease. Interaction with cerebrovascular compromise. Ann. N. Y. Acad. Sci.,, 2000, 903(1 VASCULAR FACT), 204-221.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06370.x] [PMID: 10818509]
[212]
Yao, J.; Irwin, R.W.; Zhao, L.; Nilsen, J.; Hamilton, R.T.; Brinton, R.D. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2009, 106(34), 14670-14675.
[http://dx.doi.org/10.1073/pnas.0903563106] [PMID: 19667196]
[213]
Kerr, J.S.; Adriaanse, B.A.; Greig, N.H.; Mattson, M.P.; Cader, M.Z.; Bohr, V.A.; Fang, E.F. Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci., 2017, 40(3), 151-166.
[http://dx.doi.org/10.1016/j.tins.2017.01.002] [PMID: 28190529]
[214]
Kapogiannis, D.; Mattson, M.P. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol., 2011, 10(2), 187-198.
[http://dx.doi.org/10.1016/S1474-4422(10)70277-5] [PMID: 21147038]
[215]
Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P. Cortical hypermetabolism in MCI subjects: A compensatory mechanism? Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(3), 447-458.
[http://dx.doi.org/10.1007/s00259-014-2919-z] [PMID: 25267349]
[216]
La Rocca, C.; Carbone, F.; De Rosa, V.; Colamatteo, A.; Galgani, M.; Perna, F.; Lanzillo, R.; Brescia Morra, V.; Orefice, G.; Cerillo, I.; Florio, C.; Maniscalco, G.T.; Salvetti, M.; Centonze, D.; Uccelli, A.; Longobardi, S.; Visconti, A.; Matarese, G. Immunometabolic profiling of T cells from patients with relapsing-remitting multiple sclerosis reveals an impairment in glycolysis and mitochondrial respiration. Metabolism, 2017, 77, 39-46.
[http://dx.doi.org/10.1016/j.metabol.2017.08.011] [PMID: 29132538]
[217]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[218]
Royds, J.A.; Timperley, W.R.; Taylor, C.B. Levels of enolase and other enzymes in the cerebrospinal fluid as indices of pathological change. J. Neurol. Neurosurg. Psychiatry, 1981, 44(12), 1129-1135.
[http://dx.doi.org/10.1136/jnnp.44.12.1129] [PMID: 7334408]
[219]
Ruiz-Argüelles, A.; Méndez-Huerta, M.A.; Lozano, C.D.; Ruiz-Argüelles, G.J. Metabolomic profile of insulin resistance in patients with multiple sclerosis is associated to the severity of the disease. Mult. Scler. Relat. Disord., 2018, 25, 316-321.
[http://dx.doi.org/10.1016/j.msard.2018.08.014] [PMID: 30193201]
[220]
De Riccardis, L.; Rizzello, A.; Ferramosca, A.; Urso, E.; De Robertis, F.; Danieli, A.; Giudetti, A.M.; Trianni, G.; Zara, V.; Maffia, M. Bioenergetics profile of CD4 + T cells in relapsing remitting multiple sclerosis subjects. J. Biotechnol., 2015, 202, 31-39.
[http://dx.doi.org/10.1016/j.jbiotec.2015.02.015] [PMID: 25701681]
[221]
Nijland, P.G.; Molenaar, R.J.; van der Pol, S.M.A.; van der Valk, P.; van Noorden, C.J.F.; de Vries, H.E.; van Horssen, J. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions. Acta Neuropathol. Commun., 2015, 3(1), 79.
[http://dx.doi.org/10.1186/s40478-015-0261-8] [PMID: 26637184]
[222]
Wetzels, S.; Vanmierlo, T.; Scheijen, J.L.J.M.; van Horssen, J.; Amor, S.; Somers, V.; Schalkwijk, C.G.; Hendriks, J.J.A.; Wouters, K. Methylglyoxal-derived advanced glycation endproducts accumulate in multiple sclerosis lesions. Front. Immunol., 2019, 10, 855.
[http://dx.doi.org/10.3389/fimmu.2019.00855] [PMID: 31068938]
[223]
Kaushik, D.K.; Bhattacharya, A.; Mirzaei, R.; Rawji, K.S.; Ahn, Y.; Rho, J.M.; Yong, V.W. Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis. J. Clin. Invest., 2019, 129(8), 3277-3292.
[http://dx.doi.org/10.1172/JCI124012] [PMID: 31112527]
[224]
Kornberg, M.D.; Bhargava, P.; Kim, P.M.; Putluri, V.; Snowman, A.M.; Putluri, N.; Calabresi, P.A.; Snyder, S.H. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science, 2018, 360(6387), 449-453.
