Mini-Reviews in Medicinal Chemistry

Author(s): Jignesh H. Kamadar, D Roza Kumari and Khushal M Kapadiya*

DOI: 10.2174/1389557523666230508162439

DownloadDownload PDF Flyer Cite As
Recent Studies on Serotonin 5-HT2A Receptor Antagonists in Medicinal Chemistry: A Last Decades Survey

Page: [1859 - 1870] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

In the last decades, much attention has been paid to the functioning of receptors to understand better how they work with various chemical motifs. Among different families, G-proteincoupled receptor (GPCR) families have drawn much attention in the twenty-first century. They are the most prominent signal transducer across the cell membrane, comprising thousand-odd proteins. One of the members of GPCRs is the serotonin 2A (5-HT2A) receptor, which has been associated with complex etiological mental illnesses. In this survey, we collected data on 5-HT2A, i.e., the role of 5- HT2A receptors in human and animal analogy, various binding site functionalities, advanced effects, and synthetic aspects.

Keywords: GPCRs, 5-HT2A receptor, neurotransmitter, MeO-AMDA isomers, antidepressiont, WHO.

Graphical Abstract

[1]
Ryu, Y.; Maekawa, T.; Yoshino, D.; Sakitani, N.; Takashima, A.; Inoue, T.; Suzurikawa, J.; Toyohara, J.; Tago, T.; Makuuchi, M.; Fujita, N.; Sawada, K.; Murase, S.; Watanave, M.; Hirai, H.; Sakai, T.; Yoshikawa, Y.; Ogata, T.; Shinohara, M.; Nagao, M.; Sawada, Y. Mechanical regulation underlies effects of exercise on serotonin-induced signaling in the prefrontal cortex neurons. iScience, 2020, 23(2), 100874.
[http://dx.doi.org/10.1016/j.isci.2020.100874] [PMID: 32062453]
[2]
Bush, S.E.; Mayer, S.E. 5-Hydroxytryptamine (Serotonin). Receptor Agonists Antagon., 1997, 45(5), 991-996.
[3]
Hoyer, D.; Clarke, D.E.; Fozard, J.R.; Hartig, P.R.; Martin, G.R.; Mylecharane, E.J.; Saxena, P.R.; Humphrey, P.P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev., 1994, 46(2), 157-203.
[PMID: 7938165]
[4]
Frazer, A.; Hensler, J.G. Serotonin Receptors, Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed; American Society for Neurochemistry, 1999.
[5]
Beliveau, V.; Ganz, M.; Feng, L.; Ozenne, B.; Højgaard, L.; Fisher, P.M.; Svarer, C.; Greve, D.N.; Knudsen, G.M. A high-resolution in vivo atlas of the human brain’s serotonin system. J. Neurosci., 2017, 37(1), 120-128.
[http://dx.doi.org/10.1523/JNEUROSCI.2830-16.2016] [PMID: 28053035]
[6]
Raote, I.; Bhattacharya, A.; Panicker, M. Serotonin 2A (5-HT2A) Receptor Function: Ligand-dependent mechanisms and pathways.Serotonin Receptors in Neurobiology, Chapter 6; Chattopadhyay, A., Ed.; CRC Press/Taylor & Francis, 2007. Available from : https://www.ncbi.nlm.nih.gov/books/NBK1853
[7]
Cook, E.H.; Fletcher, K.E.; Wainwright, M. Primary structure of the human platelet serotonin 5-HT2A receptor: Identify with frontal cortex serotonin 5-HT2A receptor. J. Neurosci., 2017, 63(2), 465-469.
[PMID: 29175957]
[8]
Martin, P.; Waters, N.; Schmidt, C.J.; Carlsson, A.; Carlsson, M.L. Rodent data and general hypothesis: Antipsychotic action exerted through 5-HT2A receptor antagonism is dependent on increased serotonergic tone. J. Neural Transm., 1998, 105(4), 365-396.
[http://dx.doi.org/10.1007/s007020050064] [PMID: 9720968]
[9]
De Almeida, R.M.M.; Rosa, M.M.; Santos, D.M.; Saft, D.M.; Benini, Q.; Miczek, K.A. 5-HT1B receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology, 2006, 185(4), 441-450.
