Recent Advances in the Development of Membrane-derived Vesicles for Cancer Immunotherapy

Page: [403 - 420] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

The surface proteins on cell membranes enable the cells to have different properties, such as high biocompatibility, surface modifiability, and homologous targeting ability. Cell-membrane-derived vesicles have features identical to those of their parental cells, which makes them one of the most promising materials for drug delivery. Recently, as a result of the impressive effects of immunotherapy in cancer treatment, an increasing number of researchers have used cell-membrane-derived vesicles to enhance immune responses. To be more specific, the membrane vesicles derived from immune cells, tumor cells, bacteria, or engineered cells have the antigen presentation capacity and can trigger strong anti-tumor effects of the immune system. In this review, we first indicated a brief description of the vesicles and then introduced the detection technology and drug-loading methods for them. Secondly, we concluded the characteristics and applications of vesicles derived from different sources in cancer immunotherapy.

Graphical Abstract

[1]
Mao, J.J.; Pillai, G.G.; Andrade, C.J.; Ligibel, J.A.; Basu, P.; Cohen, L.; Khan, I.A.; Mustian, K.M.; Puthiyedath, R.; Dhiman, K.S.; Lao, L.; Ghelman, R.; Cáceres Guido, P.; Lopez, G.; Gallego-Perez, D.F.; Salicrup, L.A. Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA Cancer J. Clin., 2022, 72(2), 144-164.
[http://dx.doi.org/10.3322/caac.21706] [PMID: 34751943]
[2]
Hassan, F.; El-Hiti, G.A.; Abd-Allateef, M.; Yousif, E. Cytotoxicity anticancer activities of anastrozole against breast, liver hepatocellular, and prostate cancer cells. Saudi Med. J., 2017, 38(4), 359-365.
[http://dx.doi.org/10.15537/smj.2017.4.17061] [PMID: 28397941]
[3]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[4]
Marabelle, A.; Tselikas, L.; de Baere, T.; Houot, R. Intratumoral immunotherapy: Using the tumor as the remedy. Ann. Oncol., 2017, 28(Suppl. 12), xii33-xii43.
[http://dx.doi.org/10.1093/annonc/mdx683] [PMID: 29253115]
[5]
Izci, M.; Maksoudian, C.; Manshian, B.B.; Soenen, S.J. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem. Rev., 2021, 121(3), 1746-1803.
[http://dx.doi.org/10.1021/acs.chemrev.0c00779] [PMID: 33445874]
[6]
Zhu, R.; Zhang, F.; Peng, Y.; Xie, T.; Wang, Y.; Lan, Y. Current progress in cancer treatment using nanomaterials. Front. Oncol., 2022, 12, 930125.
[http://dx.doi.org/10.3389/fonc.2022.930125] [PMID: 35912195]
[7]
Shao, H.; Im, H.; Castro, C.M.; Breakefield, X.; Weissleder, R.; Lee, H. New technologies for analysis of extracellular vesicles. Chem. Rev., 2018, 118(4), 1917-1950.
[http://dx.doi.org/10.1021/acs.chemrev.7b00534] [PMID: 29384376]
[8]
Whiteside, T.L. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem. Soc. Trans., 2013, 41(1), 245-251.
[http://dx.doi.org/10.1042/BST20120265] [PMID: 23356291]
[9]
Verdi, J.; Ketabchi, N.; Noorbakhsh, N.; Saleh, M.; Ebrahimi-Barough, S.; Seyhoun, I.; Kavianpour, M. Development and clinical application of tumor-derived exosomes in patients with cancer. Curr. Stem Cell Res. Ther., 2022, 17(1), 91-102.
[http://dx.doi.org/10.2174/1574888X16666210622123942] [PMID: 34161212]
[10]
Lai, R.C.; Yeo, R.W.Y.; Tan, K.H.; Lim, S.K. Exosomes for drug delivery — a novel application for the mesenchymal stem cell. Biotechnol. Adv., 2013, 31(5), 543-551.
[http://dx.doi.org/10.1016/j.biotechadv.2012.08.008] [PMID: 22959595]
[11]
Hiemstra, T.F.; Charles, P.D.; Gracia, T.; Hester, S.S.; Gatto, L.; Al-Lamki, R.; Floto, R.A.; Su, Y.; Skepper, J.N.; Lilley, K.S.; Karet Frankl, F.E. Human urinary exosomes as innate immune effectors. J. Am. Soc. Nephrol., 2014, 25(9), 2017-2027.
[http://dx.doi.org/10.1681/ASN.2013101066] [PMID: 24700864]
[12]
Rodriguez, B.V.; Kuehn, M.J. Staphylococcus aureus secretes immunomodulatory RNA and DNA via membrane vesicles. Sci. Rep., 2020, 10(1), 18293.
[http://dx.doi.org/10.1038/s41598-020-75108-3] [PMID: 33106559]
[13]
Fuhrmann, G.; Serio, A.; Mazo, M.; Nair, R.; Stevens, M.M. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Release, 2015, 205, 35-44.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.029] [PMID: 25483424]
[14]
Fuhrmann, G.; Herrmann, I.K.; Stevens, M.M. Cell-derived vesicles for drug therapy and diagnostics: Opportunities and challenges. Nano Today, 2015, 10(3), 397-409.
[http://dx.doi.org/10.1016/j.nantod.2015.04.004] [PMID: 28458718]
[15]
McAndrews, K.M.; Kalluri, R. Mechanisms associated with biogenesis of exosomes in cancer. Mol. Cancer, 2019, 18(1), 52.
[http://dx.doi.org/10.1186/s12943-019-0963-9] [PMID: 30925917]
[16]
Lo Cicero, A.; Stahl, P.D.; Raposo, G. Extracellular vesicles shuffling intercellular messages: For good or for bad. Curr. Opin. Cell Biol., 2015, 35, 69-77.
[http://dx.doi.org/10.1016/j.ceb.2015.04.013] [PMID: 26001269]
[17]
de la Torre Gomez, C.; Goreham, R.V.; Bech Serra, J.J.; Nann, T.; Kussmann, M. “Exosomics”—A review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk. Front. Genet., 2018, 9, 92.
[http://dx.doi.org/10.3389/fgene.2018.00092] [PMID: 29636770]
[18]
Ratajczak, M.Z.; Ratajczak, J. Extracellular microvesicles/exosomes: Discovery, disbelief, acceptance, and the future? Leukemia, 2020, 34(12), 3126-3135.
