Advances in Drug Therapy for Gastrointestinal Stromal Tumour

Page: [3057 - 3073] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Gastrointestinal stromal tumour (GIST) is a common gastrointestinal sarcoma located in the stromal cells of the digestive tract, and molecular studies have revealed the pathogenesis of mutations in KIT and PDGFRA genes. Since imatinib opened the era of targeted therapy for GIST, tyrosine kinase inhibitors (TKIs) that can treat GIST have been developed successively. However, the lack of new drugs with satisfactory therapeutic standards has made addressing resistance a significant challenge for TKIs in the face of the resistance to first-line and second-line drugs. Therefore, we need to find as many drugs and new treatments that block mutated genes as possible.

Methods: We conducted a comprehensive collection of literature using databases, integrated and analysed the selected literature based on keywords and the comprehensive nature of the articles, and finally wrote articles based on the content of the studies.

Results: In this article, we first briefly explained the relationship between GIST and KIT/ PDGFRα and then introduced the related drug treatment. The research progress of TKIs was analyzed according to the resistance of the drugs.

Conclusion: This article describes the research progress of some TKIs and briefly introduces the currently approved TKIs and some drugs under investigation that may have better therapeutic effects, hoping to provide clues to the research of new drugs.

[1]
Saluja, S.S.; Varshney, V.K.; Gupta, R.K.; Tyagi, I.; Mishra, P.; Batra, V. Analysis of clinicopathological and immunohistochemical parameters and correlation of outcomes in gastrointestinal stromal tumors. Indian J. Cancer, 2019, 56(2), 135-143.
[http://dx.doi.org/10.4103/ijc.IJC_352_18] [PMID: 31062732]
[2]
Søreide, K.; Sandvik, O.M.; Søreide, J.A.; Giljaca, V.; Jureckova, A.; Bulusu, V.R. Global epidemiology of gastrointestinal stromal tumours (GIST): A systematic review of population-based cohort studies. Cancer Epidemiol., 2016, 40, 39-46.
[http://dx.doi.org/10.1016/j.canep.2015.10.031] [PMID: 26618334]
[3]
Mazzocca, A.; Napolitano, A.; Silletta, M.; Spalato, C.M.; Santini, D.; Tonini, G.; Vincenzi, B. New frontiers in the medical management of gastrointestinal stromal tumours. Ther. Adv. Med. Oncol., 2019, 11
[http://dx.doi.org/10.1177/1758835919841946] [PMID: 31205499]
[4]
Etherington, M.S.; DeMatteo, R.P. Tailored management of primary gastrointestinal stromal tumors. Cancer, 2019, 125(13), cncr.32067.
[http://dx.doi.org/10.1002/cncr.32067] [PMID: 30933313]
[5]
Wozniak, A.; Gebreyohannes, Y.K.; Debiec-Rychter, M.; Schöffski, P. New targets and therapies for gastrointestinal stromal tumors. Expert Rev. Anticancer Ther., 2017, 17(12), 1117-1129.
[http://dx.doi.org/10.1080/14737140.2017.1400386] [PMID: 29110548]
[6]
Fletcher, J.A.; Rubin, B.P. KIT mutations in GIST. Curr. Opin. Genet. Dev., 2007, 17(1), 3-7.
[http://dx.doi.org/10.1016/j.gde.2006.12.010] [PMID: 17208434]
[7]
Wardelmann, E.; Losen, I.; Hans, V.; Neidt, I.; Speidel, N.; Bierhoff, E.; Heinicke, T.; Pietsch, T.; Büttner, R.; Merkelbach-Bruse, S. Deletion of Trp-557 and Lys-558 in the juxtamembrane domain of the c-kit protooncogene is associated with metastatic behavior of gastrointestinal stromal tumors. Int. J. Cancer, 2003, 106(6), 887-895.
[http://dx.doi.org/10.1002/ijc.11323] [PMID: 12918066]
[8]
Al-Share, B.; Alloghbi, A.; Al Hallak, M.N.; Uddin, H.; Azmi, A.; Mohammad, R.M.; Kim, S.H.; Shields, A.F.; Philip, P.A. Gastrointestinal stromal tumor: A review of current and emerging therapies. Cancer Metastasis Rev., 2021, 40(2), 625-641.
[http://dx.doi.org/10.1007/s10555-021-09961-7] [PMID: 33876372]
[9]
von Mehren, M.; Joensuu, H. Gastrointestinal stromal tumors. J. Clin. Oncol., 2018, 36(2), 136-143.
[http://dx.doi.org/10.1200/JCO.2017.74.9705] [PMID: 29220298]
[10]
Contreras, O.; Córdova-Casanova, A.; Brandan, E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cell. Signal., 2021, 84, 110036.
[http://dx.doi.org/10.1016/j.cellsig.2021.110036] [PMID: 33971280]
[11]
Doyle, L.A.; Hornick, J.L. Gastrointestinal stromal tumours: From KIT to succinate dehydrogenase. Histopathology, 2014, 64(1), 53-67.
