Oxidative Stress Biomarkers in Coronary Artery Disease

Page: [2158 - 2171] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Oxidative stress plays a central role in atherogenesis, implicated in endothelial dysfunction, coronary plaque formation, and destabilization. Therefore, identifying oxidative stress in the vascular wall by reliable biomarkers could aid in early diagnosis and better coronary artery disease (CAD) prognostication. Because of the short half-life of reactive oxygen species, the current approach is to measure stable products generated by the oxidation of macromolecules in plasma or urine. Most popular oxidative stress biomarkers are oxidized low-density lipoprotein, myeloperoxidase and lipid peroxidation biomarkers, such as malondialdehyde and F2-isoprostanes. Oxidative protein modification biomarkers and oxidized phospholipids have also been studied and discussed in the present review. Most of these biomarkers are associated with the presence and extent of CAD, are elevated in patients with acute coronary syndromes, and may predict outcomes independent of traditional CAD risk factors. However, further standardization of measurement methods and assessment in large randomized clinical trials are required to integrate these biomarkers into clinical practice. In addition, evidence that these biomarkers detect oxidative stress in the vascular wall lacks and more specific biomarkers should be developed to identify vascular oxidative stress. Consequently, several oxidative stress biomarkers have been developed, most of which can be associated with the presence and extent of CAD and event prognosis. However, they still have significant limitations that hinder their integration into clinical practice.

Graphical Abstract

[1]
E.K. Economou, E. Oikonomou, G. Siasos, N. Papageorgiou, S. Tsalamandris, K. Mourouzis, S. Papaioanou, and D. Tousoulis, "The role of microRNAs in coronary artery disease: From pathophysiology to diagnosis and treatment", Atherosclerosis, vol. 241, no. 2, pp. 624-633, 2015.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.06.037] [PMID: 26117399]
[2]
E.J. Benjamin, P. Muntner, A. Alonso, M.S. Bittencourt, C.W. Callaway, A.P. Carson, A.M. Chamberlain, A.R. Chang, S. Cheng, S.R. Das, F.N. Delling, L. Djousse, M.S.V. Elkind, J.F. Ferguson, M. Fornage, L.C. Jordan, S.S. Khan, B.M. Kissela, K.L. Knutson, T.W. Kwan, D.T. Lackland, T.T. Lewis, J.H. Lichtman, C.T. Longenecker, M.S. Loop, P.L. Lutsey, S.S. Martin, K. Matsushita, A.E. Moran, M.E. Mussolino, M. O’Flaherty, A. Pandey, A.M. Perak, W.D. Rosamond, G.A. Roth, U.K.A. Sampson, G.M. Satou, E.B. Schroeder, S.H. Shah, N.L. Spartano, A. Stokes, D.L. Tirschwell, C.W. Tsao, M.P. Turakhia, L.B. VanWagner, J.T. Wilkins, S.S. Wong, and S.S. Virani, "Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association", Circulation, vol. 139, no. 10, pp. e56-e528, 2019.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[3]
P. Libby, and P. Theroux, "Pathophysiology of coronary artery disease", Circulation, vol. 111, no. 25, pp. 3481-3488, 2005.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.537878] [PMID: 15983262]
[4]
A.K. Malakar, D. Choudhury, B. Halder, P. Paul, A. Uddin, and S. Chakraborty, "A review on coronary artery disease, its risk factors, and therapeutics", J. Cell. Physiol., vol. 234, no. 10, pp. 16812-16823, 2019.
[http://dx.doi.org/10.1002/jcp.28350] [PMID: 30790284]
[5]
D. Tousoulis, "Novel risk factors in coronary artery disease: Are they clinically relevant?", Hellenic J. Cardiol., vol. 60, no. 3, pp. 149-151, 2019.
[http://dx.doi.org/10.1016/j.hjc.2019.06.003] [PMID: 31520726]
[6]
A. van der Pol, W.H. van Gilst, A.A. Voors, and P. van der Meer, "Treating oxidative stress in heart failure: Past, present and future", Eur. J. Heart Fail., vol. 21, no. 4, pp. 425-435, 2019.
[http://dx.doi.org/10.1002/ejhf.1320] [PMID: 30338885]
[7]
U. Förstermann, N. Xia, and H. Li, "Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis", Circ. Res., vol. 120, no. 4, pp. 713-735, 2017.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309326] [PMID: 28209797]
[8]
T. Heitzer, T. Schlinzig, K. Krohn, T. Meinertz, and T. Münzel, "Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease", Circulation, vol. 104, no. 22, pp. 2673-2678, 2001.