[http://dx.doi.org/10.1038/s41375-020-01041-z] [PMID: 32929129]
[19]
Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; Ayre, D.C.; Bach, J.M.; Bachurski, D.; Baharvand, H.; Balaj, L.; Baldacchino, S.; Bauer, N.N.; Baxter, A.A.; Bebawy, M.; Beckham, C.; Bedina Zavec, A.; Benmoussa, A.; Berardi, A.C.; Bergese, P.; Bielska, E.; Blenkiron, C.; Bobis-Wozowicz, S.; Boilard, E.; Boireau, W.; Bongiovanni, A.; Borràs, F.E.; Bosch, S.; Boulanger, C.M.; Breakefield, X.; Breglio, A.M.; Brennan, M.Á.; Brigstock, D.R.; Brisson, A.; Broekman, M.L.D.; Bromberg, J.F.; Bryl-Górecka, P.; Buch, S.; Buck, A.H.; Burger, D.; Busatto, S.; Buschmann, D.; Bussolati, B.; Buzás, E.I.; Byrd, J.B.; Camussi, G.; Carter, D.R.F.; Caruso, S.; Chamley, L.W.; Chang, Y.T.; Chen, C.; Chen, S.; Cheng, L.; Chin, A.R.; Clayton, A.; Clerici, S.P.; Cocks, A.; Cocucci, E.; Coffey, R.J.; Cordeiro-da-Silva, A.; Couch, Y.; Coumans, F.A.W.; Coyle, B.; Crescitelli, R.; Criado, M.F.; D’Souza-Schorey, C.; Das, S.; Datta Chaudhuri, A.; de Candia, P.; De Santana, E.F.; De Wever, O.; del Portillo, H.A.; Demaret, T.; Deville, S.; Devitt, A.; Dhondt, B.; Di Vizio, D.; Dieterich, L.C.; Dolo, V.; Dominguez Rubio, A.P.; Dominici, M.; Dourado, M.R.; Driedonks, T.A.P.; Duarte, F.V.; Duncan, H.M.; Eichenberger, R.M.; Ekström, K.; Andaloussi, E.L. S.; Elie-Caille, C.; Erdbrügger, U.; Falcón-Pérez, J.M.; Fatima, F.; Fish, J.E.; Flores-Bellver, M.; Försönits, A.; Frelet-Barrand, A.; Fricke, F.; Fuhrmann, G.; Gabrielsson, S.; Gámez-Valero, A.; Gardiner, C.; Gärtner, K.; Gaudin, R.; Gho, Y.S.; Giebel, B.; Gilbert, C.; Gimona, M.; Giusti, I.; Goberdhan, D.C.I.; Görgens, A.; Gorski, S.M.; Greening, D.W.; Gross, J.C.; Gualerzi, A.; Gupta, G.N.; Gustafson, D.; Handberg, A.; Haraszti, R.A.; Harrison, P.; Hegyesi, H.; Hendrix, A.; Hill, A.F.; Hochberg, F.H.; Hoffmann, K.F.; Holder, B.; Holthofer, H.; Hosseinkhani, B.; Hu, G.; Huang, Y.; Huber, V.; Hunt, S.; Ibrahim, A.G.E.; Ikezu, T.; Inal, J.M.; Isin, M.; Ivanova, A.; Jackson, H.K.; Jacobsen, S.; Jay, S.M.; Jayachandran, M.; Jenster, G.; Jiang, L.; Johnson, S.M.; Jones, J.C.; Jong, A.; Jovanovic-Talisman, T.; Jung, S.; Kalluri, R.; Kano, S.; Kaur, S.; Kawamura, Y.; Keller, E.T.; Khamari, D.; Khomyakova, E.; Khvorova, A.; Kierulf, P.; Kim, K.P.; Kislinger, T.; Klingeborn, M.; Klinke, D.J., II; Kornek, M.; Kosanović M.M.; Kovács, Á.F.; Krämer-Albers, E.M.; Krasemann, S.; Krause, M.; Kurochkin, I.V.; Kusuma, G.D.; Kuypers, S.; Laitinen, S.; Langevin, S.M.; Languino, L.R.; Lannigan, J.; Lässer, C.; Laurent, L.C.; Lavieu, G.; Lázaro-Ibáñez, E.; Le Lay, S.; Lee, M.S.; Lee, Y.X.F.; Lemos, D.S.; Lenassi, M.; Leszczynska, A.; Li, I.T.S.; Liao, K.; Libregts, S.F.; Ligeti, E.; Lim, R.; Lim, S.K.; Linē A.; Linnemannstöns, K.; Llorente, A.; Lombard, C.A.; Lorenowicz, M.J.; Lörincz, Á.M.; Lötvall, J.; Lovett, J.; Lowry, M.C.; Loyer, X.; Lu, Q.; Lukomska, B.; Lunavat, T.R.; Maas, S.L.N.; Malhi, H.; Marcilla, A.; Mariani, J.; Mariscal, J.; Martens-Uzunova, E.S.; Martin-Jaular, L.; Martinez, M.C.; Martins, V.R.; Mathieu, M.; Mathivanan, S.; Maugeri, M.; McGinnis, L.K.; McVey, M.J.; Meckes, D.G., Jr; Meehan, K.L.; Mertens, I.; Minciacchi, V.R.; Möller, A.; Møller Jørgensen, M.; Morales-Kastresana, A.; Morhayim, J.; Mullier, F.; Muraca, M.; Musante, L.; Mussack, V.; Muth, D.C.; Myburgh, K.H.; Najrana, T.; Nawaz, M.; Nazarenko, I.; Nejsum, P.; Neri, C.; Neri, T.; Nieuwland, R.; Nimrichter, L.; Nolan, J.P.; Nolte-’t Hoen, E.N.M.; Noren Hooten, N.; O’Driscoll, L.; O’Grady, T.; O’Loghlen, A.; Ochiya, T.; Olivier, M.; Ortiz, A.; Ortiz, L.A.; Osteikoetxea, X.; Østergaard, O.; Ostrowski, M.; Park, J.; Pegtel, D.M.; Peinado, H.; Perut, F.; Pfaffl, M.W.; Phinney, D.G.; Pieters, B.C.H.; Pink, R.C.; Pisetsky, D.S.; Pogge von Strandmann, E.; Polakovicova, I.; Poon, I.K.H.; Powell, B.H.; Prada, I.; Pulliam, L.; Quesenberry, P.; Radeghieri, A.; Raffai, R.L.; Raimondo, S.; Rak, J.; Ramirez, M.I.; Raposo, G.; Rayyan, M.S.; Regev-Rudzki, N.; Ricklefs, F.L.; Robbins, P.D.; Roberts, D.D.; Rodrigues, S.C.; Rohde, E.; Rome, S.; Rouschop, K.M.A.; Rughetti, A.; Russell, A.E.; Saá, P.; Sahoo, S.; Salas-Huenuleo, E.; Sánchez, C.; Saugstad, J.A.; Saul, M.J.; Schiffelers, R.M.; Schneider, R.; Schøyen, T.H.; Scott, A.; Shahaj, E.; Sharma, S.; Shatnyeva, O.; Shekari, F.; Shelke, G.V.; Shetty, A.K.; Shiba, K.; Siljander, P.R.M.; Silva, A.M.; Skowronek, A.; Snyder, O.L., II; Soares, R.P.; Sódar, B.W.; Soekmadji, C.; Sotillo, J.; Stahl, P.D.; Stoorvogel, W.; Stott, S.L.; Strasser, E.F.; Swift, S.; Tahara, H.; Tewari, M.; Timms, K.; Tiwari, S.; Tixeira, R.; Tkach, M.; Toh, W.S.; Tomasini, R.; Torrecilhas, A.C.; Tosar, J.P.; Toxavidis, V.; Urbanelli, L.; Vader, P.; van Balkom, B.W.M.; van der Grein, S.G.; Van Deun, J.; van Herwijnen, M.J.C.; Van Keuren-Jensen, K.; van Niel, G.; van Royen, M.E.; van Wijnen, A.J.; Vasconcelos, M.H.; Vechetti, I.J., Jr; Veit, T.D.; Vella, L.J.; Velot, É.; Verweij, F.J.; Vestad, B.; Viñas, J.L.; Visnovitz, T.; Vukman, K.V.; Wahlgren, J.; Watson, D.C.; Wauben, M.H.M.; Weaver, A.; Webber, J.P.; Weber, V.; Wehman, A.M.; Weiss, D.J.; Welsh, J.A.; Wendt, S.; Wheelock, A.M.; Wiener, Z.; Witte, L.; Wolfram, J.; Xagorari, A.; Xander, P.; Xu, J.; Yan, X.; Yáñez-Mó, M.; Yin, H.; Yuana, Y.; Zappulli, V.; Zarubova, J.; Žėkas, V.; Zhang, J.; Zhao, Z.; Zheng, L.; Zheutlin, A.R.; Zickler, A.M.; Zimmermann, P.; Zivkovic, A.M.; Zocco, D.; Zuba-Surma, E.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles, 2018, 7(1), 1535750.
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[20]
Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol., 2011, 29(4), 341-345.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[21]
Gao, J.; Wang, S.; Wang, Z. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials, 2017, 135, 62-73.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.003] [PMID: 28494264]
[22]
Watson, D.C.; Bayik, D.; Srivatsan, A.; Bergamaschi, C.; Valentin, A.; Niu, G.; Bear, J.; Monninger, M.; Sun, M.; Morales-Kastresana, A.; Jones, J.C.; Felber, B.K.; Chen, X.; Gursel, I.; Pavlakis, G.N. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials, 2016, 105, 195-205.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.003] [PMID: 27522254]
[23]
Jang, S.C.; Kim, O.Y.; Yoon, C.M.; Choi, D.S.; Roh, T.Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y.K.; Gho, Y.S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 2013, 7(9), 7698-7710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[24]
García-Manrique, P.; Gutiérrez, G.; Blanco-López, M.C. Fully artificial exosomes: Towards new theranostic biomaterials. Trends Biotechnol., 2018, 36(1), 10-14.
[http://dx.doi.org/10.1016/j.tibtech.2017.10.005] [PMID: 29074309]
[25]
Lu, M.; Zhao, X.; Xing, H.; Xun, Z.; Yang, T.; Cai, C.; Wang, D.; Ding, P. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomater., 2018, 76, 1-20.
[http://dx.doi.org/10.1016/j.actbio.2018.03.043] [PMID: 29625253]
[26]
García-Manrique, P.; Matos, M.; Gutiérrez, G.; Pazos, C.; Blanco-López, M.C. Therapeutic biomaterials based on extracellular vesicles: Classification of bio-engineering and mimetic preparation routes. J. Extracell. Vesicles, 2018, 7(1), 1422676.
[http://dx.doi.org/10.1080/20013078.2017.1422676] [PMID: 29372017]
[27]
Jo, W.; Kim, J.; Yoon, J.; Jeong, D.; Cho, S.; Jeong, H.; Yoon, Y.J.; Kim, S.C.; Gho, Y.S.; Park, J. Large-scale generation of cell-derived nanovesicles. Nanoscale, 2014, 6(20), 12056-12064.
[http://dx.doi.org/10.1039/C4NR02391A] [PMID: 25189198]
[28]
Johnsen, K.B.; Gudbergsson, J.M.; Duroux, M.; Moos, T.; Andresen, T.L.; Simonsen, J.B. On the use of liposome controls in studies investigating the clinical potential of extracellular vesicle-based drug delivery systems – A commentary. J. Control. Release, 2018, 269, 10-14.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.002] [PMID: 29126999]
[29]
Cheng, C.J.; Tietjen, G.T.; Saucier-Sawyer, J.K.; Saltzman, W.M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov., 2015, 14(4), 239-247.