[http://dx.doi.org/10.1111/his.12302] [PMID: 24117705]
[12]
Gao, J.; Li, J.; Li, Y.; Li, Z.; Gong, J.; Wu, J.; Liu, N.; Dong, B.; Qi, C.; Li, J.; Shen, L. Intratumoral KIT mutational heterogeneity and recurrent KIT/ PDGFRA mutations in KIT/PDGFRA wild-type gastrointestinal stromal tumors. Oncotarget, 2016, 7(21), 30241-30249.
[http://dx.doi.org/10.18632/oncotarget.7148] [PMID: 26848617]
[13]
Jové, M.; Mora, J.; Sanjuan, X.; Rodriguez, E.; Robledo, M.; Farran, L.; Garcia del, M.X. Simultaneous KIT mutation and succinate dehydrogenase (SDH) deficiency in a patient with a gastrointestinal stromal tumour and Carney-Stratakis syndrome: A case report. Histopathology, 2014, 65(5), 712-717.
[http://dx.doi.org/10.1111/his.12506] [PMID: 25130709]
[14]
Delahaye, N.F.; Rusakiewicz, S.; Martins, I.; Ménard, C.; Roux, S.; Lyonnet, L.; Paul, P.; Sarabi, M.; Chaput, N.; Semeraro, M.; Minard-Colin, V.; Poirier-Colame, V.; Chaba, K.; Flament, C.; Baud, V.; Authier, H.; Kerdine-Römer, S.; Pallardy, M.; Cremer, I.; Peaudecerf, L.; Rocha, B.; Valteau-Couanet, D.; Gutierrez, J.C.; Nunès, J.A.; Commo, F.; Bonvalot, S.; Ibrahim, N.; Terrier, P.; Opolon, P.; Bottino, C.; Moretta, A.; Tavernier, J.; Rihet, P.; Coindre, J.M.; Blay, J.Y.; Isambert, N.; Emile, J.F.; Vivier, E.; Lecesne, A.; Kroemer, G.; Zitvogel, L. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med., 2011, 17(6), 700-707.
[http://dx.doi.org/10.1038/nm.2366] [PMID: 21552268]
[15]
Mason, E.F.; Hornick, J.L. Conventional risk stratification fails to predict progression of succinate dehydrogenase–deficient gastrointestinal stromal tumors. Am. J. Surg. Pathol., 2016, 40(12), 1616-1621.
[http://dx.doi.org/10.1097/PAS.0000000000000685] [PMID: 27340750]
[16]
Agaram, N.P.; Wong, G.C.; Guo, T.; Maki, R.G.; Singer, S.; DeMatteo, R.P.; Besmer, P.; Antonescu, C.R. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer, 2008, 47(10), 853-859.
[http://dx.doi.org/10.1002/gcc.20589] [PMID: 18615679]
[17]
Agaimy, A.; Terracciano, L.M.; Dirnhofer, S.; Tornillo, L.; Foerster, A.; Hartmann, A.; Bihl, M.P. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J. Clin. Pathol., 2009, 62(7), 613-616.
[http://dx.doi.org/10.1136/jcp.2009.064550] [PMID: 19561230]
[18]
Brems, H.; Beert, E.; de Ravel, T.; Legius, E. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol., 2009, 10(5), 508-515.
[http://dx.doi.org/10.1016/S1470-2045(09)70033-6] [PMID: 19410195]
[19]
Nannini, M.; Astolfi, A.; Urbini, M.; Indio, V.; Santini, D.; Heinrich, M.C.; Corless, C.L.; Ceccarelli, C.; Saponara, M.; Mandrioli, A.; Lolli, C.; Ercolani, G.; Brandi, G.; Biasco, G.; Pantaleo, M.A. Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST). BMC Cancer, 2014, 14(1), 685.
[http://dx.doi.org/10.1186/1471-2407-14-685] [PMID: 25239601]
[20]
Chi, P.; Chen, Y.; Zhang, L.; Guo, X.; Wongvipat, J.; Shamu, T.; Fletcher, J.A.; Dewell, S.; Maki, R.G.; Zheng, D.; Antonescu, C.R.; Allis, C.D.; Sawyers, C.L. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature, 2010, 467(7317), 849-853.
[http://dx.doi.org/10.1038/nature09409] [PMID: 20927104]
[21]
Janeway, K.A.; Kim, S.Y.; Lodish, M.; Nosé, V.; Rustin, P.; Gaal, J.; Dahia, P.L.M.; Liegl, B.; Ball, E.R.; Raygada, M.; Lai, A.H.; Kelly, L.; Hornick, J.L.; O’Sullivan, M.; de Krijger, R.R.; Dinjens, W.N.M.; Demetri, G.D.; Antonescu, C.R.; Fletcher, J.A.; Helman, L.; Stratakis, C.A. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl. Acad. Sci., 2011, 108(1), 314-318.