[http://dx.doi.org/10.1161/hc4601.099485] [PMID: 11723017]
[9]
J. Frijhoff, P.G. Winyard, N. Zarkovic, S.S. Davies, R. Stocker, D. Cheng, A.R. Knight, E.L. Taylor, J. Oettrich, T. Ruskovska, A.C. Gasparovic, A. Cuadrado, D. Weber, H.E. Poulsen, T. Grune, H.H.H.W. Schmidt, and P. Ghezzi, "Clinical relevance of biomarkers of oxidative stress", Antioxid. Redox Signal., vol. 23, no. 14, pp. 1144-1170, 2015.
[http://dx.doi.org/10.1089/ars.2015.6317] [PMID: 26415143]
[10]
R.J. Mailloux, "An update on methods and approaches for interrogating mitochondrial reactive oxygen species production", Redox Biol., vol. 45, p. 102044, 2021.
[http://dx.doi.org/10.1016/j.redox.2021.102044] [PMID: 34157640]
[11]
I. Marrocco, F. Altieri, and I. Peluso, "Measurement and clinical significance of biomarkers of oxidative stress in humans", Oxid. Med. Cell. Longev., vol. 2017, pp. 1-32, 2017.
[http://dx.doi.org/10.1155/2017/6501046] [PMID: 28698768]
[12]
B. D’Autréaux, and M.B. Toledano, "ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis", Nat. Rev. Mol. Cell Biol., vol. 8, no. 10, pp. 813-824, 2007.
[http://dx.doi.org/10.1038/nrm2256] [PMID: 17848967]
[13]
K.K. Griendling, D. Sorescu, B. Lassègue, and M. Ushio-Fukai, "Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology", Arterioscler. Thromb. Vasc. Biol., vol. 20, no. 10, pp. 2175-2183, 2000.
[http://dx.doi.org/10.1161/01.ATV.20.10.2175] [PMID: 11031201]
[14]
A. Galanis, A. Pappa, A. Giannakakis, E. Lanitis, D. Dangaj, and R. Sandaltzopoulos, "Reactive oxygen species and HIF-1 signalling in cancer", Cancer Lett., vol. 266, no. 1, pp. 12-20, 2008.
[http://dx.doi.org/10.1016/j.canlet.2008.02.028] [PMID: 18378391]
[15]
A.J. Kattoor, N.V.K. Pothineni, D. Palagiri, and J.L. Mehta, "Oxidative Stress in Atherosclerosis", Curr. Atheroscler. Rep., vol. 19, no. 11, p. 42, 2017.
[http://dx.doi.org/10.1007/s11883-017-0678-6] [PMID: 28921056]
[16]
A Rimessi, M Previati, F Nigro, MR Wieckowski, and P Pinton, "Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies", Int. J. Biochem. Cell Biol., vol. 81, no. Pt B, p. 281-293, 2016.
[17]
K.K. Griendling, R.M. Touyz, J.L. Zweier, S. Dikalov, W. Chilian, Y.R. Chen, D.G. Harrison, and A. Bhatnagar, "Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System", Circ. Res., vol. 119, no. 5, pp. e39-e75, 2016.
[http://dx.doi.org/10.1161/RES.0000000000000110] [PMID: 27418630]
[18]
J.S. Beckman, and W.H. Koppenol, "Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly", Am. J. Physiol. Cell Physiol., vol. 271, no. 5, pp. C1424-C1437, 1996.
[http://dx.doi.org/10.1152/ajpcell.1996.271.5.C1424] [PMID: 8944624]
[19]
M.S. Wolin, M. Ahmad, and S.A. Gupte, "The sources of oxidative stress in the vessel wall", Kidney Int., vol. 67, no. 5, pp. 1659-1661, 2005.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00257.x] [PMID: 15840006]
[20]
A. Daiber, O. Hahad, I. Andreadou, S. Steven, S. Daub, and T. Münzel, "Redox-related biomarkers in human cardiovascular disease - classical footprints and beyond", Redox Biol., vol. 42, p. 101875, 2021.
[http://dx.doi.org/10.1016/j.redox.2021.101875] [PMID: 33541847]
[21]
P. Panda, H.K. Verma, S. Lakkakula, N. Merchant, F. Kadir, S. Rahman, M.S. Jeffree, B.V.K.S. Lakkakula, and P.V. Rao, "biomarkers of oxidative stress tethered to cardiovascular diseases", Oxid. Med. Cell. Longev., vol. 2022, pp. 1-15, 2022.