[http://dx.doi.org/10.1038/nrd4503] [PMID: 25598505]
[30]
Molinaro, R.; Corbo, C.; Martinez, J.O.; Taraballi, F.; Evangelopoulos, M.; Minardi, S.; Yazdi, I.K.; Zhao, P.; De Rosa, E.; Sherman, M.B.; De Vita, A.; Toledano Furman, N.E.; Wang, X.; Parodi, A.; Tasciotti, E. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat. Mater., 2016, 15(9), 1037-1046.
[http://dx.doi.org/10.1038/nmat4644] [PMID: 27213956]
[31]
Ramirez, M.I.; Amorim, M.G.; Gadelha, C.; Milic, I.; Welsh, J.A.; Freitas, V.M.; Nawaz, M.; Akbar, N.; Couch, Y.; Makin, L.; Cooke, F.; Vettore, A.L.; Batista, P.X.; Freezor, R.; Pezuk, J.A.; Rosa-Fernandes, L.; Carreira, A.C.O.; Devitt, A.; Jacobs, L.; Silva, I.T.; Coakley, G.; Nunes, D.N.; Carter, D.; Palmisano, G.; Dias-Neto, E. Technical challenges of working with extracellular vesicles. Nanoscale, 2018, 10(3), 881-906.
[http://dx.doi.org/10.1039/C7NR08360B] [PMID: 29265147]
[32]
Gardiner, C.; Vizio, D.D.; Sahoo, S.; Théry, C.; Witwer, K.W.; Wauben, M.; Hill, A.F. Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. J. Extracell. Vesicles, 2016, 5(1), 32945.
[http://dx.doi.org/10.3402/jev.v5.32945] [PMID: 27802845]
[33]
Li, P.; Kaslan, M.; Lee, S.H.; Yao, J.; Gao, Z. Progress in exosome isolation techniques. Theranostics, 2017, 7(3), 789-804.
[http://dx.doi.org/10.7150/thno.18133] [PMID: 28255367]
[34]
Zhao, Z.; Wijerathne, H.; Godwin, A.K.; Soper, S.A. Isolation and analysis methods of extracellular vesicles (EVs). Extracell. Vesicles Circ. Nucl. Acids, 2021, 2, 80-103.
[35]
Lamparski, H.G.; Metha-Damani, A.; Yao, J.Y.; Patel, S.; Hsu, D.H.; Ruegg, C.; Le Pecq, J.B. Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods, 2002, 270(2), 211-226.
[http://dx.doi.org/10.1016/S0022-1759(02)00330-7] [PMID: 12379326]
[36]
Li, X.; Corbett, A.L.; Taatizadeh, E.; Tasnim, N.; Little, J.P.; Garnis, C.; Daugaard, M.; Guns, E.; Hoorfar, M.; Li, I.T.S. Challenges and opportunities in exosome research—Perspectives from biology, engineering, and cancer therapy. APL Bioeng., 2019, 3(1), 011503.
[http://dx.doi.org/10.1063/1.5087122] [PMID: 31069333]
[37]
Tauro, B.J.; Greening, D.W.; Mathias, R.A.; Ji, H.; Mathivanan, S.; Scott, A.M.; Simpson, R.J. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 2012, 56(2), 293-304.
[http://dx.doi.org/10.1016/j.ymeth.2012.01.002] [PMID: 22285593]
[38]
Monguió-Tortajada, M.; Gálvez-Montón, C.; Bayes-Genis, A.; Roura, S.; Borràs, F.E. Extracellular vesicle isolation methods: Rising impact of size-exclusion chromatography. Cell. Mol. Life Sci., 2019, 76(12), 2369-2382.
[http://dx.doi.org/10.1007/s00018-019-03071-y] [PMID: 30891621]
[39]
Busatto, S.; Giacomini, A.; Montis, C.; Ronca, R.; Bergese, P. Uptake Profiles of human serum exosomes by murine and human tumor cells through combined use of colloidal nanoplasmonics and flow cytofluorimetric analysis. Anal. Chem., 2018, 90(13), 7855-7861.
[http://dx.doi.org/10.1021/acs.analchem.7b04374] [PMID: 29870225]
[40]
Coumans, F.A.W.; Brisson, A.R.; Buzas, E.I.; Dignat-George, F.; Drees, E.E.E.; El-Andaloussi, S.; Emanueli, C.; Gasecka, A.; Hendrix, A.; Hill, A.F.; Lacroix, R.; Lee, Y.; van Leeuwen, T.G.; Mackman, N.; Mäger, I.; Nolan, J.P.; van der Pol, E.; Pegtel, D.M.; Sahoo, S.; Siljander, P.R.M.; Sturk, G.; de Wever, O.; Nieuwland, R. Methodological guidelines to study extracellular vesicles. Circ. Res., 2017, 120(10), 1632-1648.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.309417] [PMID: 28495994]
[41]
Busatto, S.; Vilanilam, G.; Ticer, T.; Lin, W.L.; Dickson, D.; Shapiro, S.; Bergese, P.; Wolfram, J. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells, 2018, 7(12), 273.
[http://dx.doi.org/10.3390/cells7120273] [PMID: 30558352]
[42]
Gao, J.; Dong, X.; Wang, Z. Generation, purification and engineering of extracellular vesicles and their biomedical applications. Methods, 2020, 177, 114-125.
[http://dx.doi.org/10.1016/j.ymeth.2019.11.012] [PMID: 31790730]
[43]
Shen, W.; Guo, K.; Adkins, G.B.; Jiang, Q.; Liu, Y.; Sedano, S.; Duan, Y.; Yan, W.; Wang, S.E.; Bergersen, K.; Worth, D.; Wilson, E.H.; Zhong, W. A single Extracellular Vesicle (EV) flow cytometry approach to reveal EV heterogeneity. Angew. Chem. Int. Ed., 2018, 57(48), 15675-15680.
[http://dx.doi.org/10.1002/anie.201806901] [PMID: 30291794]
[44]
Lobb, R.J.; Becker, M.; Wen, W. S.; Wong, C.S.F.; Wiegmans, A.P.; Leimgruber, A.; Möller, A. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles, 2015, 4(1), 27031.
[http://dx.doi.org/10.3402/jev.v4.27031] [PMID: 26194179]
[45]
Pisitkun, T.; Shen, R.F.; Knepper, M.A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. USA, 2004, 101(36), 13368-13373.
[http://dx.doi.org/10.1073/pnas.0403453101] [PMID: 15326289]
[46]
Benmoussa, A.; Ly, S.; Shan, S.T.; Laugier, J.; Boilard, E.; Gilbert, C.; Provost, P. A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow’s milk. J. Extracell. Vesicles, 2017, 6(1), 1401897.
[http://dx.doi.org/10.1080/20013078.2017.1401897] [PMID: 29904572]
[47]
Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Curry, W.T., Jr; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol., 2008, 10(12), 1470-1476.
[http://dx.doi.org/10.1038/ncb1800] [PMID: 19011622]
[48]
Fu, Y.; Li, C.; Lu, S.; Zhou, W.; Tang, F.; Xie, X.S.; Huang, Y. Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc. Natl. Acad. Sci., 2015, 112(38), 11923-11928.
[http://dx.doi.org/10.1073/pnas.1513988112] [PMID: 26340991]
[49]
Joshi, G.K.; Deitz-McElyea, S.; Liyanage, T.; Lawrence, K.; Mali, S.; Sardar, R.; Korc, M. Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of MicroRNA-10b in biological fluids and circulating exosomes. ACS Nano, 2015, 9(11), 11075-11089.
[http://dx.doi.org/10.1021/acsnano.5b04527] [PMID: 26444644]
[50]
Karimi, N.; Cvjetkovic, A.; Jang, S.C.; Crescitelli, R.; Hosseinpour Feizi, M.A.; Nieuwland, R.; Lötvall, J.; Lässer, C. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell. Mol. Life Sci., 2018, 75(15), 2873-2886.
[http://dx.doi.org/10.1007/s00018-018-2773-4] [PMID: 29441425]
[51]
Szatanek, R.; Baj-Krzyworzeka, M.; Zimoch, J.; Lekka, M.; Siedlar, M.; Baran, J. The methods of choice for Extracellular Vesicles (EVs) characterization. Int. J. Mol. Sci., 2017, 18(6), 1153.
[http://dx.doi.org/10.3390/ijms18061153] [PMID: 28555055]
[52]
Soo, C.Y.; Song, Y.; Zheng, Y.; Campbell, E.C.; Riches, A.C.; Gunn-Moore, F.; Powis, S.J. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology, 2012, 136(2), 192-197.
[http://dx.doi.org/10.1111/j.1365-2567.2012.03569.x] [PMID: 22348503]
[53]
Li, T.D.; Zhang, R.; Chen, H.; Huang, Z.P.; Ye, X.; Wang, H.; Deng, A.M.; Kong, J.L. An ultrasensitive polydopamine bi-functionalized SERS immunoassay for exosome-based diagnosis and classification of pancreatic cancer. Chem. Sci., 2018, 9(24), 5372-5382.