[http://dx.doi.org/10.1073/pnas.1009199108] [PMID: 21173220]
[22]
Kim, T.W.; Lee, H.; Kang, Y.K.; Choe, M.S.; Ryu, M.H.; Chang, H.M.; Kim, J.S.; Yook, J.H.; Kim, B.S.; Lee, J.S. Prognostic significance of c-kit mutation in localized gastrointestinal stromal tumors. Clin. Cancer Res., 2004, 10(9), 3076-3081.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0581] [PMID: 15131046]
[23]
Wróblewska, J.P.; Dias-Santagata, D.; Ustaszewski, A.; Wu, C.L.; Fujimoto, M.; Selim, M.A.; Biernat, W.; Ryś, J.; Marszalek, A.; Hoang, M.P. Prognostic roles of BRAF, KIT, NRAS, IGF2R and SF3B1 mutations in mucosal melanomas. Cells, 2021, 10(9), 2216.
[http://dx.doi.org/10.3390/cells10092216] [PMID: 34571863]
[24]
Miettinen, M.; Makhlouf, H.; Sobin, L.H.; Lasota, J. Gastrointestinal stromal tumors of the jejunum and ileum: A clinicopathologic, immunohistochemical, and molecular genetic study of 906 cases before imatinib with long-term follow-up. Am. J. Surg. Pathol., 2006, 30(4), 477-489.
[http://dx.doi.org/10.1097/00000478-200604000-00008] [PMID: 16625094]
[25]
Woll, P.; Woll, P.J. Treatment of gastrointestinal stromal tumor: Focus on imatinib mesylate. Ther. Clin. Risk Manag., 2008, 4(1), 149-162.
[http://dx.doi.org/10.2147/TCRM.S1526] [PMID: 18728705]
[26]
Debiec-Rychter, M.; Sciot, R.; Le Cesne, A.; Schlemmer, M.; Hohenberger, P.; van Oosterom, A.T.; Blay, J.Y.; Leyvraz, S.; Stul, M.; Casali, P.G.; Zalcberg, J.; Verweij, J.; Van Glabbeke, M.; Hagemeijer, A.; Judson, I.; Soft Tissue, E.O.R.T.C. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur. J. Cancer, 2006, 42(8), 1093-1103.
[http://dx.doi.org/10.1016/j.ejca.2006.01.030] [PMID: 16624552]
[27]
Comandone, A; Boglione, A Importanza delle mutazioni nella prognosi e terapia medica dei GIST [The importance of mutational status in prognosis and therapy of GIST]. Recenti Prog Med., 2015, 106(1), 17-22.
[http://dx.doi.org/10.1701/1740.18950]
[28]
Bauer, S.; Joensuu, H. Emerging agents for the treatment of advanced, imatinib-resistant gastrointestinal stromal tumors: Current status and future directions. Drugs, 2015, 75(12), 1323-1334.
[http://dx.doi.org/10.1007/s40265-015-0440-8] [PMID: 26187774]
[29]
Mulet-Margalef, N.; Garcia del, M.X. Sunitinib in the treatment of gastrointestinal stromal tumor: Patient selection and perspectives. OncoTargets Ther., 2016, 9, 7573-7582.
[http://dx.doi.org/10.2147/OTT.S101385] [PMID: 28008275]
[30]
Brzozowska, M.; Wierzba, W.; Szafraniec-Buryło, S.; Czech, M.; Połowinczak-Przybyłek, J.; Potemski, P.; Śliwczyński, A. Real-world evidence of patient outcome following treatment of advanced gastrointestinal stromal tumor (GIST) with imatinib, sunitinib, and sorafenib in publicly funded health care in poland. Med. Sci. Monit., 2019, 25, 3846-3853.
[http://dx.doi.org/10.12659/MSM.914517] [PMID: 31121600]
[31]
Heinrich, M.C.; Corless, C.L.; Blanke, C.D.; Demetri, G.D.; Joensuu, H.; Roberts, P.J.; Eisenberg, B.L.; von Mehren, M.; Fletcher, C.D.M.; Sandau, K.; McDougall, K.; Ou, W.; Chen, C.J.; Fletcher, J.A. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J. Clin. Oncol., 2006, 24(29), 4764-4774.
[http://dx.doi.org/10.1200/JCO.2006.06.2265] [PMID: 16954519]
[32]
Kumar, V.; Singh, P.; Gupta, S.K.; Ali, V.; Verma, M. Transport and metabolism of tyrosine kinase inhibitors associated with chronic myeloid leukemia therapy: A review. Mol. Cell. Biochem., 2022, 477(4), 1261-1279.
[http://dx.doi.org/10.1007/s11010-022-04376-6] [PMID: 35129779]
[33]
Prenen, H.; Guetens, G.; de Boeck, G.; Debiec-Rychter, M.; Manley, P.; Schöffski, P.; van Oosterom, A.T.; de Bruijn, E. Cellular uptake of the tyrosine kinase inhibitors imatinib and AMN107 in gastrointestinal stromal tumor cell lines. Pharmacology, 2006, 77(1), 11-16.
[http://dx.doi.org/10.1159/000091943] [PMID: 16534250]
[34]
Cho, J.H.; Kim, K.M.; Kwon, M.; Kim, J.H.; Lee, J. Nilotinib in patients with metastatic melanoma harboring KIT gene aberration. Invest. New Drugs, 2012, 30(5), 2008-2014.