[http://dx.doi.org/10.1126/science.aan4665] [PMID: 29599194]
[225]
Zeis, T.; Allaman, I.; Gentner, M.; Schroder, K.; Tschopp, J.; Magistretti, P.J.; Schaeren-Wiemers, N. Metabolic gene expression changes in astrocytes in multiple sclerosis cerebral cortex are indicative of immune-mediated signaling. Brain Behav. Immun., 2015, 48, 313-325.
[http://dx.doi.org/10.1016/j.bbi.2015.04.013] [PMID: 25937052]
[226]
Głombik, K.; Detka, J.; Kurek, A.; Budziszewska, B. Impaired brain energy metabolism: Involvement in depression and hypothyroidism. Front. Neurosci., 2020, 14, 586939.
[http://dx.doi.org/10.3389/fnins.2020.586939] [PMID: 33343282]
[227]
Regenold, W.T.; Pratt, M.; Nekkalapu, S.; Shapiro, P.S.; Kristian, T.; Fiskum, G. Mitochondrial detachment of hexokinase 1 in mood and psychotic disorders: Implications for brain energy metabolism and neurotrophic signaling. J. Psychiatr. Res., 2012, 46(1), 95-104.
[http://dx.doi.org/10.1016/j.jpsychires.2011.09.018] [PMID: 22018957]
[228]
Hollis, F.; Mitchell, E.S.; Canto, C.; Wang, D.; Sandi, C. Medium chain triglyceride diet reduces anxiety-like behaviors and enhances social competitiveness in rats. Neuropharmacology, 2018, 138, 245-256.
[http://dx.doi.org/10.1016/j.neuropharm.2018.06.017] [PMID: 29908242]
[229]
Fruton, J.S. Proteins, enzymes, genes: The interplay of chemistry and biology; Yale University Press: New Haven, 1999.
[230]
Zhang, X.; Alshakhshir, N.; Zhao, L. Glycolytic metabolism, brain resilience, and Alzheimer’s disease. Front. Neurosci., 2021, 15, 662242.
[http://dx.doi.org/10.3389/fnins.2021.662242] [PMID: 33994936]
[231]
Rabbani, N.; Xue, M.; Thornalley, P.J. Hexokinase-2-linked glycolytic overload and unscheduled glycolysis-driver of insulin resistance and development of vascular complications of Diabetes. Int. J. Mol. Sci., 2022, 23(4), 2165.
[http://dx.doi.org/10.3390/ijms23042165] [PMID: 35216280]
[232]
Ryu, W.I.; Bormann, M.K.; Shen, M.; Kim, D.; Forester, B.; Park, Y.; So, J.; Seo, H.; Sonntag, K.C.; Cohen, B.M. Brain cells derived from Alzheimer’s disease patients have multiple specific innate abnormalities in energy metabolism. Mol. Psychiatry, 2021, 26(10), 5702-5714.
[http://dx.doi.org/10.1038/s41380-021-01068-3] [PMID: 33863993]
[233]
Hu, Y.; Cao, K.; Wang, F.; Wu, W.; Mai, W.; Qiu, L.; Luo, Y.; Ge, W.; Sun, B.; Shi, L.; Zhu, J.; Zhang, J.; Wu, Z.; Xie, Y.; Duan, S.; Gao, Z. Dual roles of hexokinase 2 in shaping microglial function by gating glycolytic flux and mitochondrial activity. Nat. Metab., 2022, 4(12), 1756-1774.
[http://dx.doi.org/10.1038/s42255-022-00707-5] [PMID: 36536134]
[234]
Saito, E.R.; Miller, J.B.; Harari, O.; Cruchaga, C.; Mihindukulasuriya, K.A.; Kauwe, J.S.K.; Bikman, B.T. Alzheimer’s disease alters oligodendrocytic glycolytic and ketolytic gene expression. Alzheimers Dement., 2021, 17(9), 1474-1486.
[http://dx.doi.org/10.1002/alz.12310] [PMID: 33650792]
[235]
Saraiva, L.M.; Seixas da Silva, G.S.; Galina, A.; da-Silva, W.S.; Klein, W.L.; Ferreira, S.T.; De Felice, F.G. Amyloid-β triggers the release of neuronal hexokinase 1 from mitochondria. PLoS One, 2010, 5(12), e15230.
[http://dx.doi.org/10.1371/journal.pone.0015230] [PMID: 21179577]