[http://dx.doi.org/10.1007/s00213-006-0333-3] [PMID: 16550387]
[10]
Marinissen, M.J.; Gutkind, J.S. G-protein-coupled receptors and signaling networks: Emerging paradigms. Trends Pharmacol. Sci., 2001, 22(7), 368-376.
[http://dx.doi.org/10.1016/S0165-6147(00)01678-3] [PMID: 11431032]
[11]
Murray, C.J.L.; Lopez, A.D. Alternative projections of mortality and disability by cause 1990–2020: Global burden of disease study. Lancet, 1997, 349(9064), 1498-1504.
[http://dx.doi.org/10.1016/S0140-6736(96)07492-2] [PMID: 9167458]
[12]
Pritchett, D.B.; Bach, A.W.; Wozny, M.; Taleb, O.; Dal Toso, R.; Shih, J.C.; Seeburg, P.H. Structure and functional expression of cloned rat serotonin 5HT-2 receptor. EMBO J., 1988, 7(13), 4135-4140.
[http://dx.doi.org/10.1002/j.1460-2075.1988.tb03308.x] [PMID: 2854054]
[13]
Hoyer, D.; Hannon, J.P.; Martin, G.R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav., 2002, 71(4), 533-554.
[http://dx.doi.org/10.1016/S0091-3057(01)00746-8] [PMID: 11888546]
[14]
Williams, G.V.; Rao, S.G.; Goldman-Rakic, P.S. The physiological role of 5-HT2A receptors in working memory. J. Neurosci., 2002, 22(7), 2843-2854.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02843.2002] [PMID: 11923449]
[15]
Roth, B. L.; Berry, S. A.; Kroeze, W. Serotonin 5-HT2A receptors:Molecular biology and mechanisms of regulation. Crit. Rev. neurobio. 1998, 12(4), 199.
[16]
Millar, R.P.; Newton, C.L. The year in G protein-coupled receptor research. Mol. Endocrinol., 2010, 24(1), 261-274.
[http://dx.doi.org/10.1210/me.2009-0473] [PMID: 20019124]
[17]
Pytliak, M.; Vargová, V.; Mechírová, V.; Felšöci, M. Serotonin receptors-from molecular biology to clinical applications. Physiol. Res., 2011, 60(1), 15-25.
[http://dx.doi.org/10.33549/physiolres.931903] [PMID: 20945968]
[18]
McCorvy, J.D.; Roth, B.L. Structure and function of serotonin G protein-coupled receptors. Pharmacol. Ther., 2015, 150, 129-142.
[http://dx.doi.org/10.1016/j.pharmthera.2015.01.009] [PMID: 25601315]
[19]
Bartuzi, D.; Kaczor, A.A.; Matosiuk, D. Signaling within allosteric machines: Signal transmission pathways inside G protein-coupled receptors. Molecules, 2017, 22, 1188.
[20]
Borroto-Escuela, D.O.; Carlsson, J.; Ambrogini, P.; Narváez, M.; Wydra, K.; Tarakanov, A.O.; Li, X.; Millón, C.; Ferraro, L.; Cuppini, R.; Tanganelli, S.; Liu, F.; Filip, M.; Diaz-Cabiale, Z.; Fuxe, K. Understanding the role of GPCR heteroreceptor complexes in modulating the brain networks in health and disease. Front. Cell. Neurosci., 2017, 11, 37.
[http://dx.doi.org/10.3389/fncel.2017.00037] [PMID: 28270751]
[21]
Bacon, E.R.; Williams, M. Therapeutic Areas I: Central nervous system, pain, metabolic syndrome, urology, gastrointestinal and cardiovascular. In: In: Comprehensive Medicinal Chemistry II;; Williams,M., Ed., 2007; 6, p. 863.
[22]
Haensel, S.M.; Rowland, D.L.; Kallan, K.T.H.K.; Slob, K.A. Clomipramine and sexual function in men with premature ejaculation and controls. J. Urol., 1996, 156(4), 1310-1315.