[http://dx.doi.org/10.1007/s10637-011-9763-9] [PMID: 22068222]
[35]
Dewaele, B.; Wasag, B.; Cools, J.; Sciot, R.; Prenen, H.; Vandenberghe, P.; Wozniak, A.; Schöffski, P.; Marynen, P.; Debiec-Rychter, M. Activity of dasatinib, a dual SRC/ABL kinase inhibitor, and IPI-504, a heat shock protein 90 inhibitor, against gastrointestinal stromal tumor-associated PDGFRAD842V mutation. Clin. Cancer Res., 2008, 14(18), 5749-5758.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0533] [PMID: 18794084]
[36]
Herold, C.I.; Chadaram, V.; Peterson, B.L.; Marcom, P.K.; Hopkins, J.; Kimmick, G.G.; Favaro, J.; Hamilton, E.; Welch, R.A.; Bacus, S.; Blackwell, K.L. Phase II trial of dasatinib in patients with metastatic breast cancer using real-time pharmacodynamic tissue biomarkers of Src inhibition to escalate dosing. Clin. Cancer Res., 2011, 17(18), 6061-6070.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1071] [PMID: 21810917]
[37]
Demetri, G.D. Differential properties of current tyrosine kinase inhibitors in gastrointestinal stromal tumors. Semin. Oncol., 2011, 38(S1), S10-S19.
[http://dx.doi.org/10.1053/j.seminoncol.2011.01.018] [PMID: 21419931]
[38]
Fondevila, F.; Méndez-Blanco, C.; Fernández-Palanca, P.; González-Gallego, J.; Mauriz, J.L. Anti-tumoral activity of single and combined regorafenib treatments in preclinical models of liver and gastrointestinal cancers. Exp. Mol. Med., 2019, 51(9), 1-15.
[http://dx.doi.org/10.1038/s12276-019-0308-1] [PMID: 31551425]
[39]
Treiber, H.; von der Brelie, C.; Malinova, V.; Mielke, D.; Rohde, V.; Chapuy, C.I. Regorafenib for recurrent high-grade glioma: A unicentric retrospective analysis of feasibility, efficacy, and toxicity. Neurosurg. Rev., 2022, 45(5), 3201-3208.
[http://dx.doi.org/10.1007/s10143-022-01826-z] [PMID: 35725846]
[40]
Miyake, K.; Kawaguchi, K.; Kiyuna, T.; Miyake, M.; Igarashi, K.; Zhang, Z.; Murakami, T.; Li, Y.; Nelson, S.D.; Elliott, I.; Russell, T.; Singh, A.; Hiroshima, Y.; Momiyama, M.; Matsuyama, R.; Chishima, T.; Endo, I.; Eilber, F.C.; Hoffman, R.M. Regorafenib regresses an imatinib-resistant recurrent gastrointestinal stromal tumor (GIST) with a mutation in exons 11 and 17 of c-kit in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Cell Cycle, 2018, 17(6), 722-727.
[http://dx.doi.org/10.1080/15384101.2017.1423223] [PMID: 29334307]
[41]
Evans, E.K.; Gardino, A.K.; Kim, J.L.; Hodous, B.L.; Shutes, A.; Davis, A.; Zhu, X.J.; Schmidt-Kittler, O.; Wilson, D.; Wilson, K.; DiPietro, L.; Zhang, Y.; Brooijmans, N.; LaBranche, T.P.; Wozniak, A.; Gebreyohannes, Y.K.; Schöffski, P.; Heinrich, M.C.; DeAngelo, D.J.; Miller, S.; Wolf, B.; Kohl, N.; Guzi, T.; Lydon, N.; Boral, A.; Lengauer, C. A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci. Transl. Med., 2017, 9(414), eaao1690.
[http://dx.doi.org/10.1126/scitranslmed.aao1690]
[42]
Dhillon, S. Avapritinib: First approval. Drugs, 2020, 80(4), 433-439.
[http://dx.doi.org/10.1007/s40265-020-01275-2] [PMID: 32100250]
[43]
Villanueva, M.T. Ripretinib turns off the switch in GIST. Nat. Rev. Drug Discov., 2019, 18(7), 499.
[http://dx.doi.org/10.1038/d41573-019-00099-4] [PMID: 31267077]
[44]
Schneeweiss, M.; Peter, B.; Bibi, S.; Eisenwort, G.; Smiljkovic, D.; Blatt, K.; Jawhar, M.; Berger, D.; Stefanzl, G.; Herndlhofer, S.; Greiner, G.; Hoermann, G.; Hadzijusufovic, E.; Gleixner, K.V.; Bettelheim, P.; Geissler, K.; Sperr, W.R.; Reiter, A.; Arock, M.; Valent, P. The KIT and PDGFRA switch-control inhibitor DCC-2618 blocks growth and survival of multiple neoplastic cell types in advanced mastocytosis. Haematologica, 2018, 103(5), 799-809.
[http://dx.doi.org/10.3324/haematol.2017.179895] [PMID: 29439183]
[45]
Dhillon, S. Ripretinib: First approval. Drugs, 2020, 80(11), 1133-1138.
[http://dx.doi.org/10.1007/s40265-020-01348-2] [PMID: 32578014]
[46]
Reichardt, P. Novel approaches to imatinib-and sunitinib-resistant GIST. Curr. Oncol. Rep., 2008, 10(4), 344-349.
