Alpha Rhythm Wavelength of Electroencephalography Signals as a Diagnostic Biomarker for Alzheimer’s Disease

Page: [11 - 28] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Objective: To explore changes in the alpha rhythm wavelength of background electroencephalography in Alzheimer’s disease patients with different degrees of dementia in a resting state; examine their correlation with the degree of cognitive impairment; determine whether the alpha rhythm wavelength can distinguish mild Alzheimer’s disease patients, moderately severe Alzheimer’s disease patients, and healthy controls at the individual level; and identify a cut-off value to differentiate Alzheimer’s disease patients from healthy controls.

Methods: Quantitative electroencephalography signals of 42 patients with mild Alzheimer’s disease, 42 patients with moderately severe Alzheimer’s disease, and 40 healthy controls during rest state with eyes closed were analyzed using wavelet transform. Electroencephalography signals were decomposed into different scales, and their segments were superimposed according to the same length (wavelength and amplitude) and phase alignment. Phase averaging was performed to obtain average phase waveforms of the desired scales of each lead. The alpha-band wavelengths corresponding to the ninth scale of the background rhythm of different leads were compared between groups.

Results: The average wavelength of the alpha rhythm phase of the whole-brain electroencephalography signals in Alzheimer’s disease patients was prolonged and positively correlated with the severity of cognitive dysfunction (P < 0.01). The ninth-scale phase average wavelength of each lead had high diagnostic efficacy for Alzheimer’s disease, and the diagnostic efficacy of lead P3 (area under the receiver operating characteristic curve = 0.873) was the highest.

Conclusion: The average wavelength of the electroencephalography alpha rhythm phase may be used as a quantitative feature for the diagnosis of Alzheimer’s disease, and the slowing of the alpha rhythm may be an important neuro-electrophysiological index for disease evaluation.

[1]
Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Primers 2021; 7(1): 33.
[http://dx.doi.org/10.1038/s41572-021-00269-y] [PMID: 33986301]
[2]
Miao Y, Jurica P, Struzik ZR, et al. Dynamic theta/beta ratio of clinical EEG in Alzheimer’s disease. J Neurosci Methods 2021; 359: 109219.
[http://dx.doi.org/10.1016/j.jneumeth.2021.109219] [PMID: 34029602]
[3]
Tülay EE, Güntekin B, Yener G, Bayram A, Başar-Eroğlu C, Demiralp T. Evoked and induced EEG oscillations to visual targets reveal a differential pattern of change along the spectrum of cognitive decline in Alzheimer’s Disease. Int J Psychophysiol 2020; 155: 41-8.
[http://dx.doi.org/10.1016/j.ijpsycho.2020.06.001] [PMID: 32522511]
[4]
Farina FR, Emek-Savaş DD, Rueda-Delgado L, et al. A comparison of resting state EEG and structural MRI for classifying Alzheimer’s disease and mild cognitive impairment. Neuroimage 2020; 215: 116795.
[http://dx.doi.org/10.1016/j.neuroimage.2020.116795] [PMID: 32278090]
[5]
Cassani R, Falk TH, Fraga FJ, Cecchi M, Moore DK, Anghinah R. Towards automated electroencephalography-based Alzheimer’s disease diagnosis using portable low-density devices. Biomed Signal Process Control 2017; 33: 261-71.
[http://dx.doi.org/10.1016/j.bspc.2016.12.009]
[6]
Özbek Y, Fide E, Yener GG. Resting-state EEG alpha/theta power ratio discriminates early-onset Alzheimer’s disease from healthy controls. Clin Neurophysiol 2021; 132(9): 2019-31.
[http://dx.doi.org/10.1016/j.clinph.2021.05.012] [PMID: 34284236]
[7]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[8]
Stomrud E, Hansson O, Minthon L, Blennow K, Rosén I, Londos E. Slowing of EEG correlates with CSF biomarkers and reduced cognitive speed in elderly with normal cognition over 4 years. Neurobiol Aging 2010; 31(2): 215-23.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.03.025] [PMID: 18462837]
[9]
Leuzy A, Smith R, Cullen NC, et al. Biomarker-based prediction of longitudinal tau positron emission tomography in alzheimer disease. JAMA Neurol 2022; 79(2): 149-58.