[http://dx.doi.org/10.1016/S0022-5347(01)65576-9] [PMID: 8808861]
[23]
Grewal, J.S.; Mukhin, Y.V.; Garnovskaya, M.N.; Raymond, J.R.; Greene, E.L. Serotonin 5-HT2A receptor induces TGF-beta1 expression in mesangial cells via ERK: Proliferative and fibrotic signals. Am. J. Physiol., 1999, 276(6), F922-F930.
[PMID: 10362781]
[24]
Schöning, C.; Flieger, M.; Pertz, H.H. Complex interaction of ergovaline with 5-HT2A, 5-HT1B/1D, and alpha1 receptors in isolated arteries of rat and guinea pig. J. Anim. Sci., 2001, 79(8), 2202-2209.
[http://dx.doi.org/10.2527/2001.7982202x] [PMID: 11518230]
[25]
Tittarelli, R.; Mannocchi, G.; Pantano, F.; Romolo, F. Recreational use, analysis and toxicity of tryptamines. Curr. Neuropharmacol., 2015, 13(1), 26-46.
[http://dx.doi.org/10.2174/1570159X13666141210222409] [PMID: 26074742]
[26]
Storch, E.A.; Murphy, T.K.; Lack, C.W.; Geffken, G.R.; Jacob, M.L.; Goodman, W.K. Sleep-related problems in pediatric obsessive-compulsive disorder. J. Anxiety Disord., 2008, 22(5), 877-885.
[http://dx.doi.org/10.1016/j.janxdis.2007.09.003] [PMID: 17951025]
[27]
Cao, D.; Yu, J.; Wang, H.; Luo, Z.; Liu, X.; He, L.; Qi, J.; Fan, L.; Tang, L.; Chen, Z.; Li, J.; Cheng, J.; Wang, S. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science, 2022, 375(6579), 403-411.
[http://dx.doi.org/10.1126/science.abl8615] [PMID: 35084960]
[28]
Mattoo, S.K.; Ghosh, A.; Chakraborty, K. Newer molecules in the treatment of schizophrenia: A clinical update. Indian J. Pharmacol., 2011, 43(2), 105-112.
[http://dx.doi.org/10.4103/0253-7613.77334] [PMID: 21572641]
[29]
Dewkar, G.K.; Peddi, S.; Mosier, P.D.; Roth, B.L.; Westkaemper, R.B. Methoxy-substituted 9-aminomethyl-9,10-dihydroanthracene (AMDA) derivatives exhibit differential binding affinities at the 5-HT2A receptor. Bioorg. Med. Chem. Lett., 2008, 18(19), 5268-5271.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.059] [PMID: 18774714]
[30]
Costa, L.G.; Steardo, L.; Cuomo, V. Structural effects and neurofunctional sequelae of developmental exposure to psychotherapeutic drugs: Experimental and clinical aspects. Pharmacol. Rev., 2004, 56(1), 103-147.
[http://dx.doi.org/10.1124/pr.56.1.5] [PMID: 15001664]
[31]
Shonberg, J.; Herenbrink, C.K.; López, L.; Christopoulos, A.; Scammells, P.J.; Capuano, B.; Lane, J.R. A structure-activity analysis of biased agonism at the dopamine D2 receptor. J. Med. Chem., 2013, 56(22), 9199-9221.
[http://dx.doi.org/10.1021/jm401318w] [PMID: 24138311]
[32]
Chen, X.; Sassano, M.F.; Zheng, L.; Setola, V.; Chen, M.; Bai, X.; Frye, S.V.; Wetsel, W.C.; Roth, B.L.; Jin, J. Structure-functional selectivity relationship studies of β-arrestin-biased dopamine D2 receptor agonists. J. Med. Chem., 2012, 55(16), 7141-7153.
[http://dx.doi.org/10.1021/jm300603y] [PMID: 22845053]
[33]
Lv, J.; Liu, F. The role of serotonin beyond the central nervous system during embryogenesis. Front. Cell. Neurosci., 2017, 11, 74.
[http://dx.doi.org/10.3389/fnpit.2017.00400] [PMID: 28348520]
[34]
Berman, E.R. Biochemistry of the Eye.Perspectives in Vision Research; Springer: Boston, MA, 1991.