[http://dx.doi.org/10.1007/s11912-008-0053-4] [PMID: 18778561]
[47]
Heinrich, M.C.; Marino-Enriquez, A.; Presnell, A.; Donsky, R.S.; Griffith, D.J.; McKinley, A.; Patterson, J.; Taguchi, T.; Liang, C.W.; Fletcher, J.A. Sorafenib inhibits many kinase mutations associated with drug-resistant gastrointestinal stromal tumors. Mol. Cancer Ther., 2012, 11(8), 1770-1780.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0223] [PMID: 22665524]
[48]
Park, S.H.; Ryu, M.H.; Ryoo, B.Y.; Im, S.A.; Kwon, H.C.; Lee, S.S.; Park, S.R.; Kang, B.Y.; Kang, Y.K. Sorafenib in patients with metastatic gastrointestinal stromal tumors who failed two or more prior tyrosine kinase inhibitors: a phase II study of Korean gastrointestinal stromal tumors study group. Invest. New Drugs, 2012, 30(6), 2377-2383.
[http://dx.doi.org/10.1007/s10637-012-9795-9] [PMID: 22270258]
[49]
Nishida, T.; Doi, T. Pazopanib for both GIST and soft-tissue sarcoma. Lancet Oncol., 2016, 17(5), 549-550.
[http://dx.doi.org/10.1016/S1470-2045(16)00101-7] [PMID: 27068859]
[50]
Mir, O.; Cropet, C.; Toulmonde, M.; Cesne, A.L.; Molimard, M.; Bompas, E.; Cassier, P.; Ray-Coquard, I.; Rios, M.; Adenis, A.; Italiano, A.; Bouché, O.; Chauzit, E.; Duffaud, F.; Bertucci, F.; Isambert, N.; Gautier, J.; Blay, J.Y.; Pérol, D. Pazopanib plus best supportive care versus best supportive care alone in advanced gastrointestinal stromal tumours resistant to imatinib and sunitinib (PAZOGIST): A randomised, multicentre, open-label phase 2 trial. Lancet Oncol., 2016, 17(5), 632-641.
[http://dx.doi.org/10.1016/S1470-2045(16)00075-9] [PMID: 27068858]
[51]
Gelderblom, H.; Jones, R.L.; George, S.; Valverde, M.C.; Benson, C.; Jean-Yves, B.; Renouf, D.J.; Doi, T.; Le Cesne, A.; Leahy, M.; Hertle, S.; Aimone, P.; Brandt, U.; Schӧffski, P. Imatinib in combination with phosphoinositol kinase inhibitor buparlisib in patients with gastrointestinal stromal tumour who failed prior therapy with imatinib and sunitinib: A Phase 1b, multicentre study. Br. J. Cancer, 2020, 122(8), 1158-1165.
[http://dx.doi.org/10.1038/s41416-020-0769-y] [PMID: 32147671]
[52]
Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0264] [PMID: 21926191]
[53]
Mannsåker, T.A.; Hoang, T.; Aasen, S.N.; Bjørnstad, O.V.; Parajuli, H.; Sundstrøm, T.; Thorsen, F.A. Cabozantinib is effective in melanoma brain metastasis cell lines and affects key signaling pathways. Int. J. Mol. Sci., 2021, 22(22), 12296.
[http://dx.doi.org/10.3390/ijms222212296] [PMID: 34830178]
[54]
Schoffski, P.; Mir, O.; Kasper, B.; Papai, Z.; Blay, J.Y.; Italiano, A.; Benson, C.; Kopeckova, K.; Ali, N.; Dileo, P.; Le Cesne, A.; Menge, F.; Cousin, S.; Charon-Barra, C.; Wozniak, A.; Marreaud, S.; Litiere, S.; Nzokirantevye, A.; Gelderblom, H. Activity and safety of cabozantinib in patients with gastrointestinal stromal tumor after failure of imatinib and sunitinib: EORTC phase II trial 1317 CaboGIST. J. Clin. Oncol., 2019, 37(S15), 11006-11006.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.11006]
[55]
Etchin, J.; Sanda, T.; Mansour, M.R.; Kentsis, A.; Montero, J.; Le, B.T.; Christie, A.L.; McCauley, D.; Rodig, S.J.; Kauffman, M.; Shacham, S.; Stone, R.; Letai, A.; Kung, A.L.; Thomas, L.A. KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Br. J. Haematol., 2013, 161(1), 117-127.
[http://dx.doi.org/10.1111/bjh.12231] [PMID: 23373539]
[56]
Nie, D.; Huang, K.; Yin, S.; Li, Y.; Xie, S.; Ma, L.; Wang, X.; Wu, Y.; Xiao, J.; Wang, J.; Yang, W.; Liu, H. KPT-330 inhibition of chromosome region maintenance 1 is cytotoxic and sensitizes chronic myeloid leukemia to Imatinib. Cell Death Discov., 2018, 4(1), 48.
[http://dx.doi.org/10.1038/s41420-018-0049-2] [PMID: 29707241]
[57]
Sartore-Bianchi, A.; Pizzutilo, E.G.; Marrapese, G.; Tosi, F.; Cerea, G.; Siena, S. Entrectinib for the treatment of metastatic NSCLC: Safety and efficacy. Expert Rev. Anticancer Ther., 2020, 20(5), 333-341.