[http://dx.doi.org/10.1039/C8SC01611A] [PMID: 30009009]
[54]
Choi, D.; Montermini, L.; Jeong, H.; Sharma, S.; Meehan, B.; Rak, J. Mapping subpopulations of cancer cell-derived extracellular vesicles and particles by nano-flow cytometry. ACS Nano, 2019, 13(9), 10499-10511.
[http://dx.doi.org/10.1021/acsnano.9b04480] [PMID: 31469961]
[55]
Jin, M.Z.; Wang, X.P. Immunogenic cell death-based cancer vaccines. Front. Immunol., 2021, 12, 697964.
[http://dx.doi.org/10.3389/fimmu.2021.697964] [PMID: 34135914]
[56]
Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin., 2017, 38(6), 754-763.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[57]
Lu, M.; Huang, Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials, 2020, 242, 119925.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119925] [PMID: 32151860]
[58]
Kim, M.S.; Haney, M.J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N.L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O.; Hingtgen, S.D.; Kabanov, A.V.; Batrakova, E.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine, 2016, 12(3), 655-664.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[59]
O’Loughlin, A.J.; Mäger, I.; de Jong, O.G.; Varela, M.A.; Schiffelers, R.M.; El Andaloussi, S.; Wood, M.J.A.; Vader, P. Functional delivery of lipid-conjugated siRNA by extracellular vesicles. Mol. Ther., 2017, 25(7), 1580-1587.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.021] [PMID: 28392161]
[60]
Wu, P.; Zhang, B.; Ocansey, D.K.W.; Xu, W.; Qian, H. Extracellular vesicles: A bright star of nanomedicine. Biomaterials, 2021, 269, 120467.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120467] [PMID: 33189359]
[61]
Ye, Z.; Zhang, T.; He, W.; Jin, H.; Liu, C.; Yang, Z.; Ren, J. Methotrexate-loaded extracellular vesicles functionalized with therapeutic and targeted peptides for the treatment of glioblastoma multiforme. ACS Appl. Mater. Interfaces, 2018, 10(15), 12341-12350.
[http://dx.doi.org/10.1021/acsami.7b18135] [PMID: 29564886]
[62]
Didiot, M.C.; Hall, L.M.; Coles, A.H.; Haraszti, R.A.; Godinho, B.M.D.C.; Chase, K.; Sapp, E.; Ly, S.; Alterman, J.F.; Hassler, M.R.; Echeverria, D.; Raj, L.; Morrissey, D.V.; DiFiglia, M.; Aronin, N.; Khvorova, A. Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol. Ther., 2016, 24(10), 1836-1847.
[http://dx.doi.org/10.1038/mt.2016.126] [PMID: 27506293]
[63]
Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Gupta, R.; Plotnikova, E.G.; He, Z.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A.V.; Batrakova, E.V. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release, 2015, 207, 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[64]
Sato, Y.T.; Umezaki, K.; Sawada, S.; Mukai, S.; Sasaki, Y.; Harada, N.; Shiku, H.; Akiyoshi, K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci. Rep., 2016, 6(1), 21933.
[http://dx.doi.org/10.1038/srep21933] [PMID: 26911358]
[65]
Doskocz, J. Dałek, P.; Przybyło, M.; Trzebicka, B.; Foryś A.; Kobyliukh, A.; Iglič A.; Langner, M. The elucidation of the molecular mechanism of the extrusion process. Materials (Basel), 2021, 14(15), 4278.
[http://dx.doi.org/10.3390/ma14154278] [PMID: 34361472]
[66]
Nele, V.; Holme, M.N.; Kauscher, U.; Thomas, M.R.; Doutch, J.J.; Stevens, M.M. Effect of formulation method, lipid composition, and PEGylation on vesicle lamellarity: A small-angle neutron scattering study. Langmuir, 2019, 35(18), 6064-6074.
[http://dx.doi.org/10.1021/acs.langmuir.8b04256] [PMID: 30977658]
[67]
Wang, T.; Larcher, L.; Ma, L.; Veedu, R. Systematic screening of commonly used commercial transfection reagents towards efficient transfection of single-stranded oligonucleotides. Molecules, 2018, 23(10), 2564.
[http://dx.doi.org/10.3390/molecules23102564] [PMID: 30297632]
[68]
Morrissey, M.A.; Sherwood, D.R. An active role for basement membrane assembly and modification in tissue sculpting. J. Cell.Sci., 2015, 128(9), 168021.
[http://dx.doi.org/10.1242/jcs.168021] [PMID: 25717004]
[69]
Huttner, W.B.; Schmidt, A. Lipids, lipid modification and lipid–protein interaction in membrane budding and fission — insights from the roles of endophilin A1 and synaptophysin in synaptic vesicle endocytosis. Curr. Opin. Neurobiol., 2000, 10(5), 543-551.
[http://dx.doi.org/10.1016/S0959-4388(00)00126-4] [PMID: 11084315]
[70]
Wu, L.; Liu, M.; Zhu, X.; Shan, W.; Huang, Y. Modification strategies of lipid-based nanocarriers for mucosal drug delivery. Curr. Pharm. Des., 2015, 21(36), 5198-5211.
[http://dx.doi.org/10.2174/1381612821666150923103000] [PMID: 26412355]
[71]
Zhuang, W.R.; Wang, Y.; Lei, Y.; Zuo, L.; Jiang, A.; Wu, G.; Nie, W.; Huang, L.L.; Xie, H.Y. Phytochemical engineered bacterial outer membrane vesicles for photodynamic effects promoted immunotherapy. Nano Lett., 2022, 22(11), 4491-4500.
[http://dx.doi.org/10.1021/acs.nanolett.2c01280] [PMID: 35605283]
[72]
Tian, T.; Zhang, H.X.; He, C.P.; Fan, S.; Zhu, Y.L.; Qi, C.; Huang, N.P.; Xiao, Z.D.; Lu, Z.H.; Tannous, B.A.; Gao, J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 2018, 150, 137-149.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.012] [PMID: 29040874]
[73]
Li, T.; Yang, J.; Liu, R.; Yi, Y.; Huang, M.; Wu, Y.; Tu, H.; Zhang, L. Efficient fabrication of reversible pH-induced carboxymethyl chitosan nanoparticles for antitumor drug delivery under weakly acidic microenvironment. Int. J. Biol. Macromol., 2019, 126, 68-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.178] [PMID: 30579898]
[74]
Rinaldi, F.; Hanieh, P.N.; Del Favero, E.; Rondelli, V.; Brocca, P.; Pereira, M.C.; Andreev, O.A.; Reshetnyak, Y.K.; Marianecci, C.; Carafa, M. Decoration of nanovesicles with pH (Low) Insertion Peptide (pHLIP) for targeted delivery. Nanoscale Res. Lett., 2018, 13(1), 391.
[http://dx.doi.org/10.1186/s11671-018-2807-8] [PMID: 30515583]
[75]
Jia, G.; Han, Y.; An, Y.; Ding, Y.; He, C.; Wang, X.; Tang, Q. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials, 2018, 178, 302-316.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.029] [PMID: 29982104]
[76]
Gao, J.; Wang, S.; Dong, X.; Wang, Z. RGD-expressed bacterial membrane-derived nanovesicles enhance cancer therapy via multiple tumorous targeting. Theranostics, 2021, 11(7), 3301-3316.
[http://dx.doi.org/10.7150/thno.51988] [PMID: 33537088]
[77]
Wang, Q.X.; Chen, X.; Li, Z.L.; Gong, Y.C.; Xiong, X.Y. Transferrin/folate dual-targeting Pluronic F127/poly(lactic acid) polymersomes for effective anticancer drug delivery. J. Biomater. Sci. Polym. Ed., 2022, 33(9), 1140-1156.
[http://dx.doi.org/10.1080/09205063.2022.2044434] [PMID: 35179085]
[78]
Kim, W.; Lee, E.J.; Bae, I.H.; Myoung, K.; Kim, S.T.; Park, P.J.; Lee, K.H.; Pham, A.V.Q.; Ko, J.; Oh, S.H.; Cho, E.G. Lactobacillus plantarum ‐derived extracellular vesicles induce anti‐inflammatory M2 macrophage polarization in vitro. J. Extracell. Vesicles, 2020, 9(1), 1793514.
[http://dx.doi.org/10.1080/20013078.2020.1793514] [PMID: 32944181]
[79]
He, J.; Huo, Y.; Zhang, Z.; Luo, Y.; Liu, X.; Chen, Q.; Wu, P.; Shi, W.; Wu, T.; Tang, C.; Wang, H.; Li, L.; Liu, X.; Huang, Y.; Zhao, Y.; Gan, L.; Wang, B.; Zhong, L. Generation of αGal-enhanced bifunctional tumor vaccine. Acta Pharm. Sin. B, 2022, 12(7), 3177-3186.