[http://dx.doi.org/10.1001/jamaneurol.2021.4654] [PMID: 34928318]
[10]
Schierle GSK, Michel CH, Gasparini L. Advanced imaging of tau pathology in Alzheimer Disease: New perspectives from super resolution microscopy and label-free nanoscopy. Microsc Res Tech 2016; 79(8): 677-83.
[http://dx.doi.org/10.1002/jemt.22698] [PMID: 27324149]
[11]
Mantzavinos V, Alexiou A. Biomarkers for alzheimer’s disease diagnosis. Curr Alzheimer Res 2017; 14(11): 1149-54.
[PMID: 28164766]
[12]
Manyevitch R, Protas M, Scarpiello S, et al. Evaluation of metabolic and synaptic dysfunction hypotheses of alzheimer’s disease (ad): A meta-analysis of csf markers. Curr Alzheimer Res 2018; 15(2): 164-81.
[http://dx.doi.org/10.2174/1567205014666170921122458] [PMID: 28933272]
[13]
Schindler SE, Bollinger JG, Ovod V, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 2019; 93(17): e1647-59.
[http://dx.doi.org/10.1212/WNL.0000000000008081] [PMID: 31371569]
[14]
Gao F, Lv X, Dai L, et al. A combination model of AD biomarkers revealed by machine learning precisely predicts Alzheimer’s dementia: China Aging and Neurodegenerative Initiative (CANDI) study. Alzheimers Dement 2022; alz.12700.
[http://dx.doi.org/10.1002/alz.12700] [PMID: 35668045]
[15]
Giuliano Zippo A, Castiglioni I. Integration of (18)fdg-pet metabolic and functional connectomes in the early diagnosis and prognosis of the alzheimer’s disease. Curr Alzheimer Res 2016; 13(5): 487-97.
[http://dx.doi.org/10.2174/1567205013666151116142451] [PMID: 26567731]
[16]
Lee JH, Yang DS, Goulbourne CN, et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nat Neurosci 2022; 25(6): 688-701.
[http://dx.doi.org/10.1038/s41593-022-01084-8] [PMID: 35654956]
[17]
Babiloni C, Triggiani AI, Lizio R, et al. Classification of single normal and alzheimer’s disease individuals from cortical sources of resting state eeg rhythms. Front Neurosci 2016; 10: 47.
[http://dx.doi.org/10.3389/fnins.2016.00047] [PMID: 26941594]
[18]
van der Hiele K, Vein AA, van der Welle A, et al. EEG and MRI correlates of mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 2007; 28(9): 1322-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.06.006] [PMID: 16854500]
[19]
Briels CT, Stam CJ, Scheltens P, Bruins S, Lues I, Gouw AA. In pursuit of a sensitive EEG functional connectivity outcome measure for clinical trials in Alzheimer’s disease. Clin Neurophysiol 2020; 131(1): 88-95.
[http://dx.doi.org/10.1016/j.clinph.2019.09.014] [PMID: 31759193]
[20]
Dauwels J, Vialatte F, Cichocki A. Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Curr Alzheimer Res 2010; 7(6): 487-505.
[http://dx.doi.org/10.2174/156720510792231720] [PMID: 20455865]
[21]
Czigler B, Csikós D, Hidasi Z, et al. Quantitative EEG in early Alzheimer’s disease patients — Power spectrum and complexity features. Int J Psychophysiol 2008; 68(1): 75-80.
[http://dx.doi.org/10.1016/j.ijpsycho.2007.11.002] [PMID: 18093675]
[22]
Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 2004; 115(7): 1490-505.
[http://dx.doi.org/10.1016/j.clinph.2004.01.001] [PMID: 15203050]
[23]
Smailovic U, Jelic V. Neurophysiological markers of alzheimer’s disease: quantitative eeg approach. Neurol Ther 2019; 8(S2) (Suppl. 2): 37-55.
[http://dx.doi.org/10.1007/s40120-019-00169-0] [PMID: 31833023]
[24]
Babiloni C, Lizio R, Marzano N, et al. Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int J Psychophysiol 2016; 103: 88-102.