[http://dx.doi.org/10.1080/14737140.2020.1747439] [PMID: 32223357]
[58]
Sohn, S.H.; Sul, H.J.; Kim, B.J.; Kim, H.S.; Zang, D.Y. Entrectinib induces apoptosis and inhibits the epithelial–mesenchymal transition in gastric cancer with NTRK overexpression. Int. J. Mol. Sci., 2021, 23(1), 395.
[http://dx.doi.org/10.3390/ijms23010395] [PMID: 35008821]
[59]
Vagiannis, D.; Yu, Z.; Novotna, E.; Morell, A.; Hofman, J. Entrectinib reverses cytostatic resistance through the inhibition of ABCB1 efflux transporter, but not the CYP3A4 drug-metabolizing enzyme. Biochem. Pharmacol., 2020, 178, 114061.
[http://dx.doi.org/10.1016/j.bcp.2020.114061] [PMID: 32497550]
[60]
Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; Turpin, B.; Dowlati, A.; Brose, M.S.; Mascarenhas, L.; Federman, N.; Berlin, J.; El-Deiry, W.S.; Baik, C.; Deeken, J.; Boni, V.; Nagasubramanian, R.; Taylor, M.; Rudzinski, E.R.; Meric-Bernstam, F.; Sohal, D.P.S.; Ma, P.C.; Raez, L.E.; Hechtman, J.F.; Benayed, R.; Ladanyi, M.; Tuch, B.B.; Ebata, K.; Cruickshank, S.; Ku, N.C.; Cox, M.C.; Hawkins, D.S.; Hong, D.S.; Hyman, D.M. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N. Engl. J. Med., 2018, 378(8), 731-739.
[http://dx.doi.org/10.1056/NEJMoa1714448] [PMID: 29466156]
[61]
Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; Mascarenhas, L.; Geoerger, B.; Dowlati, A.; Pappo, A.S.; Bielack, S.; Doz, F.; McDermott, R.; Patel, J.D.; Schilder, R.J.; Tahara, M.; Pfister, S.M.; Witt, O.; Ladanyi, M.; Rudzinski, E.R.; Nanda, S.; Childs, B.H.; Laetsch, T.W.; Hyman, D.M.; Drilon, A. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol., 2020, 21(4), 531-540.
[http://dx.doi.org/10.1016/S1470-2045(19)30856-3] [PMID: 32105622]
[62]
Cui, J.J.; Tran-Dubé, M.; Shen, H.; Nambu, M.; Kung, P.P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R.S.; Edwards, M.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem., 2011, 54(18), 6342-6363.
[http://dx.doi.org/10.1021/jm2007613] [PMID: 21812414]
[63]
Cohen, N.A.; Zeng, S.; Seifert, A.M.; Kim, T.S.; Sorenson, E.C.; Greer, J.B.; Beckman, M.J.; Santamaria-Barria, J.A.; Crawley, M.H.; Green, B.L.; Rossi, F.; Besmer, P.; Antonescu, C.R.; DeMatteo, R.P. Pharmacological inhibition of KIT activates MET signaling in gastrointestinal stromal tumors. Cancer Res., 2015, 75(10), 2061-2070.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2564] [PMID: 25836719]
[64]
Ravegnini, G.; Hrelia, P.; Angelini, S. Somatic pharmacogenomics of gastrointestinal stromal tumor. Cancer Drug Resist., 2019, 2(1), 107-115.
[http://dx.doi.org/10.20517/cdr.2019.02] [PMID: 35582147]
[65]
Falchook, G.S.; Trent, J.C.; Heinrich, M.C.; Beadling, C.; Patterson, J.; Bastida, C.C.; Blackman, S.C.; Kurzrock, R. BRAF mutant gastrointestinal stromal tumor: First report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget, 2013, 4(2), 310-315.
[http://dx.doi.org/10.18632/oncotarget.864] [PMID: 23470635]
[66]
Suyama, K.; Iwase, H. Lenvatinib. Cancer Contr., 2018, 25(1)
[http://dx.doi.org/10.1177/1073274818789361] [PMID: 30032643]
[67]
Sun, Y.; Yue, L.; Xu, P.; Hu, W. An overview of agents and treatments for PDGFRA-mutated gastrointestinal stromal tumors. Front. Oncol., 2022, 12, 927587.
[http://dx.doi.org/10.3389/fonc.2022.927587] [PMID: 36119525]
[68]
Dubreuil, P.; Letard, S.; Ciufolini, M.; Gros, L.; Humbert, M.; Castéran, N.; Borge, L.; Hajem, B.; Lermet, A.; Sippl, W.; Voisset, E.; Arock, M.; Auclair, C.; Leventhal, P.S.; Mansfield, C.D.; Moussy, A.; Hermine, O. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One, 2009, 4(9), e7258.