[http://dx.doi.org/10.1016/j.apsb.2022.03.002] [PMID: 35865091]
[80]
Xu, Y.; Feng, K.; Zhao, H.; Di, L.; Wang, L.; Wang, R. Tumor-derived extracellular vesicles as messengers of natural products in cancer treatment. Theranostics, 2022, 12(4), 1683-1714.
[http://dx.doi.org/10.7150/thno.67775] [PMID: 35198064]
[81]
Liu, H.; Chen, L.; Peng, Y.; Yu, S.; Liu, J.; Wu, L.; Zhang, L.; Wu, Q.; Chang, X.; Yu, X.; Liu, T. Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy. Oncotarget, 2018, 9(2), 2887-2894.
[http://dx.doi.org/10.18632/oncotarget.20812] [PMID: 29416821]
[82]
Guo, M.; Wu, F.; Hu, G.; Chen, L.; Xu, J.; Xu, P.; Wang, X.; Li, Y.; Liu, S.; Zhang, S.; Huang, Q.; Fan, J.; Lv, Z.; Zhou, M.; Duan, L.; Liao, T.; Yang, G.; Tang, K.; Liu, B.; Liao, X.; Tao, X.; Jin, Y. Autologous tumor cell–derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci. Transl. Med., 2019, 11(474), eaat5690.
[http://dx.doi.org/10.1126/scitranslmed.aat5690] [PMID: 30626714]
[83]
Pardoll, D.M. Cancer vaccines. Nat. Med., 1998, 4(S5), 525-531.
[http://dx.doi.org/10.1038/nm0598supp-525] [PMID: 9585204]
[84]
Morse, M.A.; Chui, S.; Hobeika, A.; Lyerly, H.K.; Clay, T. Recent developments in therapeutic cancer vaccines. Nat. Clin. Pract. Oncol., 2005, 2(2), 108-113.
[http://dx.doi.org/10.1038/ncponc0098] [PMID: 16264883]
[85]
Blass, E.; Ott, P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol., 2021, 18(4), 215-229.
[http://dx.doi.org/10.1038/s41571-020-00460-2] [PMID: 33473220]
[86]
Lee, E.Y.; Park, K.S.; Yoon, Y.J.; Lee, J.; Moon, H.G.; Jang, S.C.; Choi, K.H.; Kim, Y.K.; Gho, Y.S. Therapeutic effects of autologous tumor-derived nanovesicles on melanoma growth and metastasis. PLoS One, 2012, 7(3), e33330.
[http://dx.doi.org/10.1371/journal.pone.0033330] [PMID: 22438914]
[87]
Wang, C.; Huang, X.; Wu, Y.; Wang, J.; Li, F.; Guo, G. Tumor cell-associated exosomes robustly elicit anti-tumor immune responses through modulating dendritic cell vaccines in lung tumor. Int. J. Biol. Sci., 2020, 16(4), 633-643.
[http://dx.doi.org/10.7150/ijbs.38414] [PMID: 32025211]
[88]
Liu, B.; Yang, Y.; Chao, Y.; Xiao, Z.; Xu, J.; Wang, C.; Dong, Z.; Hou, L.; Li, Q.; Liu, Z. Equipping cancer cell membrane vesicles with functional DNA as a targeted vaccine for cancer immunotherapy. Nano Lett., 2021, 21(22), 9410-9418.
[http://dx.doi.org/10.1021/acs.nanolett.1c02582] [PMID: 34730968]
[89]
Wu, A.Y.T.; Sung, Y.C.; Chen, Y.J.; Chou, S.T.Y.; Guo, V.; Chien, J.C.Y.; Ko, J.J.S.; Yang, A.L.; Huang, H.C.; Chuang, J.C.; Wu, S.; Ho, M.R.; Ericsson, M.; Lin, W.W.; Cheung, C.H.Y.; Juan, H.F.; Ueda, K.; Chen, Y.; Lai, C.P.K. Multiresolution imaging using bioluminescence resonance energy transfer identifies distinct biodistribution profiles of extracellular vesicles and exomeres with redirected tropism. Adv. Sci., 2020, 7(19), 2001467.
[http://dx.doi.org/10.1002/advs.202001467] [PMID: 33042758]
[90]
Garofalo, M.; Villa, A.; Brunialti, E.; Crescenti, D.; Dell’Omo, G.; Kuryk, L.; Vingiani, A.; Mazzaferro, V.; Ciana, P. Cancer-derived EVs show tropism for tissues at early stage of neoplastic transformation. Nanotheranostics, 2021, 5(1), 1-7.
[http://dx.doi.org/10.7150/ntno.47226] [PMID: 33391971]
[91]
Hu, M.; Zhang, J.; Kong, L.; Yu, Y.; Hu, Q.; Yang, T.; Wang, Y.; Tu, K.; Qiao, Q.; Qin, X.; Zhang, Z. Immunogenic hybrid nanovesicles of liposomes and tumor-derived nanovesicles for cancer immunochemotherapy. ACS Nano, 2021, 15(2), 3123-3138.
[http://dx.doi.org/10.1021/acsnano.0c09681] [PMID: 33470095]
[92]
Gupta, P.; Kadamberi, I.P.; Mittal, S.; Tsaih, S.W.; George, J.; Kumar, S.; Vijayan, D.K.; Geethadevi, A.; Parashar, D.; Topchyan, P.; McAlarnen, L.; Volkman, B.F.; Cui, W.; Zhang, K.Y.J.; Di Vizio, D.; Chaluvally-Raghavan, P.; Pradeep, S. Tumor derived extracellular vesicles drive T Cell exhaustion in tumor microenvironment through sphingosine mediated signaling and impacting immunotherapy outcomes in ovarian cancer. Adv. Sci., 2022, 9(14), 2104452.
[http://dx.doi.org/10.1002/advs.202104452] [PMID: 35289120]
[93]
Cui, Y.; Wang, D.; Xie, M. Tumor-derived extracellular vesicles promote activation of carcinoma-associated fibroblasts and facilitate invasion and metastasis of ovarian cancer by carrying miR-630. Front. Cell Dev. Biol., 2021, 9, 652322.
[http://dx.doi.org/10.3389/fcell.2021.652322] [PMID: 34277601]
[94]
Aslan, C.; Maralbashi, S.; Salari, F.; Kahroba, H.; Sigaroodi, F.; Kazemi, T.; Kharaziha, P. Tumor‐derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. J. Cell. Physiol., 2019, 234(10), 16885-16903.
[http://dx.doi.org/10.1002/jcp.28374] [PMID: 30793767]
[95]
Peixoto da Silva, S.; Caires, H.R.; Bergantim, R.; Guimarães, J.E.; Vasconcelos, M.H. miRNAs mediated drug resistance in hematological malignancies. Semin. Cancer Biol., 2021, 83, 283-302.
[PMID: 33757848]
[96]
Whiteside, T.L.; Diergaarde, B.; Hong, C.S. Tumor-Derived Exosomes (TEX) and their role in immuno-oncology. Int. J. Mol. Sci., 2021, 22(12), 6234.
[http://dx.doi.org/10.3390/ijms22126234] [PMID: 34207762]
[97]
Morrissey, S.M.; Zhang, F.; Ding, C.; Montoya-Durango, D.E.; Hu, X.; Yang, C.; Wang, Z.; Yuan, F.; Fox, M.; Zhang, H.; Guo, H.; Tieri, D.; Kong, M.; Watson, C.T.; Mitchell, R.A.; Zhang, X.; McMasters, K.M.; Huang, J.; Yan, J. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab., 2021, 33(10), 2040-2058.e10.
[http://dx.doi.org/10.1016/j.cmet.2021.09.002] [PMID: 34559989]
[98]
Cheng, L.; Zhang, X.; Tang, J.; Lv, Q.; Liu, J. Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials, 2021, 275, 120964.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120964] [PMID: 34147721]
[99]
Tao, H.; Chen, X.; Cao, H.; Zheng, L.; Li, Q.; Zhang, K.; Han, Z.; Han, Z.C.; Guo, Z.; Li, Z.; Wang, L. Mesenchymal stem cell-derived extracellular vesicles for corneal wound repair. Stem Cells Int., 2019, 2019, 5738510.
[http://dx.doi.org/10.1155/2019/5738510] [PMID: 31885617]
[100]
Wang, X.; Thomsen, P. Mesenchymal stem cell–derived small extracellular vesicles and bone regeneration. Basic Clin. Pharmacol. Toxicol., 2021, 128(1), 18-36.
[http://dx.doi.org/10.1111/bcpt.13478] [PMID: 32780530]
[101]
Keshtkar, S.; Azarpira, N.; Ghahremani, M.H. Mesenchymal stem cell-derived extracellular vesicles: Novel frontiers in regenerative medicine. Stem Cell Res. Ther., 2018, 9(1), 63.