[http://dx.doi.org/10.1016/j.ijpsycho.2015.02.008] [PMID: 25660305]
[25]
Amezquita-Sanchez JP, Mammone N, Morabito FC, Marino S, Adeli H. A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J Neurosci Methods 2019; 322: 88-95.
[http://dx.doi.org/10.1016/j.jneumeth.2019.04.013] [PMID: 31055026]
[26]
McBride JC, Zhao X, Munro NB, et al. Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease. Comput Methods Programs Biomed 2014; 114(2): 153-63.
[http://dx.doi.org/10.1016/j.cmpb.2014.01.019] [PMID: 24598317]
[27]
Şeker M, Özbek Y, Yener G, Özerdem MS. Complexity of eeg dynamics for early diagnosis of alzheimer’s disease using permutation entropy neuromarker. Comput Methods Programs Biomed 2021; 206: 106116.
[http://dx.doi.org/10.1016/j.cmpb.2021.106116] [PMID: 33957376]
[28]
Tylová L, Kukal J, Hubata-Vacek V, Vyšata O. Unbiased estimation of permutation entropy in EEG analysis for Alzheimer’s disease classification. Biomed Signal Process Control 2018; 39: 424-30.
[http://dx.doi.org/10.1016/j.bspc.2017.08.012]
[29]
Yan Y, Zhao A, Ying W, et al. Functional connectivity alterations based on the weighted phase lag index: An exploratory electroencephalography study on alzheimer’s disease. Curr Alzheimer Res 2021; 18(6): 513-22.
[http://dx.doi.org/10.2174/1567205018666211001110824] [PMID: 34598666]
[30]
Hatz F, Hardmeier M, Benz N, et al. Microstate connectivity alterations in patients with early Alzheimer’s disease. Alzheimers Res Ther 2015; 7(1): 78.
[http://dx.doi.org/10.1186/s13195-015-0163-9] [PMID: 26718102]
[31]
Jeong J, Gore JC, Peterson BS. Mutual information analysis of the EEG in patients with Alzheimer’s disease. Clin Neurophysiol 2001; 112(5): 827-35.
[http://dx.doi.org/10.1016/S1388-2457(01)00513-2] [PMID: 11336898]
[32]
Smailovic U, Koenig T, Laukka EJ, et al. EEG time signature in Alzheimer’s disease: Functional brain networks falling apart. Neuroimage Clin 2019; 24: 102046.
[http://dx.doi.org/10.1016/j.nicl.2019.102046] [PMID: 31795039]
[33]
Leuchter AF, Spar JE, Walter DO, Weiner H. Electroencephalographic spectra and coherence in the diagnosis of Alzheimer’s-type and multi-infarct dementia. A pilot study. Arch Gen Psychiatry 1987; 44(11): 993-8.
[http://dx.doi.org/10.1001/archpsyc.1987.01800230073012] [PMID: 3314770]
[34]
Sandmann MC, Piana ER, Sousa DS, De Bittencourt PR. [Digital EEG with brain mapping in Alzheimer’s dementia and Parkinson’s disease. A prospective controlled study]. Arq Neuropsiquiatr 1996; 54(1): 50-6.
[http://dx.doi.org/10.1590/S0004-282X1996000100009] [PMID: 8736145]
[35]
Babiloni C, Del Percio C, Boccardi M, et al. Occipital sources of resting-state alpha rhythms are related to local gray matter density in subjects with amnesic mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 2015; 36(2): 556-70.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.09.011] [PMID: 25442118]
[36]
Babiloni C, Binetti G, Cassetta E, et al. Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: A multicenter study. Clin Neurophysiol 2006; 117(2): 252-68.
[http://dx.doi.org/10.1016/j.clinph.2005.09.019] [PMID: 16377238]
[37]
van der Hiele K, Vein AA, Reijntjes RHAM, et al. EEG correlates in the spectrum of cognitive decline. Clin Neurophysiol 2007; 118(9): 1931-9.
