A Complete Sojorum on Thermosensitive Hydrogels for Wound Healing: Recent Developments and Ongoing Research

Page: [151 - 177] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

The nature of the wound typically dictates the available wound-healing therapies. On the other hand, inadequate care results in persistent wounds, fibrosis, tissue loss of function, and ultimately dismemberment. Suturing, unloading, irrigation, debridement, negative pressure therapies, growth factor supplementation, and grafting are examples of current medicines that all have limitations in terms of meeting the needs of full treatment. Natural or synthetic materials/polymers have been utilized to prepare smart thermosensitive hydrogels to facilitate quick and targeted action on wounds. These are intelligent hydrogel system that shows sol-gel transitions at physiological body temperature. Hydrogel provides a moist environment, scaffold-like structure, and localized delivery of drug/growth factor that speed up wound healing even if it eliminates side effects associated with systemic administration. In this article, we summarized the detailed mechanisms of wound healing, conventional strategies, and ongoing thorough research work in the field of thermosensitive hydrogels utilized for wound healing. Moreover, the clinical needs of this formulation, as evident from the commercially available systems are also described in the prior art.

Graphical Abstract

[1]
Oh SH, Kang JG, Lee JH. Co-micellized Pluronic mixture with thermo-sensitivity and residence stability as an injectable tissue adhesion barrier hydrogel. J Biomed Mater Res B Appl Biomater 2018; 106(1): 172-82.
[http://dx.doi.org/10.1002/jbm.b.33824] [PMID: 27925384]
[2]
Montaser AS, Rehan M, El-Naggar ME. pH-Thermosensitive hydrogel based on polyvinyl alcohol/sodium alginate/N-isopropyl acrylamide composite for treating re-infected wounds. Int J Biol Macromol 2019; 124: 1016-24.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.252] [PMID: 30500494]
[3]
Zhang D, Ouyang Q, Hu Z, et al. Catechol functionalized chitosan/active peptide microsphere hydrogel for skin wound healing. Int J Biol Macromol 2021; 173: 591-606.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.157] [PMID: 33508359]
[4]
Dong Y, Zhuang H, Hao Y, et al. Poly (N-isopropyl-acrylamide)/poly (γ-glutamic acid) thermo-sensitive hydrogels loaded with superoxide dismutase for wound dressing application. Int J Nanomedicine 2020; 15: 1939-50.
[http://dx.doi.org/10.2147/IJN.S235609] [PMID: 32256070]
[5]
Xia G, Liu Y, Tian M, et al. Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds. J Mater Chem B Mater Biol Med 2017; 5(17): 3172-85.
[http://dx.doi.org/10.1039/C7TB00479F] [PMID: 32263715]
[6]
Chen Z, Zhang B, Shu J, et al. Human decellularized adipose matrix derived hydrogel assists mesenchymal stem cells delivery and accelerates chronic wound healing. J Biomed Mater Res A 2021; 109(8): 1418-28.
[http://dx.doi.org/10.1002/jbm.a.37133] [PMID: 33253453]
[7]
Zhang T, Zhu D, Wang W, et al. Facile synthesis of thermo-sensitive composite hydrogel with well dispersed Ag nanoparticles for application in superior antibacterial infections. J Biomed Nanotechnol 2021; 17(6): 1148-59.
[http://dx.doi.org/10.1166/jbn.2021.3099] [PMID: 34167628]
[8]
Zhao Y, Liu JG, Chen WM, Yu AX. Efficacy of thermosensitive chitosan/β-glycerophosphate hydrogel loaded with β-cyclodextrin-curcumin for the treatment of cutaneous wound infection in rats. Exp Ther Med 2018; 15(2): 1304-13.
[PMID: 29434717]
[9]
Deodhar AK, Rana RE. Surgical physiology of wound healing: A review. J Postgrad Med 1997; 43(2): 52-6.
[PMID: 10740722]
[10]
Chikama T, Wakuta M, Liu Y, Nishida T. Deviated mechanism of wound healing in diabetic corneas. Cornea 2007; 26(S9): S75-81.