[http://dx.doi.org/10.1007/978-1-4757-9441-0]
[35]
Ohia, S.E.; Njie-Mbye, Y.F.; Robinson, J.; Mitchell, L.; Mckoy, M.; Opere, C.A.; Sharif, N.A. Serotonin-2B/2C receptors mediate bovine ciliary muscle contraction: Role in intraocular pressure regulation. J. Ocul. Pharmacol. Ther., 2018, 34(1-2), 70-75.
[http://dx.doi.org/10.1089/jop.2017.0123] [PMID: 29364761]
[36]
a) Olsson, T.; Håkansson, A.; Seck, J.R. Ketanserin selectively blocks acute stress-induced changes in NGFI-A and mineralocorticoid receptor gene expression in hippocampal neurons. Neurosci. J., 1997, 76(2), 441-448.;
b) Saxena, P.R.; Bolt, G.R.; Dhasmana, K.M. Serotonin agonists and antagonists in experimental hypertension. J. Cardiovasc. Pharmacol., 1987, 10, 12-18.
[37]
Sharif, N.A.; Senchyna, M. Serotonin receptor subtype mRNA expression in human ocular tissues, determined by RT-PCR. Mol. Vis., 2006, 12(117), 1040-1047.
[PMID: 16971896]
[38]
Sharif, N.A.; Kelly, C.R.; McLaughlin, M. Human trabecular meshwork cells express functional serotonin-2A (5HT2A) receptors: role in IOP reduction. Invest. Ophthalmol. Vis. Sci., 2006, 47(9), 4001-4010.
[http://dx.doi.org/10.1167/iovs.06-0062] [PMID: 16936116]
[39]
Portas, C.M.; Bjorvatn, B.; Ursin, R. Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog. Neurobiol., 2000, 60(1), 13-35.
[http://dx.doi.org/10.1016/S0301-0082(98)00097-5] [PMID: 10622375]
[40]
Monti, J.M. Serotonin 5-HT2A receptor antagonists in the treatment of insomnia: Present status and future prospects. Drugs Today, 2010, 46(3), 183-193.
[http://dx.doi.org/10.1358/dot.2010.46.3.1437247] [PMID: 20467592]
[41]
Morairty, S.R.; Hedley, L.; Flores, J.; Martin, R.; Kilduff, T.S. Selective 5HT2A and 5HT6 receptor antagonists promote sleep in rats. Sleep, 2008, 31(1), 34-44.
[http://dx.doi.org/10.1093/sleep/31.1.34] [PMID: 18220076]
[42]
Maroteaux, L.; Ayme-Dietrich, E.; Aubertin-Kirch, G.; Banas, S.; Quentin, E.; Lawson, R.; Monassier, L. New therapeutic opportunities for 5-HT2 receptor ligands. Pharmacol. Ther., 2017, 170, 14-36.
[http://dx.doi.org/10.1016/j.pharmthera.2016.10.008] [PMID: 27771435]
[43]
Sencanski, M.; Sukalovic, V.; Shakib, K.; Soskic, V.; Dosen-Micovic, L.; Kostic-Rajacic, S. Molecular modeling of 5HT2A receptor-arylpiperazine ligands interactions. Chem. Biol. Drug Des., 2014, 83(4), 462-471.
[http://dx.doi.org/10.1111/cbdd.12261] [PMID: 24772489]
[44]
Kumar, R.; Jade, D.; Gupta, D. A novel identification approach for discovery of 5-HydroxyTriptamine 2A antagonists: Combination of 2D/3D similarity screening, molecular docking and molecular dynamics. J. Biomol. Struct. Dyn., 2019, 37(4), 931-943.