[http://dx.doi.org/10.1371/journal.pone.0007258] [PMID: 19789626]
[69]
Adenis, A.; Blay, J.Y.; Bui-Nguyen, B.; Bouché, O.; Bertucci, F.; Isambert, N.; Bompas, E.; Chaigneau, L.; Domont, J.; Ray-Coquard, I.; Blésius, A.; Van Tine, B.A.; Bulusu, V.R.; Dubreuil, P.; Mansfield, C.D.; Acin, Y.; Moussy, A.; Hermine, O.; Le Cesne, A. Masitinib in advanced gastrointestinal stromal tumor (GIST) after failure of imatinib: A randomized controlled open-label trial. Ann. Oncol., 2014, 25(9), 1762-1769.
[http://dx.doi.org/10.1093/annonc/mdu237] [PMID: 25122671]
[70]
Huynh, H.; Chow, P.K.H.; Tai, W.M.; Choo, S.P.; Chung, A.Y.F.; Ong, H.S.; Soo, K.C.; Ong, R.; Linnartz, R.; Shi, M.M. Dovitinib demonstrates antitumor and antimetastatic activities in xenograft models of hepatocellular carcinoma. J. Hepatol., 2012, 56(3), 595-601.
[http://dx.doi.org/10.1016/j.jhep.2011.09.017] [PMID: 22027573]
[71]
Joensuu, H.; Blay, J.Y.; Comandone, A.; Martin-Broto, J.; Fumagalli, E.; Grignani, G.; Del Muro, X.G.; Adenis, A.; Valverde, C.; Pousa, A.L.; Bouché, O.; Italiano, A.; Bauer, S.; Barone, C.; Weiss, C.; Crippa, S.; Camozzi, M.; Castellana, R.; Le Cesne, A. Dovitinib in patients with gastrointestinal stromal tumour refractory and/or intolerant to imatinib. Br. J. Cancer, 2017, 117(9), 1278-1285.
[http://dx.doi.org/10.1038/bjc.2017.290] [PMID: 28850565]
[72]
Zhang, H.; Kathawala, R.J.; Wang, Y.J.; Zhang, Y.K.; Patel, A.; Shukla, S.; Robey, R.W.; Talele, T.T.; Ashby, C.R., Jr; Ambudkar, S.V.; Bates, S.E.; Fu, L.W.; Chen, Z.S. Linsitinib (OSI-906) antagonizes ATP-binding cassette subfamily G member 2 and subfamily C member 10-mediated drug resistance. Int. J. Biochem. Cell Biol., 2014, 51, 111-119.
[http://dx.doi.org/10.1016/j.biocel.2014.03.026] [PMID: 24726739]
[73]
Chen, W.; Kuang, Y.; Qiu, H.B.; Cao, Z.; Tu, Y.; Sheng, Q.; Eilers, G.; He, Q.; Li, H.L.; Zhu, M.; Wang, Y.; Zhang, R.; Wu, Y.; Meng, F.; Fletcher, J.A.; Ou, W.B. Dual targeting of insulin receptor and KIT in imatinib-resistant gastrointestinal stromal tumors. Cancer Res., 2017, 77(18), 5107-5117.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0917] [PMID: 28760855]
[74]
Bitting, R.L.; Healy, P.; Creel, P.A.; Turnbull, J.; Morris, K.; Wood, S.Y.; Hurwitz, H.I.; Starr, M.D.; Nixon, A.B.; Armstrong, A.J.; George, D.J. A phase Ib study of combined VEGFR and mTOR inhibition with vatalanib and everolimus in patients with advanced renal cell carcinoma. Clin. Genitourin. Cancer, 2014, 12(4), 241-250.
[http://dx.doi.org/10.1016/j.clgc.2013.11.020] [PMID: 24685058]
[75]
Joensuu, H.; De Braud, F.; Grignagni, G.; De Pas, T.; Spitalieri, G.; Coco, P.; Spreafico, C.; Boselli, S.; Toffalorio, F.; Bono, P.; Jalava, T.; Kappeler, C.; Aglietta, M.; Laurent, D.; Casali, P.G. Vatalanib for metastatic gastrointestinal stromal tumour (GIST) resistant to imatinib: final results of a phase II study. Br. J. Cancer, 2011, 104(11), 1686-1690.
[http://dx.doi.org/10.1038/bjc.2011.151] [PMID: 21540861]
[76]
Wang, Y.J.; Kathawala, R.J.; Zhang, Y.K.; Patel, A.; Kumar, P.; Shukla, S.; Fung, K.L.; Ambudkar, S.V.; Talele, T.T.; Chen, Z.S. Motesanib (AMG706), a potent multikinase inhibitor, antagonizes multidrug resistance by inhibiting the efflux activity of the ABCB1. Biochem. Pharmacol., 2014, 90(4), 367-378.
[http://dx.doi.org/10.1016/j.bcp.2014.06.006] [PMID: 24937702]
[77]
Benjamin, R.S.; Schöffski, P.; Hartmann, J.T.; Van Oosterom, A.; Bui, B.N.; Duyster, J.; Schuetze, S.; Blay, J.Y.; Reichardt, P.; Rosen, L.S.; Skubitz, K.; McCoy, S.; Sun, Y.N.; Stepan, D.E.; Baker, L. Efficacy and safety of motesanib, an oral inhibitor of VEGF, PDGF, and Kit receptors, in patients with imatinib-resistant gastrointestinal stromal tumors. Cancer Chemother. Pharmacol., 2011, 68(1), 69-77.