[http://dx.doi.org/10.1097/ICO.0b013e31812f6d8e] [PMID: 17881921]
[11]
Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M. Low-level laser therapy for wound healing: Mechanism and efficacy. Dermatol Surg 2005; 31(3): 334-40.
[http://dx.doi.org/10.1097/00042728-200503000-00016] [PMID: 15841638]
[12]
Galiano RD, Michaels JV, Dobryansky M, Levine JP, Gurtner GC. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 2004; 12(4): 485-92.
[http://dx.doi.org/10.1111/j.1067-1927.2004.12404.x] [PMID: 15260814]
[13]
Jayaprakash P, Dong H, Zou M, et al. Hsp90α and Hsp90β together operate a hypoxia and nutrient paucity stress-response mechanism during wound healing. J Cell Sci 2015; 128(8): 1475-80.
[PMID: 25736295]
[14]
Trabold O, Wagner S, Wicke C, et al. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen 2003; 11(6): 504-9.
[http://dx.doi.org/10.1046/j.1524-475X.2003.11621.x] [PMID: 14617293]
[15]
Lin YJ, Lee GH, Chou CW, Chen YP, Wu TH, Lin HR. Stimulation of wound healing by PU/hydrogel composites containing fibroblast growth factor-2. J Mater Chem B Mater Biol Med 2015; 3(9): 1931-41.
[http://dx.doi.org/10.1039/C4TB01638F] [PMID: 32262265]
[16]
Lin Z, Li R, Liu Y, et al. Histatin1-modified thiolated chitosan hydrogels enhance wound healing by accelerating cell adhesion, migration and angiogenesis. Carbohydr Polym 2020; 230: 115710.
[http://dx.doi.org/10.1016/j.carbpol.2019.115710] [PMID: 31887922]
[17]
Shi C, Wang C, Liu H, et al. Selection of appropriate wound dressing for various wounds. Front Bioeng Biotechnol 2020; 8: 182.
[http://dx.doi.org/10.3389/fbioe.2020.00182] [PMID: 32266224]
[18]
Dhivya S, Padma VV, Santhini E. Wound dressings – a review. Biomedicine 2015; 5(4): 22.
[http://dx.doi.org/10.7603/s40681-015-0022-9] [PMID: 26615539]
[19]
Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int J Nanomedicine 2020; 15: 5911-26.
[http://dx.doi.org/10.2147/IJN.S249129] [PMID: 32848396]
[20]
Liu X, Gan H, Hu C, et al. Silver sulfadiazine nanosuspension-loaded thermosensitive hydrogel as a topical antibacterial agent. Int J Nanomedicine 2018; 14: 289-300.
[http://dx.doi.org/10.2147/IJN.S187918] [PMID: 30643407]
[21]
Nilforoushzadeh MA, Khodadadi Yazdi M, Baradaran Ghavami S, et al. Mesenchymal stem cell spheroids embedded in an injectable thermosensitive hydrogel: An in situ drug formation platform for accelerated wound healing. ACS Biomater Sci Eng 2020; 6(9): 5096-109.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00988] [PMID: 33455261]
[22]
Nilforoushzadeh MA, Sisakht MM, Amirkhani MA, et al. Engineered skin graft with stromal vascular fraction cells encapsulated in fibrin–collagen hydrogel: A clinical study for diabetic wound healing. J Tissue Eng Regen Med 2020; 14(3): 424-40.
[http://dx.doi.org/10.1002/term.3003] [PMID: 31826321]
[23]
Li X, Fan R, Tong A, et al. In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing. Int J Pharm 2015; 495(1): 560-71.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.005] [PMID: 26363112]
[24]
C Op ’t RV, I van den Boomen O, Ditte MSL. Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair. Biomaterials 2018; 181: 392-3401.
[25]
Wang X, Ma B, Xue J, Wu J, Chang J, Wu C. Defective black nano-titania thermogels for cutaneous tumor-induced therapy and healing. Nano Lett 2019; 19(3): 2138-47.
[http://dx.doi.org/10.1021/acs.nanolett.9b00367] [PMID: 30719923]
[26]
Oroojalian F, Jahanafrooz Z, Chogan F, et al. Synthesis and evaluation of injectable thermosensitive penta‐block copolymer hydrogel (PNIPAAm‐PCL‐PEG‐PCL‐PNIPAAm) and star‐shaped poly(CL─CO─LA)‐b‐PEG for wound healing applications. J Cell Biochem 2019; 120(10): 17194-207.