[http://dx.doi.org/10.1186/s13287-018-0791-7] [PMID: 29523213]
[102]
Zhang, B.; Tian, X.; Hao, J.; Xu, G.; Zhang, W. Mesenchymal stem cell-derived extracellular vesicles in tissue regeneration. Cell Transplant., 2020, 29, 963689720908500.
[http://dx.doi.org/10.1177/0963689720908500] [PMID: 32207341]
[103]
Zhao, Q.; Hai, B.; Zhang, X.; Xu, J.; Koehler, B.; Liu, F. Biomimetic nanovesicles made from iPS cell-derived mesenchymal stem cells for targeted therapy of triple-negative breast cancer. Nanomedicine, 2020, 24, 102146.
[http://dx.doi.org/10.1016/j.nano.2019.102146] [PMID: 31884039]
[104]
Azizi, S.A.; Stokes, D.; Augelli, B.J.; DiGirolamo, C.; Prockop, D.J. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 3908-3913.
[http://dx.doi.org/10.1073/pnas.95.7.3908] [PMID: 9520466]
[105]
Aboody, K.S.; Brown, A.; Rainov, N.G.; Bower, K.A.; Liu, S.; Yang, W.; Small, J.E.; Herrlinger, U.; Ourednik, V.; Black, P.M.; Breakefield, X.O.; Snyder, E.Y. Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc. Natl. Acad. Sci., 2000, 97(23), 12846-12851.
[http://dx.doi.org/10.1073/pnas.97.23.12846] [PMID: 11070094]
[106]
Gao, J.; Dennis, J.E.; Muzic, R.F.; Lundberg, M.; Caplan, A.I. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs, 2001, 169(1), 12-20.
[http://dx.doi.org/10.1159/000047856] [PMID: 11340257]
[107]
Zhang, H.; Feng, Y.; Xie, X.; Song, T.; Yang, G.; Su, Q.; Li, T.; Li, S.; Wu, C.; You, F.; Liu, Y.; Yang, H. Engineered mesenchymal stem cells as a biotherapy platform for targeted photodynamic immunotherapy of breast cancer. Adv. Healthc. Mater., 2022, 11(6), 2101375.
[http://dx.doi.org/10.1002/adhm.202101375] [PMID: 34981675]
[108]
Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer, 2012, 12(12), 860-875.
[http://dx.doi.org/10.1038/nrc3380] [PMID: 23151605]
[109]
Zhou, W.; Zhou, Y.; Chen, X.; Ning, T.; Chen, H.; Guo, Q.; Zhang, Y.; Liu, P.; Zhang, Y.; Li, C.; Chu, Y.; Sun, T.; Jiang, C. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials, 2021, 268, 120546.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120546] [PMID: 33253966]
[110]
Mahasa, K.J.; de Pillis, L.; Ouifki, R.; Eladdadi, A.; Maini, P.; Yoon, A.R.; Yun, C.O. Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy. Sci. Rep., 2020, 10(1), 425.
[http://dx.doi.org/10.1038/s41598-019-57240-x] [PMID: 31949228]
[111]
Ouyang, X.; Liu, Y.; Zhou, Y.; Guo, J.; Wei, T.T.; Liu, C.; Lee, B.; Chen, B.; Zhang, A.; Casey, K.M.; Wang, L.; Kooreman, N.G.; Habtezion, A.; Engleman, E.G.; Wu, J.C. Antitumor effects of iPSC-based cancer vaccine in pancreatic cancer. Stem Cell Reports, 2021, 16(6), 1468-1477.
[http://dx.doi.org/10.1016/j.stemcr.2021.04.004] [PMID: 33961792]
[112]
Wang, L.; Pegram, M.D.; Wu, J.C. Induced pluripotent stem cells as a novel cancer vaccine. Expert Opin. Biol. Ther., 2019, 19(11), 1191-1197.
[http://dx.doi.org/10.1080/14712598.2019.1650909] [PMID: 31364894]
[113]
Kooreman, N.G.; Kim, Y.; de Almeida, P.E.; Termglinchan, V.; Diecke, S.; Shao, N.Y.; Wei, T.T.; Yi, H.; Dey, D.; Nelakanti, R.; Brouwer, T.P.; Paik, D.T.; Sagiv-Barfi, I.; Han, A.; Quax, P.H.A.; Hamming, J.F.; Levy, R.; Davis, M.M.; Wu, J.C. Autologous iPSC-based vaccines elicit anti-tumor responses in vivo. Cell Stem Cell, 2018, 22(4), 501-513.e7.
[http://dx.doi.org/10.1016/j.stem.2018.01.016] [PMID: 29456158]
[114]
Tian, X.; Shen, H.; Li, Z.; Wang, T.; Wang, S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J. Hematol. Oncol., 2019, 12(1), 84.
[http://dx.doi.org/10.1186/s13045-019-0772-z] [PMID: 31438991]
[115]
Wang, Y.; Lu, J.; Chen, L.; Bian, H.; Hu, J.; Li, D.; Xia, C.; Xu, H. Tumor-derived EV-Encapsulated miR-181b-5p induces angiogenesis to foster tumorigenesis and metastasis of ESCC. Mol. Ther. Nucleic Acids, 2020, 20, 421-437.
[http://dx.doi.org/10.1016/j.omtn.2020.03.002] [PMID: 32244169]
[116]
Montecalvo, A.; Shufesky, W.J.; Stolz, D.B.; Sullivan, M.G.; Wang, Z.; Divito, S.J.; Papworth, G.D.; Watkins, S.C.; Robbins, P.D.; Larregina, A.T.; Morelli, A.E. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J. Immunol., 2008, 180(5), 3081-3090.
[http://dx.doi.org/10.4049/jimmunol.180.5.3081]
[117]
Zitvogel, L.; Regnault, A.; Lozier, A.; Wolfers, J.; Flament, C.; Tenza, D.; Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell derived exosomes. Nat. Med., 1998, 4(5), 594-600.
[http://dx.doi.org/10.1038/nm0598-594] [PMID: 9585234]
[118]
Jung, M.; Kang, M.; Kim, B.S.; Hong, J.; Kim, C.; Koh, C.H.; Choi, G.; Chung, Y.; Kim, B.S. Nanovesicle‐mediated targeted delivery of immune checkpoint blockades to potentiate therapeutic efficacy and prevent side effects. Adv. Mater., 2022, 34(9), 2106516.
[http://dx.doi.org/10.1002/adma.202106516] [PMID: 34962660]
[119]
Besse, B.; Charrier, M.; Lapierre, V.; Dansin, E.; Lantz, O.; Planchard, D.; Le Chevalier, T.; Livartoski, A.; Barlesi, F.; Laplanche, A.; Ploix, S.; Vimond, N.; Peguillet, I.; Théry, C.; Lacroix, L.; Zoernig, I.; Dhodapkar, K.; Dhodapkar, M.; Viaud, S.; Soria, J.C.; Reiners, K.S.; Pogge von Strandmann, E.; Vély, F.; Rusakiewicz, S.; Eggermont, A.; Pitt, J.M.; Zitvogel, L.; Chaput, N. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. OncoImmunology, 2016, 5(4), e1071008.
[http://dx.doi.org/10.1080/2162402X.2015.1071008] [PMID: 27141373]
[120]
Pitt, J.M.; André, F.; Amigorena, S.; Soria, J.C.; Eggermont, A.; Kroemer, G.; Zitvogel, L. Dendritic cell–derived exosomes for cancer therapy. J. Clin. Invest., 2016, 126(4), 1224-1232.
[http://dx.doi.org/10.1172/JCI81137] [PMID: 27035813]
[121]
Hong, J. Kang, M.; Jung, M.; Lee, Y.Y.; Cho, Y.; Kim, C.; Song, S.Y.; Park, C.G.; Doh, J.; Kim, B.S. T‐Cell‐Derived nanovesicles for cancer immunotherapy. Adv. Mater., 2021, 33(33), 2101110.
[http://dx.doi.org/10.1002/adma.202101110] [PMID: 34235790]
[122]
Schmidts, A.; Maus, M.V. Making CAR T cells a solid option for solid tumors. Front. Immunol., 2018, 9, 2593.
[http://dx.doi.org/10.3389/fimmu.2018.02593] [PMID: 30467505]
[123]
Chen, K.; Wang, S.; Qi, D.; Ma, P.; Fang, Y.; Jiang, N.; Wu, E.; Li, N. Clinical investigations of CAR-T cell therapy for solid tumors. Front. Immunol., 2022, 13, 896685.
[http://dx.doi.org/10.3389/fimmu.2022.896685] [PMID: 35924243]
[124]
Federici, C.; Shahaj, E.; Cecchetti, S.; Camerini, S.; Casella, M.; Iessi, E.; Camisaschi, C.; Paolino, G.; Calvieri, S.; Ferro, S.; Cova, A.; Squarcina, P.; Bertuccini, L.; Iosi, F.; Huber, V.; Lugini, L. Natural-Killer-Derived extracellular vesicles: Immune sensors and interactors. Front. Immunol., 2020, 11, 262.
