Impact of Gaussian Traps on the Characteristics of L-shaped Tunnel Field-effect Transistor

Page: [269 - 275] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Internet of Things (IoT) applications require high-performance TFET devices that can be efficiently integrated with the cyber world and physical world.

Objectives: The impact of introducing Gaussian traps in hetero-junction tunneling-field-effecttransistors (TFET) with an L-shaped gate is presented.

Methods: The 2-D TCAD study of different characteristics, like input, output characteristics, and noise spectral density with trap and without trap, has been performed.

Results: The simulation results showed that in L-shaped TFET (L_TFET), the high on-current of 1.93×10-5 A/μm, low off-current/leakage current of 1.09×10-13 A/μm, and steep sub-threshold slope (SS) of 24 mV/dec without traps and on-current of 8.46×10-6 A/μm, off-current of 2.86×10- 11 A/μm, and degraded SS with traps are observed. They also indicated that the presence of traps reduces gate-drain capacitance (Cgd), while gate-source capacitance (Cgs) remains unaffected. In addition, in L_TFET, the drain current noise spectral density (SID) of 7.63 E-21 (A2/Hz) at LF and 2.69 E-26 (A2/Hz) at HF while the noise voltage spectral density (SVG) of 7.33 E-4 (V2/Hz) at LF and 2.59 E-15 (V2/Hz) at HF without traps have been investigated in this study. The inverse dependence of drain current noise spectral density on frequency has been observed to lower the effect of noise at HF.

Conclusion: It can be concluded that the proposed L_TFET device is free from ambipolarity conduction and can be well-suited for low-power applications.