[http://dx.doi.org/10.1080/07391102.2018.1444509] [PMID: 29468945]
[45]
Varin, T.; Gutiérrez-de-Terán, H.; Castro, M.; Brea, J.; Fabis, F.; Dauphin, F.; Åqvist, J.; Lepailleur, A.; Perez, P.; Burgueño, J.; Vela, J.M.; Loza, M.I.; Rodrigo, J. Phe369(7.38) at human 5-HT7 receptors confers interspecies selectivity to antagonists and partial agonists. Br. J. Pharmacol., 2010, 159(5), 1069-1081.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00481.x] [PMID: 19922537]
[46]
Shapiro, D.A.; Kristiansen, K.; Kroeze, W.K.; Roth, B.L. Differential modes of agonist binding to 5-hydroxytryptamine(2A) serotonin receptors revealed by mutation and molecular modeling of conserved residues in transmembrane region 5. Mol. Pharmacol., 2000, 58(5), 877-886.
[http://dx.doi.org/10.1124/mol.58.5.877] [PMID: 11040033]
[47]
Perez-Aguilar, J.M.; Shan, J.; LeVine, M.V.; Khelashvili, G.; Weinstein, H. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2. J. Am. Chem. Soc., 2014, 136(45), 16044-16054.
[http://dx.doi.org/10.1021/ja508394x] [PMID: 25314362]
[48]
Runyon, S.P.; Mosier, P.D.; Roth, B.L.; Glennon, R.A.; Westkaemper, R.B. Potential modes of interaction of 9-aminomethyl-9,10-dihydroanthracene (AMDA) derivatives with the 5-HT2A receptor: A ligand structure-affinity relationship, receptor mutagenesis and receptor modeling investigation. J. Med. Chem., 2008, 51(21), 6808-6828.
[http://dx.doi.org/10.1021/jm800771x] [PMID: 18847250]
[49]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[50]
Wang, C.; Jiang, Y.; Ma, J.; Wu, H.; Wacker, D.; Katritch, V.; Han, G.W.; Liu, W.; Huang, X.P.; Vardy, E.; McCorvy, J.D.; Gao, X.; Zhou, X.E.; Melcher, K.; Zhang, C.; Bai, F.; Yang, H.; Yang, L.; Jiang, H.; Roth, B.L.; Cherezov, V.; Stevens, R.C.; Xu, H.E. Structural basis for molecular recognition at serotonin receptors. Science, 2013, 340(6132), 610-614.
[http://dx.doi.org/10.1126/science.1232807] [PMID: 23519210]
[51]
Podlewska, S.; Bugno, R.; Lacivita, E.; Leopoldo, M.; Bojarski, A.J.; Handzlik, J. Low basicity as a characteristic for atypical ligands of serotonin receptor 5-HT2. Int. J. Mol. Sci., 2021, 22(3), 1035-1047.
[http://dx.doi.org/10.3390/ijms22031035] [PMID: 33494248]
[52]
Moreno, J.L.; Holloway, T.; Albizu, L.; Sealfon, S.C.; González-Maeso, J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci. Lett., 2011, 493(3), 76-79.
[http://dx.doi.org/10.1016/j.neulet.2011.01.046] [PMID: 21276828]
[53]
Yu, B.; Becnel, J.; Zerfaoui, M.; Rohatgi, R.; Boulares, A.H.; Nichols, C.D. Serotonin 5-hydroxytryptamine(2A) receptor activation suppresses tumor necrosis factor-alpha-induced inflammation with extraordinary potency. J. Pharmacol. Exp. Ther., 2008, 327(2), 316-323.
[http://dx.doi.org/10.1124/jpet.108.143461] [PMID: 18708586]
[54]
Nau, F., Jr; Yu, B.; Martin, D.; Nichols, C.D. Serotonin 5-HT2A receptor activation blocks TNF-α mediated inflammation in vivo. PLoS One, 2013, 8(10), e75426.
[http://dx.doi.org/10.1371/journal.pone.0075426] [PMID: 24098382]
[55]
Van de Kar, L.D.; Javed, A.; Zhang, Y.; Serres, F.; Raap, D.K.; Gray, T.S. 5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. J. Neurosci., 2001, 21(10), 3572-3579.
