[3]
H. Kirti, "Sohal, S Jain, “Multistage classification of arrhythmia and atrial fibrillation on long-term heart rate variability”, J. Engineer", Sci. Technol., vol. 15, no. 2, pp. 1277-1295, 2020.
[5]
T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, and J. Dean, "Distributed representations of words and phrases and their compositionality", NIPS, pp. 3111-3119, 2013.
[7]
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need", Adv. Neural Inf. Process. Syst., pp. 5998-6008, 2017.
[9]
A. Go, R. Bhayani, and L. Huang, "Twitter sentiment classification using distant supervision", CD224N Project Report, Stanford, p. 1-6, .
[12]
H. Cui, V. Mittal, and M. Datar, Comparative experiments on sentiment classification of online product reviews. Association for the Advancement of Artificial Intelligence, 2006, pp. 6-30.
[13]
A. Krishna, V. Akhilesh, A. Aich, and C. Hegde, Sentiment analysis of restaurant reviews using machine learning techniques. Emerging research in Electronics, Computer Science and Technology., Springer: Germany, 2019, pp. 687-696.
[15]
H. Batra, N. Singh Punn, and S.K. Sonbhadra, "BERT- based sentiment analysis: A software engineering perspective", AxXiv, 2021.
[16]
M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, and K. Lee, Deep contextualized word representations. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018.
[17]
T.B. Brown, B. Mann, N. Ryder, M. Subbiah, and J. Kaplan, "Language models are few-shot learners", Computation and Language, 2020.
[18]
J. Davlin, M.W. Chang, K. Lee, and K. Toutanova, "BERT: Pre training of deep bidirectional transformers for language understanding",
[19]
P. Ashokkumar, G. Siva Shankar, G. Srivastava, P.K.R. Maddikunta, and T.R. Gadekallu, "A two stage text feature selection algorithm for improving text classification”, ACM transaction Asian low-resour", Lang. Inf. Process, vol. 20, no. 3, 2021.
[20]
S. Minaee, N. Kalchbrenner, E. Cambria, and N. Nikzad, "Deep learning based text classification: A comprehensive review", Comput. Lang., p. 4, 2021.
[21]
X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, "Pre-trained models for natural language processing", Survey, 2020.
[27]
A. Mitra, "“Sentiment Analysis using machine learning approaches (lexicon based on movie review based)”, J. Ubiquitous comput", Communicat. Technol., vol. 2, pp. 145-152, 2020.
[31]
P. Baid, "A Gupta, N Chaplot, “Sentiment analysis of movie review using machine learning techniques”", Int. J. Comput. Appl., no. Dec, p. 179, 2017.
[34]
S. Jain, and M. Sood, "SVM classification of cell survival/apoptotic death for color texture images of survival receptor proteins", Int. J. Emerging Technol., vol. 10, no. 2, pp. 23-28, 2019.
[37]
K. Rai, "The math behind logistic regression", Analyt Vidhya, 2020.
[38]
A. Goyal, and A. Parulekar, "Sentiment analysis for movie reviews", Movie Sentement. Anal, 2015.