Current Stem Cell Research & Therapy

Author(s): Xiaobing Wei, Yiqi Wen, Yongzhen Hu and Xuli Guo*

DOI: 10.2174/1574888X18666230509113912

Total Saponins of Panax Notoginseng Modulate the Astrocyte Inflammatory Signaling Pathway and Attenuate Inflammatory Injury Induced by Oxygen- Glucose Deprivation/Reperfusion Injury in Rat Brain Microvascular Endothelial Cells

Page: [267 - 276] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Objective: Reperfusion after cerebral ischemia causes brain injury. Total saponins of Panax notoginseng (PNS) have potential roles in protecting against cerebral ischemia-reperfusion injury. However, whether PNS regulates astrocytes on oxygen-glucose deprivation/reperfusion (OGD/R) injury in rat brain microvascular endothelial cells (BMECs) and its mechanism still need further clarification.

Methods: Rat C6 glial cells were treated with PNS at different doses. Cell models were established by exposing C6 glial cells and BMECs to OGD/R. Cell viability was assessed, and levels of nitrite concentration, inflammatory factors (iNOS, IL-1β, IL-6, IL-8, TNF-α), and oxidative stress-related factors (MDA, SOD, GSH-Px, T-AOC) were subsequently measured through CCK8, Grice analysis, Western blot, and ELISA, respectively. The co-cultured C6 and endothelial cells were treated with PNS for 24 hours before model establishment. Then transendothelial electrical resistance (TEER), lactate dehydrogenase (LDH) activity, brain-derived neurotrophic factor (BDNF) content, and mRNA and protein levels and positive rates of tight junction proteins [Claudin-5, Occludin, ZO-1] were measured by a cell resistance meter, corresponding kits, ELISA, RT-qPCR, Western blot, and immunohistochemistry, respectively.

Results: PNS had no cytotoxicity. PNS reduced iNOS, IL-1β, IL-6, IL-8, and TNF-α levels in astrocytes, promoted T-AOC level and SOD and GSH-Px activities, and inhibited MDA levels, thus inhibiting oxidative stress in astrocytes. In addition, PNS alleviated OGD/R injury, reduced Na-Flu permeability, and enhanced TEER, LDH activity, BDNF content, and levels of tight junction proteins Claudin-5, Occludin, ZO-1 in the culture system of astrocytes and rat BMECs after OGD/R.

Conclusion: PNS repressed astrocyte inflammation and attenuated OGD/R injury in rat BMECs.