[http://dx.doi.org/10.1523/JNEUROSCI.21-10-03572.2001] [PMID: 11331386]
[56]
Zhang, Y.; Damjanoska, K.J.; Carrasco, G.A.; Dudas, B.; D’Souza, D.N.; Tetzlaff, J.; Garcia, F.; Hanley, N.R.S.; Scripathirathan, K.; Petersen, B.R.; Gray, T.S.; Battaglia, G.; Muma, N.A.; Van de Kar, L.D. Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI. J. Neurosci., 2002, 22(21), 9635-9642.
[http://dx.doi.org/10.1523/JNEUROSCI.22-21-09635.2002] [PMID: 12417689]
[57]
Harvey, J.A. Role of the serotonin 5-HT(2A) receptor in learning. Learn. Mem., 2003, 10(5), 355-362.
[http://dx.doi.org/10.1101/lm.60803] [PMID: 14557608]
[58]
García-Cazorla, A.; Artuch, R. Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease - Neurotransmitter Disorders, 5th ed; Academic Press, 2015, pp. 703-712.
[http://dx.doi.org/10.1016/B978-0-12-410529-4.00063-2]
[59]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[60]
Jin, H.; Cianchetta, G.; Devasagayaraj, A.; Gu, K.; Marinelli, B.; Samala, L.; Scott, S.; Stouch, T.; Tunoori, A.; Wang, Y.; Zang, Y.; Zhang, C.; David Kimball, S.; Main, A.J.; Ding, Z.M.; Sun, W.; Yang, Q.; Yu, X.Q.; Powell, D.R.; Wilson, A.; Liu, Q.; Shi, Z.C. Substituted 3-(4-(1,3,5-triazin-2-yl)-phenyl)-2-aminopropanoic acids as novel tryptophan hydroxylase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(17), 5229-5232.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.005] [PMID: 19631532]
[61]
Sands, A. T. Pharmaceutical compositions containing multicyclicamino acid derivative tryptophan hydroxylase inhibitors and methodsof using them in treatment, prevention and combination therapy of pulmonary hypertension and related diseases. , 2009. EP2315587B1 Patent,
[62]
Shi, Z.C.; Devasagayaraj, A.; Gu, K.; Jin, H.; Marinelli, B.; Samala, L.; Scott, S.; Stouch, T.; Tunoori, A.; Wang, Y.; Zang, Y.; Zhang, C.; Kimball, S.D.; Main, A.J.; Sun, W.; Yang, Q.; Nouraldeen, A.; Yu, X.Q.; Buxton, E.; Patel, S.; Nguyen, N.; Swaffield, J.; Powell, D.R.; Wilson, A.; Liu, Q. Modulation of peripheral serotonin levels by novel tryptophan hydroxylase inhibitors for the potential treatment of functional gastrointestinal disorders. J. Med. Chem., 2008, 51(13), 3684-3687.
[http://dx.doi.org/10.1021/jm800338j] [PMID: 18557609]
[63]
Tanaka, C.; Yoh, Y.J.; Takori, S. Relation between brain monoamine tryptophan hydroxylase inhibitors. Brain Res. J., 1972, 45(1), 153-164.
[http://dx.doi.org/10.1016/0006-8993(72)90222-3]
[64]
Liu, Q.; Yang, Q.; Sun, W.; Vogel, P.; Heydorn, W.; Yu, X.Q.; Hu, Z.; Yu, W.; Jonas, B.; Pineda, R.; Calderon-Gay, V.; Germann, M.; O’Neill, E.; Brommage, R.; Cullinan, E.; Platt, K.; Wilson, A.; Powell, D.; Sands, A.; Zambrowicz, B.; Shi, Z. Discovery and characterization of novel tryptophan hydroxylase inhibitors that selectively inhibit serotonin synthesis in the gastrointestinal tract. J. Pharmacol. Exp. Ther., 2008, 325(1), 47-55.
[http://dx.doi.org/10.1124/jpet.107.132670] [PMID: 18192499]
[65]
Shah, J.R.; Mosier, P.D.; Roth, B.L.; Kellogg, G.E.; Westkaemper, R.B. Synthesis, structure–affinity relationships, and modeling of AMDA analogs at 5-HT2A and H1 receptors: Structural factors contributing to selectivity. Bioorg. Med. Chem., 2009, 17(18), 6496-6504.