[http://dx.doi.org/10.1002/jcb.28980] [PMID: 31104319]
[27]
Nguyen THM, Abueva C, Ho HV, Lee SY, Lee BT. In vitro and in vivo acute response towards injectable thermosensitive chitosan/TEMPO-oxidized cellulose nanofiber hydrogel. Carbohydr Polym 2018; 180: 246-55.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.032] [PMID: 29103503]
[28]
Yang M, He S, Su Z, Yang Z, Liang X, Wu Y. Thermosensitive injectable chitosan/collagen/β-glycerophosphate composite hydrogels for enhancing wound healing by encapsulating mesenchymal stem cell spheroids. ACS Omega 2020; 5(33): 21015-23.
[http://dx.doi.org/10.1021/acsomega.0c02580] [PMID: 32875238]
[29]
Tsai CY, Woung LC, Yen JC, et al. Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing. Carbohydr Polym 2016; 135: 308-15.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.098] [PMID: 26453882]
[30]
Ma M, Zhong Y, Jiang X. Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing. Carbohydr Polym 2020; 236: 116096.
[http://dx.doi.org/10.1016/j.carbpol.2020.116096] [PMID: 32172898]
[31]
Lin X, Guan X, Wu Y, et al. An alginate/poly(N-isopropylacrylamide)-based composite hydrogel dressing with stepwise delivery of drug and growth factor for wound repair. Mater Sci Eng C 2020; 115: 111123.
[http://dx.doi.org/10.1016/j.msec.2020.111123] [PMID: 32600722]
[32]
Azarniya A, Tamjid E, Eslahi N, Simchi A. Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing. Int J Biol Macromol 2019; 134: 280-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.023] [PMID: 31071405]
[33]
Mahmoud NN, Hikmat S, Abu Ghith D, et al. Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: Effect of nanoparticles’ shape and surface modification. Int J Pharm 2019; 565: 174-86.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.079] [PMID: 31075436]
[34]
Giuliano E, Paolino D, Cristiano MC, Fresta M, Cosco D. Rutin-loaded poloxamer 407-based hydrogels for in situ administration: Stability profiles and rheological properties. Nanomaterials 2020; 10(6): 1069.
[http://dx.doi.org/10.3390/nano10061069] [PMID: 32486354]
[35]
Andrgie AT, Darge HF, Mekonnen TW, et al. Ibuprofen-loaded heparin modified thermosensitive hydrogel for inhibiting excessive inflammation and promoting wound healing. Polymers 2020; 12(11): 2619.
[http://dx.doi.org/10.3390/polym12112619] [PMID: 33172099]
[36]
Chou HY, Weng CC, Lai JY, Lin SY, Tsai HC. Design of an interpenetrating polymeric network hydrogel made of calcium-alginate from a thermos-sensitive pluronic template as a thermal-ionic reversible wound dressing. Polymers 2020; 12(9): 2138.
[http://dx.doi.org/10.3390/polym12092138] [PMID: 32962070]
[37]
Daniel-da-Silva AL, Ferreira L, Gil AM, Trindade T. Synthesis and swelling behavior of temperature responsive κ-carrageenan nanogels. J Colloid Interface Sci 2011; 355(2): 512-7.
[http://dx.doi.org/10.1016/j.jcis.2010.12.071] [PMID: 21251667]
[38]
Pettinelli N, Rodríguez-Llamazares S, Farrag Y, et al. Poly(hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier. Int J Biol Macromol 2020; 146: 110-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.193] [PMID: 31881300]
[39]
Satapathy M, Nyambat B, Chiang CW, et al. A gelatin hydrogel-containing nano-organic PEI–Ppy with a photothermal responsive effect for tissue engineering applications. Molecules 2018; 23(6): 1256.
[http://dx.doi.org/10.3390/molecules23061256] [PMID: 29795044]
[40]
Nowald C, Penk A, Chiu HY, Bein T, Huster D, Lieleg O. A selective mucin/methylcellulose hybrid gel with tailored mechanical properties. Macromol Biosci 2016; 16(4): 567-79.