[http://dx.doi.org/10.1155/2022/9154295] [PMID: 35783193]
[22]
A. Shaito, K. Aramouni, R. Assaf, A. Parenti, A. Orekhov, A.E. Yazbi, G. Pintus, and A.H. Eid, "Oxidative stress-induced endothelial dysfunction in cardiovascular diseases", Front. Bioscience-Landmark, vol. 27, no. 3, p. 0105, 2022.
[http://dx.doi.org/10.31083/j.fbl2703105] [PMID: 35345337]
[23]
C.A. Stamerra, P. Di Giosia, P. Giorgini, C. Ferri, V.N. Sukhorukov, and A. Sahebkar, "Mitochondrial dysfunction and cardiovascular disease: Pathophysiology and emerging therapies", Oxid. Med. Cell. Longev., vol. 2022, pp. 1-16, 2022.
[http://dx.doi.org/10.1155/2022/9530007] [PMID: 35958017]
[24]
A. Badran, S.A. Nasser, J. Mesmar, A.F. El-Yazbi, A. Bitto, M.M. Fardoun, E. Baydoun, and A.H. Eid, "Reactive oxygen species: Modulators of phenotypic switch of vascular smooth muscle cells", Int. J. Mol. Sci., vol. 21, no. 22, p. 8764, 2020.
[http://dx.doi.org/10.3390/ijms21228764] [PMID: 33233489]
[25]
L. He, T. He, S. Farrar, L. Ji, T. Liu, and X. Ma, "Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen Species", Cell. Physiol. Biochem., vol. 44, no. 2, pp. 532-553, 2017.
[http://dx.doi.org/10.1159/000485089] [PMID: 29145191]
[26]
Z. Yan, and H.R. Spaulding, "Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise", Redox Biol., vol. 32, p. 101508, 2020.
[http://dx.doi.org/10.1016/j.redox.2020.101508] [PMID: 32220789]
[27]
A.E. Vendrov, M.D. Stevenson, S. Alahari, H. Pan, S.A. Wickline, N.R. Madamanchi, and M.S. Runge, "Attenuated superoxide dismutase 2 activity induces atherosclerotic plaque instability during aging in hyperlipidemic mice", J. Am. Heart Assoc., vol. 6, no. 11, p. e006775, 2017.
[http://dx.doi.org/10.1161/JAHA.117.006775] [PMID: 29079564]
[28]
D.L. Tribble, E.L. Gong, C. Leeuwenburgh, J.W. Heinecke, E.L. Carlson, J.G. Verstuyft, and C.J. Epstein, "Fatty streak formation in fat-fed mice expressing human copper-zinc superoxide dismutase", Arterioscler. Thromb. Vasc. Biol., vol. 17, no. 9, pp. 1734-1740, 1997.
[http://dx.doi.org/10.1161/01.ATV.17.9.1734] [PMID: 9327771]
[29]
H. Yang, L.J. Roberts, M.J. Shi, L.C. Zhou, B.R. Ballard, A. Richardson, and Z.M. Guo, "Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E", Circ. Res., vol. 95, no. 11, pp. 1075-1081, 2004.
[http://dx.doi.org/10.1161/01.RES.0000149564.49410.0d] [PMID: 15528470]
[30]
S.J. Lin, S.K. Shyue, M.C. Shih, T.H. Chu, Y.H. Chen, H.H. Ku, J.W. Chen, K.B. Tam, and Y.L. Chen, "Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: Role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors", Atherosclerosis, vol. 190, no. 1, pp. 124-134, 2007.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.02.044] [PMID: 16600249]
[31]
Y. Shokri, A. Variji, M. Nosrati, A. Khonakdar-Tarsi, A. Kianmehr, Z. Kashi, A. Bahar, A. Bagheri, and A. Mahrooz, "Importance of paraoxonase 1 (PON1) as an antioxidant and antiatherogenic enzyme in the cardiovascular complications of type 2 diabetes: Genotypic and phenotypic evaluation", Diabetes Res. Clin. Pract., vol. 161, p. 108067, 2020.
[http://dx.doi.org/10.1016/j.diabres.2020.108067] [PMID: 32044348]
[32]
I. Witte, U. Foerstermann, A. Devarajan, S.T. Reddy, and S. Horke, "Protectors or traitors: The roles of PON2 and PON3 in atherosclerosis and cancer", J. Lipids, vol. 2012, pp. 1-12, 2012.
[http://dx.doi.org/10.1155/2012/342806] [PMID: 22666600]
[33]
G. Fortunato, M.D. Di Taranto, U.M. Bracale, L. Del Guercio, F. Carbone, C. Mazzaccara, A. Morgante, F.P. D’Armiento, M. D’Armiento, M. Porcellini, L. Sacchetti, G. Bracale, and F. Salvatore, "Decreased paraoxonase-2 expression in human carotids during the progression of atherosclerosis", Arterioscler. Thromb. Vasc. Biol., vol. 28, no. 3, pp. 594-600, 2008.