[http://dx.doi.org/10.1016/j.bmc.2009.08.016] [PMID: 19700330]
[66]
Jordan, S.; Koprivica, V.; Chen, R.; Tottori, K.; Kikuchi, T.; Altar, C.A. The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur. J. Pharmacol., 2002, 441(3), 137-140.
[http://dx.doi.org/10.1016/S0014-2999(02)01532-7] [PMID: 12063084]
[67]
Shapiro, D.A.; Renock, S.; Arrington, E.; Chiodo, L.A.; Liu, L.X.; Sibley, D.R.; Roth, B.L.; Mailman, R. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology, 2003, 28(8), 1400-1411.
[http://dx.doi.org/10.1038/sj.npp.1300203] [PMID: 12784105]
[68]
Ehrlich, K.; Götz, A.; Bollinger, S.; Tschammer, N.; Bettinetti, L.; Härterich, S.; Hübner, H.; Lanig, H.; Gmeiner, P. Dopamine D2, D3, and D4 selective phenylpiperazines as molecular probes to explore the origins of subtype specific receptor binding. J. Med. Chem., 2009, 52(15), 4923-4935.
[http://dx.doi.org/10.1021/jm900690y] [PMID: 19606869]
[69]
Keck, T.M.; Banala, A.K.; Slack, R.D.; Burzynski, C.; Bonifazi, A.; Okunola-Bakare, O.M.; Moore, M.; Deschamps, J.R.; Rais, R.; Slusher, B.S.; Newman, A.H. Using click chemistry toward novel 1,2,3-triazole-linked dopamine D3 receptor ligands. Bioorg. Med. Chem., 2015, 23(14), 4000-4012.
[http://dx.doi.org/10.1016/j.bmc.2015.01.017] [PMID: 25650314]
[70]
Möller, D.; Salama, I.; Kling, R.C.; Hübner, H.; Gmeiner, P. 1,4-Disubstituted aromatic piperazines with high 5-HT2A/D2 selectivity: Quantitative structure-selectivity investigations, docking, synthesis and biological evaluation. Bioorg. Med. Chem., 2015, 23(18), 6195-6209.
[http://dx.doi.org/10.1016/j.bmc.2015.07.050] [PMID: 26299826]
[71]
Roche, D.; Brackenridge, D.; McGuffin, L. Proteins and their interacting partners: An introduction to protein–ligand binding site prediction methods. Int. J. Mol. Sci., 2015, 16(12), 29829-29842.
[http://dx.doi.org/10.3390/ijms161226202] [PMID: 26694353]
[72]
Lin, F.; Li, F.; Wang, C.; Wang, J.; Yang, Y.; Yang, L.; Li, Y. Mechanism exploration of arylpiperazine derivatives targeting the 5-HT2A receptor by in silico methods. Molecules, 2017, 22(7), 1064-1071.
[http://dx.doi.org/10.3390/molecules22071064] [PMID: 28672848]
[73]
Muntasir, H.A.; Rashid, M.; Komiyama, T.; Kawakami, J.; Nagatomo, T. Identification of amino acid residues important for sarpogrelate binding to the human 5-hydroxytryptamine2A serotonin receptor. J. Pharmacol. Sci., 2006, 102(1), 55-63.
[http://dx.doi.org/10.1254/jphs.FP0060171] [PMID: 16974069]
[74]
Dezi, C.; Brea, J.; Alvarado, M.; Raviña, E.; Masaguer, C.F.; Loza, M.I.; Sanz, F.; Pastor, M. Synthesis and binding affinity of potential atypical antipsychotics with the tetrahydroquinazolinone motif. J. Med. Chem., 2007, 50, 3242.
[http://dx.doi.org/10.1021/jm070277a] [PMID: 17579386]
[75]
GOLD, Version 5.1.1, Cambridge Crystallographic Data Centre;GOLD.
[76]
Möller, D.; Kling, R.C.; Skultety, M.; Leuner, K.; Hübner, H.; Gmeiner, P. Discovery of G protein-biased dopaminergics with a pyrazolo[1,5-a] pyridine substructure. J. Med. Chem., 2014, 57, 4861-4875.
[PMID: 24831693]