[http://dx.doi.org/10.1002/mabi.201500353] [PMID: 26748668]
[41]
Kim MH, Park H, Nam HC, Park SR, Jung JY, Park WH. Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing. Carbohydr Polym 2018; 181: 579-86.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.109] [PMID: 29254010]
[42]
Zhang Y, Gao C, Li X, et al. Thermosensitive methyl cellulose-based injectable hydrogels for post-operation anti-adhesion. Carbohydr Polym 2014; 101: 171-8.
[http://dx.doi.org/10.1016/j.carbpol.2013.09.001] [PMID: 24299762]
[43]
Feng P, Luo Y, Ke C, et al. Chitosan-based functional materials for skin wound repair: Mechanisms and applications. Front Bioeng Biotechnol 2021; 9: 650598.
[http://dx.doi.org/10.3389/fbioe.2021.650598] [PMID: 33681176]
[44]
Yang L, Fan X, Zhang J, Ju J. Preparation and characterization of thermoresponsive Poly (N-Isopropylacrylamide) for cell culture applications. Polymers 2020; 12(2): 389.
[http://dx.doi.org/10.3390/polym12020389] [PMID: 32050412]
[45]
Lan B, Zhang L, Yang L, et al. Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing. J Nanobiotechnology 2021; 19(1): 130.
[http://dx.doi.org/10.1186/s12951-021-00869-6] [PMID: 33952251]
[46]
Abbasi AR, Sohail M, Minhas MU, et al. Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing. Int J Biol Macromol 2020; 155: 751-65.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.248] [PMID: 32246960]
[47]
Hsiao SH, Hsu S. Synthesis and characterization of dual stimuli-sensitive biodegradable polyurethane soft hydrogels for 3D cell-laden bioprinting. ACS Appl Mater Interfaces 2018; 10(35): 29273-87.
[http://dx.doi.org/10.1021/acsami.8b08362] [PMID: 30133249]
[48]
Yao Q, Zheng YW, Lan QH, et al. Aloe/poloxamer hydrogel as an injectable β-estradiol delivery scaffold with multi-therapeutic effects to promote endometrial regeneration for intrauterine adhesion treatment. Eur J Pharm Sci 2020; 148: 105316.
[http://dx.doi.org/10.1016/j.ejps.2020.105316] [PMID: 32201342]
[49]
Soriano JL, Calpena AC, Rodríguez-Lagunas MJ, et al. Endogenous antioxidant cocktail loaded hydrogel for topical wound healing of burns. Pharmaceutics 2020; 13(1): 8.
[http://dx.doi.org/10.3390/pharmaceutics13010008] [PMID: 33375069]
[50]
Zhou P, Xue L, Bing Z, et al. A human umbilical cord mesenchymal stem cell-conditioned medium/chitosan/collagen/β-glycerophosphate thermosensitive hydrogel promotes burn injury healing in mice. BioMed Res Int 2019; 2019: 5768285.
[51]
Soriano-Ruiz JL, Calpena-Campmany AC, Silva-Abreu M, et al. Design and evaluation of a multifunctional thermosensitive poloxamer-chitosan-hyaluronic acid gel for the treatment of skin burns. Int J Biol Macromol 2020; 142: 412-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.113] [PMID: 31593719]
[52]
Rezazadeh M, Akbari V, Minayian M, Amirian M, Moghadas A, Talebi A. Effect of freeze drying on stability, thermo-responsive characteristics, and in vivo wound healing of erythropoietin-loaded trimethyl chitosan/glycerophosphate hydrogel. Res Pharm Sci 2018; 13(6): 476-83.
[http://dx.doi.org/10.4103/1735-5362.245959] [PMID: 30607145]
[53]
Guo G, Li X, Ye X, et al. EGF and curcumin co-encapsulated nanoparticle/hydrogel system as potent skin regeneration agent. Int J Nanomedicine 2016; 11: 3993-4009.