Graphical Abstract

[1]
Stegner D, Klaus V, Nieswandt B. Platelets as modulators of cerebral ischemia/reperfusion injury. Front Immunol 2019; 10: 2505.
[http://dx.doi.org/10.3389/fimmu.2019.02505] [PMID: 31736950]
[2]
Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp Neurol 2021; 335: 113518.
[http://dx.doi.org/10.1016/j.expneurol.2020.113518] [PMID: 33144066]
[3]
Wu M, Gu X, Ma Z. Mitochondrial quality control in cerebral ischemia–reperfusion injury. Mol Neurobiol 2021; 58(10): 5253-71.
[http://dx.doi.org/10.1007/s12035-021-02494-8] [PMID: 34275087]
[4]
Wu MY, Yiang GT, Liao WT, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 2018; 46(4): 1650-67.
[http://dx.doi.org/10.1159/000489241] [PMID: 29694958]
[5]
Jurcau A, Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: From pathophysiology to therapeutic strategies. Int J Mol Sci 2021; 23(1): 14.
[http://dx.doi.org/10.3390/ijms23010014] [PMID: 35008440]
[6]
Kim Y, Lee S, Zhang H, et al. CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. J Neuroinflammation 2020; 17(1): 48.
[http://dx.doi.org/10.1186/s12974-020-1727-6] [PMID: 32019570]
[7]
Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ. Glial cells as therapeutic approaches in brain ischemia-reperfusion injury. Cells 2021; 10(7): 1639.
[http://dx.doi.org/10.3390/cells10071639] [PMID: 34208834]
[8]
Adriani G, Ma D, Pavesi A, Kamm RD, Goh ELK. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood–brain barrier. Lab Chip 2017; 17(3): 448-59.
[http://dx.doi.org/10.1039/C6LC00638H] [PMID: 28001148]
[9]
Crack P, Wong C. Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med Chem 2008; 15(1): 1-14.
[http://dx.doi.org/10.2174/092986708783330665] [PMID: 18220759]
[10]
Wu L, Xiong X, Wu X, et al. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci 2020; 13: 28.
[http://dx.doi.org/10.3389/fnmol.2020.00028] [PMID: 32194375]
[11]
Xiong XY, Liu L, Yang QW. Refocusing neuroprotection in cerebral reperfusion Era: New challenges and strategies. Front Neurol 2018; 9: 249.
[http://dx.doi.org/10.3389/fneur.2018.00249] [PMID: 29740385]
[12]
Gong L, Tang Y, An R, Lin M, Chen L, Du J. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways. Cell Death Dis 2017; 8(10): e3080.
[http://dx.doi.org/10.1038/cddis.2017.465] [PMID: 28981095]
[13]
Pan A, Li Z, He X, Deng F, Ge J, Yan X. Effects of total saponins of Panax notoginseng on immature neuroblasts in the adult olfactory bulb following global cerebral ischemia/reperfusion. Neural Regen Res 2015; 10(9): 1450-6.
[http://dx.doi.org/10.4103/1673-5374.165514] [PMID: 26604906]
[14]
Li H, Deng CQ, Chen BY, Zhang SP, Liang Y, Luo XG. Total saponins of Panax Notoginseng modulate the expression of caspases and attenuate apoptosis in rats following focal cerebral ischemia-reperfusion. J Ethnopharmacol 2009; 121(3): 412-8.
[http://dx.doi.org/10.1016/j.jep.2008.10.042] [PMID: 19059471]
[15]
Gao J, Liu J, Yao M, Zhang W, Yang B, Wang G. Panax notoginseng Saponins Stimulates neurogenesis and neurological restoration after microsphere-induced cerebral embolism in rats partially via mTOR signaling. Front Pharmacol 2022; 13: 889404.
[http://dx.doi.org/10.3389/fphar.2022.889404] [PMID: 35770087]
[16]
Shou DW, Yu ZL, Meng JB, et al. Panax notoginseng alleviates sepsis-induced acute kidney injury by reducing inflammation in rats. Evid Based Complement Alternat Med 2022; 2022: 9742169.
[http://dx.doi.org/10.1155/2022/9742169] [PMID: 35698642]
[17]
Yang H, Liu Z, Hu X, et al. Protective effect of panax notoginseng saponins on Apolipoprotein-E-deficient atherosclerosis-prone mice. Curr Pharm Des 2022; 28(8): 671-7.
[http://dx.doi.org/10.2174/1381612828666220128104636] [PMID: 35088656]
[18]