[http://dx.doi.org/10.3389/fimmu.2020.00262] [PMID: 32231660]
[125]
Kang, Y.T.; Niu, Z.; Hadlock, T.; Purcell, E.; Lo, T.W.; Zeinali, M.; Owen, S.; Keshamouni, V.G.; Reddy, R.; Ramnath, N.; Nagrath, S. On‐Chip biogenesis of circulating NK cell‐derived exosomes in non‐small cell lung cancer exhibits antitumoral activity. Adv. Sci., 2021, 8(6), 2003747.
[http://dx.doi.org/10.1002/advs.202003747] [PMID: 33747745]
[126]
Choo, Y.W.; Kang, M.; Kim, H.Y.; Han, J.; Kang, S.; Lee, J.R.; Jeong, G.J.; Kwon, S.P.; Song, S.Y.; Go, S.; Jung, M.; Hong, J.; Kim, B.S. M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors. ACS Nano, 2018, 12(9), 8977-8993.
[http://dx.doi.org/10.1021/acsnano.8b02446] [PMID: 30133260]
[127]
Wang, Y.; Gong, X.; Li, J.; Wang, H.; Xu, X.; Wu, Y.; Wang, J.; Wang, S.; Li, Y.; Zhang, Z. M2 macrophage microvesicle-inspired nanovehicles improve accessibility to cancer cells and cancer stem cells in tumors. J. Nanobiotechnology, 2021, 19(1), 397.
[http://dx.doi.org/10.1186/s12951-021-01143-5] [PMID: 34838042]
[128]
Beveridge, T.J. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol., 1999, 181(16), 4725-4733.
[http://dx.doi.org/10.1128/JB.181.16.4725-4733.1999] [PMID: 10438737]
[129]
Lapinet, J.A.; Scapini, P.; Calzetti, F.; Pérez, O.; Cassatella, M.A. Gene expression and production of tumor necrosis factor alpha, interleukin-1beta (IL-1beta), IL-8, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and gamma interferon-inducible protein 10 by human neutrophils stimulated with group B meningococcal outer membrane vesicles. Infect. Immun., 2000, 68(12), 6917-6923.
[http://dx.doi.org/10.1128/IAI.68.12.6917-6923.2000] [PMID: 11083814]
[130]
Jäger, J.; Marwitz, S.; Tiefenau, J.; Rasch, J.; Shevchuk, O.; Kugler, C.; Goldmann, T.; Steinert, M. Human lung tissue explants reveal novel interactions during Legionella pneumophila infections. Infect. Immun., 2014, 82(1), 275-285.
[http://dx.doi.org/10.1128/IAI.00703-13] [PMID: 24166955]
[131]
Alaniz, R.C.; Deatherage, B.L.; Lara, J.C.; Cookson, B.T. Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J. Immunol., 2007, 179(11), 7692-7701.
[http://dx.doi.org/10.4049/jimmunol.179.11.7692]
[132]
Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine adjuvants: Putting innate immunity to work. Immunity, 2010, 33(4), 492-503.
[http://dx.doi.org/10.1016/j.immuni.2010.10.002] [PMID: 21029960]
[133]
Wang, S.; Gao, J.; Wang, Z. Outer membrane vesicles for vaccination and targeted drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(2), e1523.
[http://dx.doi.org/10.1002/wnan.1523] [PMID: 29701017]
[134]
Pan, J.; Li, X.; Shao, B.; Xu, F.; Huang, X.; Guo, X.; Zhou, S. Self‐blockade of PD‐L1 with bacteria‐derived outer‐membrane vesicle for enhanced cancer immunotherapy. Adv. Mater., 2022, 34(7), 2106307.
[http://dx.doi.org/10.1002/adma.202106307] [PMID: 34859919]
[135]
Wang, S.; Gao, J.; Li, M.; Wang, L.; Wang, Z. A facile approach for development of a vaccine made of bacterial double-layered membrane vesicles (DMVs). Biomaterials, 2018, 187, 28-38.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.042] [PMID: 30292939]
[136]
Schwechheimer, C.; Kuehn, M.J. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol., 2015, 13(10), 605-619.
[http://dx.doi.org/10.1038/nrmicro3525] [PMID: 26373371]
[137]
Peng, L.H.; Wang, M.Z.; Chu, Y.; Zhang, L.; Niu, J.; Shao, H.T.; Yuan, T.J.; Jiang, Z.H.; Gao, J.Q.; Ning, X.H. Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL–programmed therapy against melanoma. Sci. Adv., 2020, 6(27), eaba2735.
[http://dx.doi.org/10.1126/sciadv.aba2735] [PMID: 32923586]
[138]
Cheng, K.; Zhao, R.; Li, Y.; Qi, Y.; Wang, Y.; Zhang, Y.; Qin, H.; Qin, Y.; Chen, L.; Li, C.; Liang, J.; Li, Y.; Xu, J.; Han, X.; Anderson, G.J.; Shi, J.; Ren, L.; Zhao, X.; Nie, G. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat. Commun., 2021, 12(1), 2041.
[http://dx.doi.org/10.1038/s41467-021-22308-8] [PMID: 33824314]
[139]
Huang, Y.; Nieh, M.P.; Chen, W.; Lei, Y. Outer membrane vesicles (OMVs) enabled bio‐applications: A critical review. Biotechnol. Bioeng., 2022, 119(1), 34-47.
[http://dx.doi.org/10.1002/bit.27965] [PMID: 34698385]
[140]
Zou, M.Z.; Li, Z.H.; Bai, X.F.; Liu, C.J.; Zhang, X.Z. Hybrid vesicles based on autologous tumor cell membrane and bacterial outer membrane to enhance innate immune response and personalized tumor immunotherapy. Nano Lett., 2021, 21(20), 8609-8618.
[http://dx.doi.org/10.1021/acs.nanolett.1c02482] [PMID: 34661419]
[141]
Zhao, P.; Xu, Y.; Ji, W.; Li, L.; Qiu, L.; Zhou, S.; Qian, Z.; Zhang, H. Hybrid membrane nanovaccines combined with immune checkpoint blockade to enhance cancer immunotherapy. Int. J. Nanomed., 2022, 17, 73-89.
[http://dx.doi.org/10.2147/IJN.S346044] [PMID: 35027827]
[142]
Majeti, R.; Chao, M.P.; Alizadeh, A.A.; Pang, W.W.; Jaiswal, S.; Gibbs, K.D.; van Rooijen, N.; Weissman, I.L. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell, 2009, 138(2), 286-299.
[http://dx.doi.org/10.1016/j.cell.2009.05.045] [PMID: 19632179]
[143]
Jaiswal, S.; Jamieson, C.H.M.; Pang, W.W.; Park, C.Y.; Chao, M.P.; Majeti, R.; Traver, D.; van Rooijen, N.; Weissman, I.L. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell, 2009, 138(2), 271-285.
[http://dx.doi.org/10.1016/j.cell.2009.05.046] [PMID: 19632178]
[144]
Chen, L.; Han, X. Anti–PD-1/PD-L1 therapy of human cancer: Past, present, and future. J. Clin. Invest., 2015, 125(9), 3384-3391.
[http://dx.doi.org/10.1172/JCI80011] [PMID: 26325035]
[145]
Meng, Q.F.; Zhao, Y.; Dong, C.; Liu, L.; Pan, Y.; Lai, J.; Liu, Z.; Yu, G.T.; Chen, X.; Rao, L. Genetically programmable fusion cellular vesicles for cancer immunotherapy. Angew. Chem. Int. Ed., 2021, 60(50), 26320-26326.
[http://dx.doi.org/10.1002/anie.202108342] [PMID: 34661332]
[146]
Van Deun, J.; Mestdagh, P.; Agostinis, P.; Akay, Ö.; Anand, S.; Anckaert, J.; Martinez, Z.A.; Baetens, T.; Beghein, E.; Bertier, L.; Berx, G.; Boere, J.; Boukouris, S.; Bremer, M.; Buschmann, D.; Byrd, J.B.; Casert, C.; Cheng, L.; Cmoch, A.; Daveloose, D.; De Smedt, E.; Demirsoy, S.; Depoorter, V.; Dhondt, B.; Driedonks, T.A.P.; Dudek, A.; Elsharawy, A.; Floris, I.; Foers, A.D.; Gärtner, K.; Garg, A.D.; Geeurickx, E.; Gettemans, J.; Ghazavi, F.; Giebel, B.; Kormelink, T.G.; Hancock, G.; Helsmoortel, H.; Hill, A.F.; Hyenne, V.; Kalra, H.; Kim, D.; Kowal, J.; Kraemer, S.; Leidinger, P.; Leonelli, C.; Liang, Y.; Lippens, L.; Liu, S.; Lo Cicero, A.; Martin, S.; Mathivanan, S.; Mathiyalagan, P.; Matusek, T.; Milani, G.; Monguió-Tortajada, M.; Mus, L.M.; Muth, D.C.; Németh, A.; Nolte-’t Hoen, E.N.M.; O’Driscoll, L.; Palmulli, R.; Pfaffl, M.W.; Primdal-Bengtson, B.; Romano, E.; Rousseau, Q.; Sahoo, S.; Sampaio, N.; Samuel, M.; Scicluna, B.; Soen, B.; Steels, A.; Swinnen, J.V.; Takatalo, M.; Thaminy, S.; Théry, C.; Tulkens, J.; Van Audenhove, I.; van der Grein, S.; Van Goethem, A.; van Herwijnen, M.J.; Van Niel, G.; Van Roy, N.; Van Vliet, A.R.; Vandamme, N.; Vanhauwaert, S.; Vergauwen, G.; Verweij, F.; Wallaert, A.; Wauben, M.; Witwer, K.W.; Zonneveld, M.I.; De Wever, O.; Vandesompele, J.; Hendrix, A. EV-TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods, 2017, 14(3), 228-232.