Graphical Abstract

[1]
Dreslinski, R.G.; Wieckowski, M.; Blaauw, D.; Sylvester, D.; Mudge, T. Near-threshold computing: Reclaiming moore’s law through ener-gy efficient integrated circuits. Proc. IEEE, 2010, 98(2), 253-266.
[http://dx.doi.org/10.1109/JPROC.2009.2034764]
[2]
Chander, S.; Sinha, S.K.; Chaudhary, R.; Singh, A. Ge-source based L-shaped tunnel field effect transistor for low power switching appli-cation. Silicon, 2021, 14, 7435-7448.
[http://dx.doi.org/10.1007/s12633-021-01475-9]
[3]
Raad, B.R.; Tirkey, S.; Sharma, D.; Kondekar, P. A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electron Dev., 2017, 64(4), 1830-1836.
[http://dx.doi.org/10.1109/TED.2017.2672640]
[4]
Sinha, S.K.; Chander, S.; Chaudhary, R. investigation of noise characteristics in gate-source overlap tunnel field-effect transistor. Silicon, 2022, 14, 10661-10668.
[http://dx.doi.org/10.1007/s12633-022-01806-4]
[5]
Chander, S.; Sinha, S.K.; Chaudhary, R. Comprehensive review on electrical noise analysis of TFET structures. Superlattices Microstruct., 2022, 161, 107101.
[http://dx.doi.org/10.1016/j.spmi.2021.107101]
[6]
Banerjee, S.; Richardson, W.; Coleman, J.; Chatterjee, A. A new three-terminal tunnel device. IEEE Electron Device Lett., 1987, 8(8), 347-349.
[http://dx.doi.org/10.1109/EDL.1987.26655]
[7]
Bhuwalka, K.K.; Schulze, J.; Eisele, I. Scaling the vertical tunnel FET with tunnel bandgap modulation and gate work function engineering. IEEE Trans. Electron Dev., 2005, 52(5), 909-917.
[http://dx.doi.org/10.1109/TED.2005.846318]
[8]
Kim, S.W.; Kim, J.H.; Liu, T.J.K.; Choi, W.Y.; Park, B.G. Demonstration of L-shaped tunnel field-effect transistors. IEEE Trans. Electron Dev., 2016, 63(4), 1774-1778.
[http://dx.doi.org/10.1109/TED.2015.2472496]
[9]
Chander, S.; Sinha, S.K.; Chaudhary, R.; Goswami, R. Effect of noise components on L-shaped and T-shaped heterojunction tunnel field effect transistor. IOP Science. Semicond. Sci. Technol., 2022, 37, 075011.
[http://dx.doi.org/10.1088/1361-6641/ac696e]
[10]
Reddick, W.M.; Amaratunga, G.A.J. Silicon surface tunnel transistor. Appl. Phys. Lett., 1995, 67(4), 494-496.
[http://dx.doi.org/10.1063/1.114547]
[11]
Byung-Gook, Park; Park, B.G.; Lee, J.D.; Liu, T.J.K. Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett., 2007, 28(8), 743-745.
[http://dx.doi.org/10.1109/LED.2007.901273]
[12]
Li, C.; Zhao, X.; Zhuang, Y.; Yan, Z.; Guo, J.; Han, R. Optimization of L-shaped tunneling field-effect transistor for ambipolar current suppression and Analog/RF performance enhancement. Superlattices Microstruct., 2018, 115, 154-167.
[http://dx.doi.org/10.1016/j.spmi.2018.01.025]
[13]
Sinha, S.K. Performance assessment of double gate graded junction-less-FET device with temperature variations. Int. J. Nano., 2021, 13(1), 33-41.
[http://dx.doi.org/10.1504/IJNP.2021.114900]
[14]
Hung, K.K.; Ko, P.K.; Hu, C.; Cheng, Y.C. A physics-based MOSFET noise model for circuit simulators. IEEE Trans. Electron Dev., 1990, 37(5), 1323-1333.
[http://dx.doi.org/10.1109/16.108195]
[15]
Mallik, A.; Chattopadhyay, A.; Guin, S.; Karmakar, A. Impact of a spacer–drain overlap on the characteristics of a silicon tunnel field-effect transistor based on vertical tunneling. IEEE Trans. Electron Dev., 2013, 60(3), 935-943.
[http://dx.doi.org/10.1109/TED.2013.2237776]
[16]
Li, W.; Liu, H.; Wang, S.; Chen, S.; Yang, Z. Design of high performance Si/SiGe heterojunction tunneling FETs with a T-shaped gate. Nanoscale Res. Lett., 2017, 12(1), 1-8.
[http://dx.doi.org/10.1186/s11671-016-1773-2] [PMID: 28050875]
[17]
Konczakowska, A.; Wilamowski, B.M. Noise in semiconductor devices. In: Fundamentals of Industrial Electronics; CRC Press, 2018; pp. 11-1.
[18]
Gonzalez, T. Introduction to special issue on noise modeling. J. Comput. Electron., 2015, 14(1), 1-3.
[http://dx.doi.org/10.1007/s10825-015-0674-4]
[19]
Ghibaudo, G.; Boutchacha, T. Electrical noise and RTS fluctuations in advanced CMOS devices. Microelectron. Reliab., 2002, 42(4-5), 573-582.
[http://dx.doi.org/10.1016/S0026-2714(02)00025-2]
[20]
Knitel, M.J.; Woerlee, P.H.; Scholten, A.J.; Zegers-Van Duijnhoven, A. Impact of process scaling on 1/f noise in advanced CMOS technologies. International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No. 00CH37138). 2000, pp. 463-466.
[http://dx.doi.org/10.1109/IEDM.2000.904356]
[21]
Ahmadi, M.H.; Ghazvini, M.; Sadeghzadeh, M.; Alhuyi Nazari, M.; Kumar, R.; Naeimi, A.; Ming, T. Solar power technology for electricity generation: A critical review. Energy Sci. Eng., 2018, 6(5), 340-361.
[http://dx.doi.org/10.1002/ese3.239]
[22]
Agostinelli, M.; Hicks, J.; Xu, J.; Woolery, B.; Mistry, K.; Zhang, K.; Subramanian, G. Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20nm. International Electron Devices Meeting (IEDM), Washington, DC, USA2005, pp. 754-757.
[http://dx.doi.org/10.1109/IEDM.2005.1609436]
[23]
Singh, A.; Sinha, S.K.; Chander, S. Impact of Fe material thickness on performance of raised source overlapped negative capacitance tun-nel field effect transistor (NCTFET). Silicon, 2022, 14, 9083-9090.
[http://dx.doi.org/10.1007/s12633-022-01696-6]
[24]
Pindoo, I.A.; Sinha, S.K. Increased sensitivity of biosensors using evolutionary algorithm for bio-medical applications. Radioelectron. Commun. Syst., 2020, 63(6), 308-318.
[http://dx.doi.org/10.3103/S0735272720060047]
[25]
Paras, N.; Chauhan, S.S. Temperature sensitivity analysis of vertical tunneling based dual metal Gate TFET on analog/RF FOMs. Appl. Phys., A Mater. Sci. Process., 2019, 125(5), 316.
[http://dx.doi.org/10.1007/s00339-019-2621-x]
[26]
Goswami, R.; Bhowmick, B.; Baishya, S. Effect of scaling on noise in Circular Gate TFET and its application as a digital inverter. Microelectronics, 2016, 53, 16-24.
[http://dx.doi.org/10.1016/j.mejo.2016.04.009]