[1]
L.X. Lin, Y. Ye, J.M. Yao, and T.L. Guo, "Embedded implementation and opti-mization of mobile robot based on orb-SLAM", Microcomp. Appl., vol. 36, no. 5, pp. 50-53, 2017.
[2]
X. Gao, T. Zhang, and Y. Liu, Fourteen Lectures on Visual SLAM., Electronic Industry Press: Beijing, 2017, pp. 13-19.
[4]
X. Gao, "From theory to practice", In: X. Gao, Ed., Fourteen Lectures on Visual SLAM., Electronic Industry Press: Beijing, 2017.
[5]
X. Zou, C.S. Xiao, Y.Q. Wen, and H.W. Yuan, "Research status of vSLAM based on feature point method and direct method", In: Computer application research, 2020, p. 1-13.
[11]
X.F. Li, N. Zhou, and L. Zhou, Communication principle., Tsinghua University Press: Beijing, 2011.
[12]
Y.F. Li, and B.H. Zhu, "Application of UQPSK modulation in broadband data transmission and tracking system", In: Electronic technology and software engineering., 2015.
[15]
A.J. Davison, SLAM with a single camera. Proceedings of Workshop on Concurrent Mapping an Localization for Autonomous Mobile Robots in Conjunction with ICRA, 2002, pp. 18-27. Washington, DC, USA
[22]
R. Sim, P. Elinas, M. Griffin, and J.J. Little, "Vision-based SLAM using the Rao-Blackwellised particle filter", In: IJCAI work-shop on reasoning with uncertainty in robotics, 2005, p. 500-509.
[23]
M. Li, B. Hong, Z. Cai, and R. Luo, "Novel Rao-Blackwellized particle filter for mobile robot SLAM using monocular vision", Int. J. Autom. Control, vol. 2, no. 3, 2006.
[26]
Y.J. Zhang, B. Li, and D.C. Huang, "A robot positioning and map building method and a robot", CN. Patent 109583457A, 2018.
[27]
Y. Liu, F. Wang, Y. W. Xia, C. F. Zhang, and W. Zhang, "Panoramic inertial navigation SLAM method based on multiple key frames", CN. Patent 109307508A, 2018.
[28]
R. Wang, W.Z. Cha, J.J. Ge, F.L. Meng, and X.R. Meng, "A visual SLAM method based on semantic constraint", CN. Patent 109815847A, 2018.
[29]
B. You, and Q. Liang, "A vision SLAM method based on multi feature fusion", CN. Patent 110060277A, 2019.
[30]
J.Q. Feng, R.J. Xu, X. Zhao, and C. Zhu, "Visual SLAM key frame and feature point selection method based on feature point distribution", CN. Patent 110070577A, 2019.
[31]
S.P. Ding, N.C. He, Z.L. He, X. Yao, and Q.Y. Zhang, "Visual SLAM method based on instance segmentation", CN. Patent 110738673A, 2019.
[32]
L.Y. Cui, Z.H. Guo, and C.W. Ma, "Visual SLAM method based on semantic optical flow and inverse depth filtering", CN. Patent 111311708A, 2020.
[33]
B.T. Zhang, C.Y. Lee, H. Lee, and I. Hwang, "Method and apparatus for enhancing image feature point in visual SLAM by using object label", KR. Patent WO2020111844A2, 2019.
[34]
Y.Q. Liu, X.L. Zhang, J.M. Li, Y.Z. Gu, and D.D. Yang, "Tightly coupled binocular vision-inertial SLAM method using combined point-line features", CN. Patent 109579840A, 2018.
[35]
K.X. Xing, W. Wan, Y.G. Lin, C. Guo, and C.T. Feng, "Robot positioning and map construction system based on binocular vision features and IMU information", CN. Patent 108665540A, 2018.
[40]
S.Y. Loo, A.J. Amiri, S. Mashohor, S.H. Tang, and H. Zhang, "CNN-SVO: Improving the mapping in semi-direct visual odometry using single-image depth prediction", arXiv:1810.01011, 2020.
[43]
D. Schlegel, M. Colosi, and G. Grisetti, "ProSLAM: graph SLAM from a programmer’s perspective", arXiv:1709.04377, 2017.
[45]
J. Engel, T. Schöps, and D. Cremers, LSD-SLAM: large-scale direct monocular SLAM. Proceedings of the 13th European Conference on Computer Vision, 2014. Zurich, Switzerland
[46]
J. Engel, J. Stückler, and D. Cremers, Large-scale direct SLAM with stereo cameras. Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015, pp. 1935-1942. Hamburg, Germany
[47]
S.L. He, "Athlete positioning system based on visual SLAM algorithm", CN. Patent 112950716A, 2021.
[48]
L. Ma, H. Jiang, X.Z. Tan, and B. Wang, "Visual positioning method of sparse three-dimensional point cloud chart based on VSLAM", CN. Patent 110889349A, 2019.
[49]
Y.L. Hu, Z.H. Yan, L.L. Sun, Z.H. Li, and X.Y. Liu, "Implementation of 3D sparse point cloud to 2D grid map based on VSLAM", CN. Patent 110675307A, 2019.
[50]
X. Wang, Z. H. Xiao, and D. G. Guan, "Visual positioning method based on ORB sparse point cloud and two-dimensional code", CN. Patent 107830854A, 2017.
[58]
M. Dong, M.F. Pei, and S. Bi, "Method for creating semi-dense cognitive map for binocular SLAM (simultaneous localization and mapping)", CN. Patent 108151728A, 2017.
[59]
J.J. Ni, Y. Yang, J.X. Zhu, and P.F. Shi, "Mobile robot semi-dense map construction method based on monocular vision", CN. Patent 111860651A, 2020.
[60]
Y. H. Pan, "SLAM-based narrow-lane passing obstacle detection method", CN. Patent 110378919A.
[61]
X.Z. Chen, L.X. Wang, Q.Q. Mao, and M. Zhou, "Monocular camera imaging semi-dense mapping method and device, and storage medium", CN. Patent 113902859A, 2021.
[66]
M. Innmann, M. Zollhfer, M. Niener, C. Theobalt, and M. Stamminger, Volumedeform: Real-time volumetric non-rigid reconstruction. Proceedings of the 14th European Conference on Computer Vision, 2016, pp. 362-379. Amsterdam, The Netherlands
[68]
T. Whelan, and S. Leutenegger, "Elasticfusion: Dense SLAM without a pose graph", In: Proceedings of Robotics: Science and Systems, Rome, Italy, 2015.
[70]
O. Kähler, V.A. Prisacariu, and D.W. Murray, "Realtime large-scale dense 3D reconstruction with loop closure", Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016, pp. 500-516.
[71]
V.A. Prisacariu, O. Khler, S. Golodetz, M. Sapienza, and D.W. Murray, "InfiniTAM v3: A framework for large-scale 3D reconstruction with loop closure", arXiv:1708.00783, 2017.
[74]
Y. Gao, H.C. Luo, Y.H. Wu, and X. Yang, "Real-time dense monocular SLAM method and system based on online learning depth prediction network", CN. Patent 107945265A, 2017.
[75]
Y. Tang, F. Qian, W.L. Du, and W. Du, "Semantic mapping method based on visual SLAM and two-dimensional semantic segmentation", CN. Patent 111462135A, 2020.