[http://dx.doi.org/10.2147/IJN.S104350] [PMID: 27574428]
[54]
Deng A, Yang Y, Du S, et al. Preparation of a recombinant collagen-peptide (RHC)-conjugated chitosan thermosensitive hydrogel for wound healing. Mater Sci Eng C 2021; 119: 111555.
[http://dx.doi.org/10.1016/j.msec.2020.111555] [PMID: 33321619]
[55]
Park SG, Li MX, Cho WK, Joung YK, Huh KM. Thermosensitive gallic acid-conjugated hexanoyl glycol chitosan as a novel wound healing biomaterial. Carbohydr Polym 2021; 260: 117808.
[http://dx.doi.org/10.1016/j.carbpol.2021.117808] [PMID: 33712154]
[56]
Tian MP, Zhang AD, Yao YX, Chen XG, Liu Y. Mussel-inspired adhesive and polypeptide-based antibacterial thermo-sensitive hydroxybutyl chitosan hydrogel as BMSCs 3D culture matrix for wound healing. Carbohydr Polym 2021; 261: 117878.
[http://dx.doi.org/10.1016/j.carbpol.2021.117878] [PMID: 33766365]
[57]
Ni P, Li R, Ye S, et al. Lactobionic acid-modified chitosan thermosensitive hydrogels that lift lesions and promote repair in endoscopic submucosal dissection. Carbohydr Polym 2021; 263: 118001.
[http://dx.doi.org/10.1016/j.carbpol.2021.118001] [PMID: 33858584]
[58]
Yang Y, Wang M, Luo M, Chen M, Wei K, Lei B. Injectable self-healing bioactive antioxidative one-component poly(salicylic acid) hydrogel with strong ultraviolet-shielding for preventing skin light injury. Mater Sci Eng C 2021; 126: 112107.
[http://dx.doi.org/10.1016/j.msec.2021.112107] [PMID: 34082930]
[59]
Ma M, Zhong Y, Jiang X. An injectable photothermally active antibacterial composite hydroxypropyl chitin hydrogel for promoting the wound healing process through photobiomodulation. J Mater Chem B Mater Biol Med 2021; 9(22): 4567-76.
[http://dx.doi.org/10.1039/D1TB00724F] [PMID: 34047310]
[60]
Zakerikhoob M, Abbasi S, Yousefi G, Mokhtari M, Noorbakhsh MS. Curcumin-incorporated crosslinked sodium alginate-g-poly (N-isopropyl acrylamide) thermo-responsive hydrogel as an in-situ forming injectable dressing for wound healing: In vitro characterization and in vivo evaluation. Carbohydr Polym 2021; 271: 118434.
[http://dx.doi.org/10.1016/j.carbpol.2021.118434] [PMID: 34364574]
[61]
Xu L, Mei L, Zhao R, et al. The effects of intro-oral parathyroid hormone on the healing of tooth extraction socket: An experimental study on hyperglycemic rats. J Appl Oral Sci 2020; 28: e20190690.
[http://dx.doi.org/10.1590/1678-7757-2019-0690] [PMID: 32348445]
[62]
Yang X, Yang R, Chen M, et al. KGF-2 and FGF-21 poloxamer 407 hydrogel coordinates inflammation and proliferation homeostasis to enhance wound repair of scalded skin in diabetic rats. BMJ Open Diabetes Res Care 2020; 8(1): e001009.
[http://dx.doi.org/10.1136/bmjdrc-2019-001009] [PMID: 32434772]
[63]
Lim T, Tang Q, Zhu Z, Wei X, Zhang C. Sustained release of human platelet lysate growth factors by thermosensitive hydroxybutyl chitosan hydrogel promotes skin wound healing in rats. J Biomed Mater Res A 2020; 108(10): 2111-22.
[http://dx.doi.org/10.1002/jbm.a.36970] [PMID: 32323472]
[64]
Lu Y, Deng J, Wang J, et al. Effects and mechanism of Lactococcus lactis thermo-sensitive hydrogel on the wound healing of full-thickness skin defects in diabetic mice. Chin J Burns 2020; 36(12): 1117-29.
