[29]
Pandey, P.; Dahiya, M. Carbon nanotubes: Types, methods of preparation and applications. Int. J. Pharm. Sci. Res., 2016, 1(4), 15-21.
[33]
Krishnegowda, J.; Shivanna, S.; Kullaiah, B.; Lingaraju, S.; Mavinakere, A.R. Dispersion of multiwall carbon nanotubes in organic solvents through hydrothermal supercritical condition. J. Nanomater., 2015, 2015, 6.
[36]
Wu, Q.; Lv, H.; Zhao, L. Applications of carbon nanomaterials in chiral separation. TrAC -. Trends Analyt. Chem., 2020, 129(115941), 1-48.
[41]
Tayyab, S.; Naqvi, R.; Rasheed, T.; Hussain, D.; Najam, M.; Majeed, S.; Ahmed, N.; Nawaz, R. Modification strategies for improving the solubility/dispersion of carbon nanotubes. J. Mol. Liq., 2019, 297, 111919.
[42]
Jackman, H.; Jackman, H. Mechanical properties of carbon nanotubes and nanofibers; Karlstad University Studies, 2012, pp. 1-71.
[43]
Singh, I.; Rehni, A.K.; Kumar, P. Fullerenes, carbon nanotubes : Synthesis, properties and pharmaceutical applications. Fuller nanotub Car N., 2013, 17(4), 361-377.
[44]
Raval, J.P.; Joshi, P.; Chejara, D.R. Carbon nanotube for targeted drug delivery. In: Woodhead Publishing Series in Biomaterials, Applications of Nanocomposite Materials in Drug Delivery; Woodhead Publishing: Sawston, Cambridge, 2018, pp. 203-216.
[53]
Wulan, P.P.D.K.; Ulwani, S.H.; Wulandari, H.; Purwanto, W.W.; Mulia, K. The effect of hydrochloric acid addition to increase carbon nanotubes dispersibility as drug delivery system by covalent functionalization. In IOP conference series. Mater. Sci. Eng. C, 2018, 1, 012013.
[78]
Ozgen, P.S.O.; Atasoy, S.; Kurt, B.Z.; Durmus, Z.; Yigit, G.; Dag, A. Glycopolymer decorated multi-walled carbon nanotubes for dual-targeted breast cancer therapy. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(15), 3123-3137.
[84]
Singhai, N.J.; Maheshwari, R.; Ramteke, S. CD44 receptor targeted ‘smart’multi-walled carbon nanotubes for synergistic therapy of triple-negative breast cancer. Colloid Interface Sci. Commun., 2020, 35(100235), 1-12.
[92]
Dutt, T.S.; Saxena, R.K. Uptake of carboxylated fluorescent nano-diamonds by resting and activated T and B lymphocytes and comparison with carbon nanotube uptake. Int. J. Nano. Med. Eng., 2019, 4(7), 61-68.
[100]
Narei, H.; Ghasempour, R.; Akhavan, O. Toxicity and Safety Issues of Carbon Nanotubes.In: Carbon nanotube-reinforced polymers; Elsevier Science B.V: Amsterdam, 2018.
[107]
Zhang, X.L.X. Preparation method of carbon nanotube-chitosanphycocyanin
nanoparticles. Patent 02274510A, 2012.
[108]
Chen, J.; Liu, H. Polymer and method for using the polymer for
solubilizing nanotubes. Patent US20077244407 2007.
[109]
Ford, W.E.; Wessels, J.; Yasuda, A. Method and apparatus for
producing carbon nanotubes. Patent US20060014375, 2006.
[110]
Naumov, A.V. System and method for antibiotic delivery using
single-walled carbon nanotubes. Patent 16366007, 2021.
[111]
Scheinberg, D.A.; McDevitt, M.R.; Villa, C.H.; Mulvey, J.J. Targeted
self-assembly of functionalized carbon nanotubes on tumors.
Patent US9976137B2, 2021.
[112]
Hongjuan, Y.; Yingge, Z.; Yan, L. A drug delivery system comprising
a cancer stem cell-targeted carbon nanotube, preparation
and use thereof. Canadian Patent Application, CA2957805A1, 2016.
[113]
Altadena, M.G.; Aria, A. Drug delivery and substance transfer
facilitated by nano-enhanced device having aligned carbon nanotubes
protruding from device surface. United States Patent Application
Publication, US20150238742A1, 2015.
[114]
Chen, W.R. Immunologically modified carbon nanotubes for cancer
treatment. United States Patent, US8664198B2, 2014.
[115]
Mohapatra, S.S.; Kumar, A. Method of drug delivery by carbon
nanotube-chitosan nanocomplexes. United States Patent,
US8536324B2, 2013.
[116]
Harrison, R.J., Jr; Resasco, D.E.; Neves, L.F.F. Compositions and
methods for cancer treatment using targeted carbon nanotubes.
United States Patent, US8518870B2, 2013.
[117]
Kang, D.W.N.T.H. Carbon nanotube polymer composite coating
film which suppresses toxicity and inflammation and has improved
biocompatibility and adjusted surface strength. Patent
WO2012060592A3, 2013.
[118]
Dongwoo, K.T.N., Jr; Lee, S.K.S. Method for preparing a highly
dispersive carbon nanotube for reducing in vivo immunotoxicity.
Patent WO2012057511A2, 2012.
[119]
Dai, H.; Sunnyvale, C.A.; Chen, R.J. Non-covalent sidewall functionalization
of carbon nanotubes. United State Patent,
US8029734B2, 2011.