[http://dx.doi.org/10.1007/s00280-010-1431-9] [PMID: 20838998]
[78]
Kettle, J.G.; Anjum, R.; Barry, E.; Bhavsar, D.; Brown, C.; Boyd, S.; Campbell, A.; Goldberg, K.; Grondine, M.; Guichard, S.; Hardy, C.J.; Hunt, T.; Jones, R.D.O.; Li, X.; Moleva, O.; Ogg, D.; Overman, R.C.; Packer, M.J.; Pearson, S.; Schimpl, M.; Shao, W.; Smith, A.; Smith, J.M.; Stead, D.; Stokes, S.; Tucker, M.; Ye, Y. Discovery of N -(4-[5-Fluoro-7-(2-methoxyethoxy)quinazolin-4-yl]aminophenyl)-2-[4-(propan-2-yl)-1 H -1,2,3-triazol-1-yl]acetamide (AZD3229), a potent Pan-KIT mutant inhibitor for the treatment of gastrointestinal stromal tumors. J. Med. Chem., 2018, 61(19), 8797-8810.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00938] [PMID: 30204441]
[79]
Pilla Reddy, V.; Anjum, R.; Grondine, M.; Smith, A.; Bhavsar, D.; Barry, E.; Guichard, S.M.; Shao, W.; Kettle, J.G.; Brown, C.; Banks, E.; Jones, R.D.O. The pharmacokinetic–pharmacodynamic (PKPD) relationships of AZD3229, a Novel and selective inhibitor of KIT, in a range of mouse xenograft models of GIST. Clin. Cancer Res., 2020, 26(14), 3751-3759.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2848] [PMID: 32220888]
[80]
Vahidfar, N.; Eppard, E.; Farzanehfar, S.; Yordanova, A.; Fallahpoor, M.; Ahmadzadehfar, H. An impressive approach in nuclear medicine. PET Clin., 2021, 16(3), 327-340.
[http://dx.doi.org/10.1016/j.cpet.2021.03.011] [PMID: 34053577]
[81]
Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; Bushnell, D.; O’Dorisio, T.M.; Baum, R.P.; Kulkarni, H.R.; Caplin, M.; Lebtahi, R.; Hobday, T.; Delpassand, E.; Van Cutsem, E.; Benson, A.; Srirajaskanthan, R.; Pavel, M.; Mora, J.; Berlin, J.; Grande, E.; Reed, N.; Seregni, E.; Öberg, K.; Lopera, S.M.; Santoro, P.; Thevenet, T.; Erion, J.L.; Ruszniewski, P.; Kwekkeboom, D.; Krenning, E. Phase 3 Trial of 177 Lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med., 2017, 376(2), 125-135.
[http://dx.doi.org/10.1056/NEJMoa1607427] [PMID: 28076709]
[82]
Loaiza-Bonilla, A.; Bonilla-Reyes, P.A. Somatostatin receptor avidity in gastrointestinal stromal tumors: Theranostic implications of Gallium-68 scan and eligibility for peptide receptor radionuclide therapy. Cureus, 2017, 9(9), e1710.
[http://dx.doi.org/10.7759/cureus.1710] [PMID: 29188154]
[83]
Prause, M.; Niedermoser, S.; Wängler, C.; Decristoforo, C.; Seibold, U.; Riester, S.; Taguchi, T.; Schirrmacher, R.; Fricker, G.; Wängler, B. Synthesis, in vitro and in vivo evaluation of 18F-fluoronorimatinib as radiotracer for Imatinib-sensitive gastrointestinal stromal tumors. Nucl. Med. Biol., 2018, 57, 1-11.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.11.004] [PMID: 29175467]
[84]
Arshad, J.; Costa, P.A.; Barreto-Coelho, P.; Valdes, B.N.; Trent, J.C. Immunotherapy strategies for gastrointestinal stromal tumor. Cancers, 2021, 13(14), 3525.
[http://dx.doi.org/10.3390/cancers13143525] [PMID: 34298737]
[85]
Cameron, S.; Gieselmann, M.; Blaschke, M.; Ramadori, G.; Füzesi, L. Immune cells in primary and metastatic gastrointestinal stromal tumors (GIST). Int. J. Clin. Exp. Pathol., 2014, 7(7), 3563-3579.
[http://dx.doi.org/10.1016/B978-0-12-800092-2.00013-7] [PMID: 25120735]
[86]
Tan, Y.; Trent, J.C.; Wilky, B.A.; Kerr, D.A.; Rosenberg, A.E. Current status of immunotherapy for gastrointestinal stromal tumor. Cancer Gene Ther., 2017, 24(3), 130-133.
[http://dx.doi.org/10.1038/cgt.2016.58] [PMID: 28186088]
[87]
Roulleaux, D.M.; Jones, R.L.; Trent, J.; Champiat, S.; Dumont, S. Beyond the driver mutation: Immunotherapies in gastrointestinal stromal tumors. Front. Immunol., 2021, 12, 715727.
[http://dx.doi.org/10.3389/fimmu.2021.715727] [PMID: 34489967]