Chen M, Lai X, Wang X, et al. Long Non-coding RNAs and circular RNAs: Insights into microglia and astrocyte mediated neurological diseases. Front Mol Neurosci 2021; 14: 745066.
[http://dx.doi.org/10.3389/fnmol.2021.745066] [PMID: 34675776]
[19]
Wang X, Yang L, Yang L, et al. Gypenoside IX suppresses p38 MAPK/Akt/NFκB signaling pathway activation and inflammatory responses in astrocytes stimulated by proinflammatory mediators. Inflammat 2017; 40(6): 2137-50.
[http://dx.doi.org/10.1007/s10753-017-0654-x] [PMID: 28822019]
[20]
Zhou N, Tang Y, Keep RF, Ma X, Xiang J. Antioxidative effects of Panax notoginseng saponins in brain cells. Phytomed 2014; 21(10): 1189-95.
[http://dx.doi.org/10.1016/j.phymed.2014.05.004] [PMID: 24916704]
[21]
Kokubu Y, Yamaguchi T, Kawabata K. In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells. Biochem Biophys Res Commun 2017; 486(2): 577-83.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.092] [PMID: 28336435]
[22]
Li C, Wang X, Cheng F, et al. Geniposide protects against hypoxia/reperfusion-induced blood-brain barrier impairment by increasing tight junction protein expression and decreasing inflammation, oxidative stress, and apoptosis in an in vitro system. Eur J Pharmacol 2019; 854: 224-31.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.021] [PMID: 30995438]
[23]
Zheng X, Liao Y, Wang J, et al. The antineuroinflammatory effect of simvastatin on lipopolysaccharide activated microglial cells. Evid Based Complement Alternat Med 2018; 2018: 9691085.
[http://dx.doi.org/10.1155/2018/9691085] [PMID: 30524484]
[24]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[25]
Park YR, Park CI, Soh Y. Antioxidant and anti-inflammatory effects of ncw peptide from clam worm (Marphysa sanguinea). J Microbiol Biotechnol 2020; 30(9): 1387-94.
[http://dx.doi.org/10.4014/jmb.2003.03050] [PMID: 32699197]
[26]
Xiong J, Xie R, Wang Y, et al. Nitrite-responsive hydrogel: Smart drug release depending on the severity of the nitric oxide-related disease. ACS Appl Mater Interfaces 2020; 12(46): 51185-97.
[http://dx.doi.org/10.1021/acsami.0c13688] [PMID: 33146508]
[27]
Sontakke AN, Tare RS. A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chim Acta 2002; 318(1-2): 145-8.
[http://dx.doi.org/10.1016/S0009-8981(01)00766-5] [PMID: 11880125]
[28]
Yi X, Xu C, Huang P, et al. 1-Trifluoromethoxyphenyl-3-(1-Propionylpiperidin-4-yl) urea protects the blood-brain barrier against ischemic injury by upregulating tight junction protein expression, mitigating apoptosis and inflammation in vivo and in vitro model. Front Pharmacol 2020; 11: 1197.
[http://dx.doi.org/10.3389/fphar.2020.01197] [PMID: 32848796]
[29]
Huang X, Tan H, Chen B, Deng C. Combination of total Astragalus extract and total Panax notoginseng saponins strengthened the protective effects on brain damage through improving energy metabolism and inhibiting apoptosis after cerebral ischemia-reperfusion in mice. Chin J Integr Med 2017; 23(6): 445-52.
[http://dx.doi.org/10.1007/s11655-015-1965-0] [PMID: 25804195]
[30]
Dezfulian C, Raat N, Shiva S, Gladwin M. Role of the anion nitrite in ischemia-reperfusion cytoprotection and therapeutics. Cardiovasc Res 2007; 75(2): 327-38.
[http://dx.doi.org/10.1016/j.cardiores.2007.05.001] [PMID: 17568573]
[31]
Hu S, Wu Y, Zhao B, et al. Panax notoginseng saponins protect cerebral microvascular endothelial cells against oxygen-glucose deprivation/reperfusion-induced barrier dysfunction via activation of PI3K/Akt/Nrf2 antioxidant signaling pathway. Molecules 2018; 23(11): 2781.
[http://dx.doi.org/10.3390/molecules23112781] [PMID: 30373188]
[32]
Zheng L, Tang X, Lu M, et al. microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting m6A Reader YTHDF1 to inhibit p65 mRNA translation. Int Immunopharmacol 2020; 88: 106937.