[http://dx.doi.org/10.1038/nmeth.4185] [PMID: 28245209]
[147]
Russell, A.E.; Sneider, A.; Witwer, K.W.; Bergese, P.; Bhattacharyya, S.N.; Cocks, A.; Cocucci, E.; Erdbrügger, U.; Falcon-Perez, J.M.; Freeman, D.W.; Gallagher, T.M.; Hu, S.; Huang, Y.; Jay, S.M.; Kano, S.; Lavieu, G.; Leszczynska, A.; Llorente, A.M.; Lu, Q.; Mahairaki, V.; Muth, D.C.; Hooten, N.N.; Ostrowski, M.; Prada, I.; Sahoo, S.; Schøyen, T.H.; Sheng, L.; Tesch, D.; Van Niel, G.; Vandenbroucke, R.E.; Verweij, F.J.; Villar, A.V.; Wauben, M.; Wehman, A.M.; Yin, H.; Carter, D.R.F.; Vader, P. Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: An ISEV position paper arising from the ISEV membranes and EVs workshop. J. Extracell. Vesicles, 2019, 8(1), 1684862.
[http://dx.doi.org/10.1080/20013078.2019.1684862] [PMID: 31762963]
[148]
Tan, K.; Li, R.; Huang, X.; Liu, Q. Outer membrane vesicles: Current status and future direction of these novel vaccine adjuvants. Front. Microbiol., 2018, 9, 783.
[http://dx.doi.org/10.3389/fmicb.2018.00783] [PMID: 29755431]
[149]
Jiang, X.C.; Zhang, T.; Gao, J.Q. The in vivo fate and targeting engineering of crossover vesicle-based gene delivery system. Adv. Drug Deliv. Rev., 2022, 187, 114324.
[http://dx.doi.org/10.1016/j.addr.2022.114324] [PMID: 35640803]
[150]
Liu, C.; Wang, Y.; Li, L.; He, D.; Chi, J.; Li, Q.; Wu, Y.; Zhao, Y.; Zhang, S.; Wang, L.; Fan, Z.; Liao, Y. Engineered extracellular vesicles and their mimetics for cancer immunotherapy. J. Control. Release, 2022, 349, 679-698.
[http://dx.doi.org/10.1016/j.jconrel.2022.05.062] [PMID: 35878728]
[151]
Ochyl, L.J.; Bazzill, J.D.; Park, C.; Xu, Y.; Kuai, R.; Moon, J.J. PEGylated tumor cell membrane vesicles as a new vaccine platform for cancer immunotherapy. Biomaterials, 2018, 182, 157-166.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.016] [PMID: 30121425]
[152]
Tan, Y.N.; Huang, J.D.; Li, Y.P.; Li, S.S.; Luo, M.; Luo, J.; Lee, A.W.M.; Fu, L.; Hu, F.Q.; Guan, X.Y. Near‐infrared responsive membrane nanovesicles amplify homologous targeting delivery of Anti‐PD immunotherapy against metastatic tumors. Adv. Healthc. Mater., 2022, 11(6), 2101496.
[http://dx.doi.org/10.1002/adhm.202101496] [PMID: 34878725]
[153]
Bao, P.; Zheng, Z.T.; Ye, J.J.; Zhang, X.Z. Apoptotic body-mediated intracellular delivery strategy for enhanced STING activation and improved tumor immunogenicity. Nano Lett., 2022, 22(6), 2217-2227.
[http://dx.doi.org/10.1021/acs.nanolett.1c03996] [PMID: 35254071]
[154]
Osterman, C.J.D.; Lynch, J.C.; Leaf, P.; Gonda, A.; Ferguson Bennit, H.R.; Griffiths, D.; Wall, N.R. Curcumin modulates pancreatic adenocarcinoma cell-derived exosomal function. PLoS One, 2015, 10(7), e0132845.
[http://dx.doi.org/10.1371/journal.pone.0132845] [PMID: 26177391]
[155]
Zhou, Q.; Ding, W.; Qian, Z.; Zhu, Q.; Sun, C.; Yu, Q.; Tai, Z.; Xu, K. Immunotherapy strategy targeting programmed cell death ligand 1 and CD73 with macrophage-derived mimetic nanovesicles to treat bladder cancer. Mol. Pharm., 2021, 18(11), 4015-4028.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00448] [PMID: 34648293]
[156]
Zhang, X.; Zhang, H.; Gu, J.; Zhang, J.; Shi, H.; Qian, H.; Wang, D.; Xu, W.; Pan, J.; Santos, H.A. Engineered extracellular vesicles for cancer therapy. Adv. Mater., 2021, 33(14), 2005709.
[http://dx.doi.org/10.1002/adma.202005709] [PMID: 33644908]
[157]
Hua, L.; Yang, Z.; Li, W.; Zhang, Q.; Ren, Z.; Ye, C.; Zheng, X.; Li, D.; Long, Q.; Bai, H.; Sun, W.; Yang, X.; Zheng, P.; He, J.; Chen, Y.; Huang, W.; Ma, Y. A novel immunomodulator delivery platform based on bacterial biomimetic vesicles for enhanced antitumor immunity. Adv. Mater., 2021, 33(43), 2103923.
[http://dx.doi.org/10.1002/adma.202103923] [PMID: 34510598]
[158]
Park, K.S.; Svennerholm, K.; Crescitelli, R.; Lässer, C.; Gribonika, I.; Lötvall, J. Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy. J. Extracell. Vesicles, 2021, 10(9), e12120.
[http://dx.doi.org/10.1002/jev2.12120] [PMID: 34262675]
[159]
Li, Y.; Zhao, R.; Cheng, K.; Zhang, K.; Wang, Y.; Zhang, Y.; Li, Y.; Liu, G.; Xu, J.; Xu, J.; Anderson, G.J.; Shi, J.; Ren, L.; Zhao, X.; Nie, G. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition. ACS Nano, 2020, 14(12), 16698-16711.
[http://dx.doi.org/10.1021/acsnano.0c03776] [PMID: 33232124]
[160]
Huang, W.; Shu, C.; Hua, L.; Zhao, Y.; Xie, H.; Qi, J.; Gao, F.; Gao, R.; Chen, Y.; Zhang, Q.; Li, W.; Yuan, M.; Ye, C.; Ma, Y. Modified bacterial outer membrane vesicles induce autoantibodies for tumor therapy. Acta Biomater., 2020, 108, 300-312.
[http://dx.doi.org/10.1016/j.actbio.2020.03.030] [PMID: 32251780]
[161]
Li, Y.; Ma, X.; Yue, Y.; Zhang, K.; Cheng, K.; Feng, Q.; Ma, N.; Liang, J.; Zhang, T.; Zhang, L.; Chen, Z.; Wang, X.; Ren, L.; Zhao, X.; Nie, G. Rapid surface display of mrna antigens by bacteria‐derived outer membrane vesicles for a personalized tumor vaccine. Adv. Mater., 2022, 34(20), 2109984.
[http://dx.doi.org/10.1002/adma.202109984] [PMID: 35315546]
[162]
Li, L.; Miao, Q.; Meng, F.; Li, B.; Xue, T.; Fang, T.; Zhang, Z.; Zhang, J.; Ye, X.; Kang, Y.; Zhang, X.; Chen, Q.; Liang, X.; Chen, H.; Zhang, X. Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy. Theranostics, 2021, 11(12), 6033-6043.
[http://dx.doi.org/10.7150/thno.48868] [PMID: 33897897]
[163]
Chen, Q.; Huang, G.; Wu, W.; Wang, J.; Hu, J.; Mao, J.; Chu, P.K.; Bai, H.; Tang, G. A hybrid eukaryotic–prokaryotic nanoplatform with photothermal modality for enhanced antitumor vaccination. Adv. Mater., 2020, 32(16), 1908185.
[http://dx.doi.org/10.1002/adma.201908185] [PMID: 32108390]
[164]
Zhang, L.; Zhao, W.; Huang, J.; Li, F.; Sheng, J.; Song, H.; Chen, Y. Development of a dendritic cell/tumor cell fusion cell membrane nano-vaccine for the treatment of ovarian cancer. Front. Immunol., 2022, 13, 828263.
[http://dx.doi.org/10.3389/fimmu.2022.828263] [PMID: 35251013]