[http://dx.doi.org/10.1016/j.clinph.2007.05.070] [PMID: 17604688]
[38]
Babiloni C, Frisoni G, Pievani M, et al. Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage 2009; 44(1): 123-35.
[http://dx.doi.org/10.1016/j.neuroimage.2008.08.005] [PMID: 18805495]
[39]
Bennys K, Rondouin G, Vergnes C, Touchon J. Diagnostic value of quantitative EEG in Alzheimer’s disease. Neurophysiol Clin 2001; 31(3): 153-60.
[http://dx.doi.org/10.1016/S0987-7053(01)00254-4] [PMID: 11488226]
[40]
Ponomareva NV, Selesneva ND, Jarikov GA. EEG alterations in subjects at high familial risk for Alzheimer’s disease. Neuropsychobiology 2003; 48(3): 152-9.
[http://dx.doi.org/10.1159/000073633] [PMID: 14586166]
[41]
Benwell CSY, Davila-Pérez P, Fried PJ, et al. EEG spectral power abnormalities and their relationship with cognitive dysfunction in patients with Alzheimer’s disease and type 2 diabetes. Neurobiol Aging 2020; 85: 83-95.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.10.004] [PMID: 31727363]
[42]
Moretti D, Paternicò D, Binetti G, Zanetti O, Frisoni G. EEG upper/low alpha frequency power ratio and the impulsive disorders network in subjects with mild cognitive impairment. Curr Alzheimer Res 2014; 11(2): 192-9.
[http://dx.doi.org/10.2174/156720501102140313155546] [PMID: 24661147]
[43]
Polverino P, Ajčević M, Catalan M, Mazzon G, Bertolotti C, Manganotti P. Brain oscillatory patterns in mild cognitive impairment due to Alzheimer’s and Parkinson’s disease: An exploratory high-density EEG study. Clin Neurophysiol 2022; 138: 1-8.
[http://dx.doi.org/10.1016/j.clinph.2022.01.136] [PMID: 35349920]
[44]
Koenig T, Prichep L, Dierks T, et al. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2005; 26(2): 165-71.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.03.008] [PMID: 15582746]
[45]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[46]
Zhang J, Zhang M, Jiang N. Phase average waveform and phase difference analysis of different leads for alzheimer’s disease electroencephalograph signals. J Med Imag Health 2018; 8: 1358-63.
[47]
Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res Brain Res Rev 1999; 29(2-3): 169-95.
[http://dx.doi.org/10.1016/S0165-0173(98)00056-3] [PMID: 10209231]
[48]
Babiloni C, Ferri R, Noce G, et al. Resting-state electroencephalographic delta rhythms may reflect global cortical arousal in healthy old seniors and patients with Alzheimer’s disease dementia. Int J Psychophysiol 2020; 158: 259-70.
[http://dx.doi.org/10.1016/j.ijpsycho.2020.08.012] [PMID: 33080295]
[49]
Blinowska KJ, Rakowski F, Kaminski M, et al. Functional and effective brain connectivity for discrimination between Alzheimer’s patients and healthy individuals: A study on resting state EEG rhythms. Clin Neurophysiol 2017; 128(4): 667-80.
[http://dx.doi.org/10.1016/j.clinph.2016.10.002] [PMID: 27836429]
[50]
Babiloni C, Blinowska K, Bonanni L, et al. What electrophysiology tells us about Alzheimer’s disease: A window into the synchronization and connectivity of brain neurons. Neurobiol Aging 2020; 85: 58-73.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.09.008] [PMID: 31739167]
[51]
Cicalese PA, Li R, Ahmadi MB, et al. An EEG-fNIRS hybridization technique in the four-class classification of alzheimer’s disease. J Neurosci Methods 2020; 336: 108618.
[http://dx.doi.org/10.1016/j.jneumeth.2020.108618] [PMID: 32045572]
[52]
Staff RT, Murray AD, Ahearn T, et al. Brain volume and survival from age 78 to 85: The contribution of Alzheimer-type magnetic resonance imaging findings. J Am Geriatr Soc 2010; 58(4): 688-95.
[http://dx.doi.org/10.1111/j.1532-5415.2010.02765.x] [PMID: 20398148]