[65]
Gao G, Jiang YW, Jia HR, Wu FG. Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection. Biomaterials 2019; 188: 83-95.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.045] [PMID: 30339942]
[66]
Zang S, Mu R, Chen F, et al. Injectable chitosan/β-glycerophosphate hydrogels with sustained release of BMP-7 and ornidazole in periodontal wound healing of class III furcation defects. Mater Sci Eng C 2019; 99: 919-28.
[http://dx.doi.org/10.1016/j.msec.2019.02.024] [PMID: 30889766]
[67]
op ’t Veld RC, Joosten L, van den Boomen OI, et al. Monitoring 111In-labelled polyisocyanopeptide (PIC) hydrogel wound dressings in full-thickness wounds. Biomater Sci 2019; 7(7): 3041-50.
[http://dx.doi.org/10.1039/C9BM00661C] [PMID: 31115398]
[68]
Liu H, Zhao Y, Zou Y, et al. Heparin‐poloxamer hydrogel‐encapsulated rhFGF21 enhances wound healing in diabetic mice. FASEB J 2019; 33(9): 9858-70.
[http://dx.doi.org/10.1096/fj.201802600RR] [PMID: 31166803]
[69]
Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A. Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydr Polym 2019; 223: 115023.
[http://dx.doi.org/10.1016/j.carbpol.2019.115023] [PMID: 31427021]
[70]
Pham L, Dang LH, Truong MD, et al. A dual synergistic of curcumin and gelatin on thermal-responsive hydrogel based on Chitosan-P123 in wound healing application. Biomed Pharmacother 2019; 117: 109183.
[http://dx.doi.org/10.1016/j.biopha.2019.109183] [PMID: 31261029]
[71]
Xu H, Huang S, Wang J, et al. Enhanced cutaneous wound healing by functional injectable thermo-sensitive chitosan-based hydrogel encapsulated human umbilical cord-mesenchymal stem cells. Int J Biol Macromol 2019; 137: 433-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.246] [PMID: 31271797]
[72]
Lei Z, Singh G, Min Z, et al. Bone marrow-derived mesenchymal stem cells laden novel thermo-sensitive hydrogel for the management of severe skin wound healing. Mater Sci Eng C 2018; 90: 159-67.
[http://dx.doi.org/10.1016/j.msec.2018.04.045] [PMID: 29853078]
[73]
Zhang E, Guo Q, Ji F, et al. Thermoresponsive polysaccharide-based composite hydrogel with antibacterial and healing-promoting activities for preventing recurrent adhesion after adhesiolysis. Acta Biomater 2018; 74: 439-53.
[http://dx.doi.org/10.1016/j.actbio.2018.05.037] [PMID: 29803006]
[74]
Kaisang L, Siyu W, Lijun F, Daoyan P, Xian CJ, Jie S. Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing. J Surg Res 2017; 217: 63-74.
[http://dx.doi.org/10.1016/j.jss.2017.04.032] [PMID: 28595815]
[75]
Pacelli S, Acosta F, Chakravarti AR, et al. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis. Acta Biomater 2017; 58: 479-91.
[http://dx.doi.org/10.1016/j.actbio.2017.05.026] [PMID: 28532899]
[76]
Xu HL, Xu J, Shen BX, et al. Dual regulations of thermosensitive heparin–poloxamer hydrogel using ε-polylysine: Bioadhesivity and controlled KGF release for enhancing wound healing of endometrial injury. ACS Appl Mater Interfaces 2017; 9(35): 29580-94.
[http://dx.doi.org/10.1021/acsami.7b10211] [PMID: 28809108]
[77]
Qiu M, Chen D, Shen C, Shen J, Zhao H, He Y. Platelet-rich plasma-loaded poly (d, l-lactide)-poly (ethylene glycol)-poly (d, l-lactide) hydrogel dressing promotes full-thickness skin wound healing in a rodent model. Int J Mol Sci 2016; 17(7): 1001.
[http://dx.doi.org/10.3390/ijms17071001] [PMID: 27347938]
[78]
Li H, Duann P, Lin PH, et al. Modulation of wound healing and scar formation by MG53 protein-mediated cell membrane repair. J Biol Chem 2015; 290(40): 24592-603.
[http://dx.doi.org/10.1074/jbc.M115.680074] [PMID: 26306047]