[http://dx.doi.org/10.1016/j.intimp.2020.106937] [PMID: 32890792]
[33]
Wang QH, Kuang N, Hu W, Yin D, Wei YY, Hu TJ. The effect of Panax notoginseng saponins on oxidative stress induced by PCV2 infection in immune cells: In vitro and in vivo studies. J Vet Sci 2020; 21(4): e61.
[http://dx.doi.org/10.4142/jvs.2020.21.e61] [PMID: 32735098]
[34]
Zheng Z, Liang S, Sun S, Liu P, Yu L. Clinical observation of salvianolic acid combined with panax notoginseng saponins combined with basic nursing intervention on cerebral ischemia-reperfusion injury in rats. J Healthc Eng 2022; 2022: 8706730.
[http://dx.doi.org/10.1155/2022/8706730] [PMID: 35136538]
[35]
Li L, Peng L, Zhu J, Wu J, Zhao Y. DJ-1 alleviates oxidative stress injury by activating the Nrf2 pathway in rats with cerebral ischemia-reperfusion injury. Nan Fang Yi Ke Da Xue Xue Bao 2021; 41(5): 679-86.
[PMID: 34134954]
[36]
Zhao P, Zhou R, Zhu XY, et al. Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice. Int J Mol Med 2015; 36(3): 633-44.
[http://dx.doi.org/10.3892/ijmm.2015.2260] [PMID: 26135032]
[37]
Cui Y, Wang JQ, Shi XH, et al. Nodal mitigates cerebral ischemia-reperfusion injury via inhibiting oxidative stress and inflammation. Eur Rev Med Pharmacol Sci 2019; 23(13): 5923-33.
[PMID: 31298343]
[38]
Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci 2020; 21(18): 6454.
[http://dx.doi.org/10.3390/ijms21186454] [PMID: 32899616]
[39]
Yuan Q, Wang J, Li R, et al. Effects of salvianolate lyophilized injection combined with Xueshuantong injection in regulation of BBB function in a co-culture model of endothelial cells and pericytes. Brain Res 2021; 1751: 147185.
[http://dx.doi.org/10.1016/j.brainres.2020.147185] [PMID: 33129805]
[40]
Zhao J, Xu H, Tian Y, Hu M, Xiao H. Effect of electroacupuncture on brain-derived neurotrophic factor mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury. J Tradit Chin Med 2013; 33(2): 253-7.
[http://dx.doi.org/10.1016/S0254-6272(13)60135-1] [PMID: 23789227]
[41]
Pan Y, Wu D, Liang H, et al. Total saponins of panax notoginseng activate Akt/mTOR pathway and exhibit neuroprotection in vitro and in vivo against ischemic damage. Chin J Integr Med 2022; 28(5): 410-8.
[http://dx.doi.org/10.1007/s11655-021-3454-y] [PMID: 34581940]
[42]
Zhang H, Chen Z, Zhong Z, Gong W, Li J. Total saponins from the leaves of Panax notoginseng inhibit depression on mouse chronic unpredictable mild stress model by regulating circRNA expression. Brain Behav 2018; 8(11): e01127.
[http://dx.doi.org/10.1002/brb3.1127] [PMID: 30298999]
[43]
Ruck T, Bittner S, Epping L, Herrmann AM, Meuth SG. Isolation of primary murine brain microvascular endothelial cells. J Vis Exp 2014; (93): e52204.
[PMID: 25489873]
[44]
Moretti R, Pansiot J, Bettati D, et al. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci 2015; 9: 40.
[http://dx.doi.org/10.3389/fnins.2015.00040] [PMID: 25741233]
[45]
Lv J, Hu W, Yang Z, et al. Focusing on claudin-5: A promising candidate in the regulation of BBB to treat ischemic stroke. Prog Neurobiol 2018; 161: 79-96.
[http://dx.doi.org/10.1016/j.pneurobio.2017.12.001] [PMID: 29217457]
[46]
Lu QG, Zeng L, Li XH, et al. Protective effects of panax notoginseng saponin on dextran sulfate sodium-induced colitis in rats through phosphoinositide-3-kinase protein kinase B signaling pathway inhibition. World J Gastroenterol 2020; 26(11): 1156-71.
[http://dx.doi.org/10.3748/wjg.v26.i11.1156] [PMID: 32231420]
[47]
Liu B, Li Y, Han Y, et al. Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke. Phytomedicine 2021; 90: 153660.
[http://dx.doi.org/10.1016/j.phymed.2021.153660] [PMID: 34344565]