[http://dx.doi.org/10.1161/ATVBAHA.107.154658] [PMID: 18258817]
[34]
T. Yoshida, N. Maulik, R.M. Engelman, Y.S. Ho, J.L. Magnenat, J.A. Rousou, J.E. Flack III, D. Deaton, and D.K. Das, "Glutathione peroxidase knockout mice are susceptible to myocardial ischemia reperfusion injury", Circulation, vol. 96, no. 9, p. II-216-II-220, 1997.
[PMID: 9386101]
[35]
P. Lewis, N. Stefanovic, J. Pete, A.C. Calkin, S. Giunti, V. Thallas-Bonke, K.A. Jandeleit-Dahm, T.J. Allen, I. Kola, M.E. Cooper, and J.B. de Haan, "Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice", Circulation, vol. 115, no. 16, pp. 2178-2187, 2007.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.664250] [PMID: 17420349]
[36]
S. Blankenberg, H.J. Rupprecht, C. Bickel, M. Torzewski, G. Hafner, L. Tiret, M. Smieja, F. Cambien, J. Meyer, and K.J. Lackner, "Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease", N. Engl. J. Med., vol. 349, no. 17, pp. 1605-1613, 2003.
[http://dx.doi.org/10.1056/NEJMoa030535] [PMID: 14573732]
[37]
Z. Guo, Q. Ran, L.J. Roberts II, L. Zhou, A. Richardson, C. Sharan, D. Wu, and H. Yang, "Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice", Free Radic. Biol. Med., vol. 44, no. 3, pp. 343-352, 2008.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.09.009] [PMID: 18215741]
[38]
C. Taillé, J. El-Benna, S. Lanone, M.C. Dang, E. Ogier-Denis, M. Aubier, and J. Boczkowski, "Induction of heme oxygenase-1 inhibits NAD(P)H oxidase activity by down-regulating cytochrome b558 expression via the reduction of heme availability", J. Biol. Chem., vol. 279, no. 27, pp. 28681-28688, 2004.
[http://dx.doi.org/10.1074/jbc.M310661200] [PMID: 15123630]
[39]
R. Motterlini, and R. Foresti, "Biological signaling by carbon monoxide and carbon monoxide-releasing molecules", Am. J. Physiol. Cell Physiol., vol. 312, no. 3, pp. C302-C313, 2017.
[http://dx.doi.org/10.1152/ajpcell.00360.2016] [PMID: 28077358]
[40]
L. Bellner, N.B. Lebovics, R. Rubinstein, Y.D. Buchen, E. Sinatra, G. Sinatra, N.G. Abraham, J.A. McClung, and E.A. Thompson, "Heme Oxygenase-1 Upregulation: A novel approach in the treatment of cardiovascular disease", Antioxid. Redox Signal., vol. 32, no. 14, pp. 1045-1060, 2020.
[http://dx.doi.org/10.1089/ars.2019.7970] [PMID: 31891663]
[41]
Y. Gramlich, A. Daiber, K. Buschmann, M. Oelze, C.F. Vahl, T. Münzel, and U. Hink, "Oxidative stress in cardiac tissue of patients undergoing coronary artery bypass graft surgery: The effects of overweight and obesity", Oxid. Med. Cell. Longev., vol. 2018, pp. 1-13, 2018.
[http://dx.doi.org/10.1155/2018/6598326] [PMID: 30647815]
[42]
N.G. Abraham, R. Rezzani, L. Rodella, A. Kruger, D. Taller, G. Li Volti, A.I. Goodman, and A. Kappas, "Overexpression of human heme oxygenase-1 attenuates endothelial cell sloughing in experimental diabetes", Am. J. Physiol. Heart Circ. Physiol., vol. 287, no. 6, pp. H2468-H2477, 2004.
[http://dx.doi.org/10.1152/ajpheart.01187.2003] [PMID: 15284058]
[43]
J. Altschmied, and J. Haendeler, "Thioredoxin-1 and endothelial cell aging: role in cardiovascular diseases", Antioxid. Redox Signal., vol. 11, no. 7, pp. 1733-1740, 2009.
[http://dx.doi.org/10.1089/ars.2008.2379] [PMID: 19187002]
[44]
J. Kirsch, H. Schneider, J.I. Pagel, M. Rehberg, M. Singer, J. Hellfritsch, O. Chillo, K.M. Schubert, J. Qiu, K. Pogoda, P. Kameritsch, B. Uhl, J. Pircher, E. Deindl, S. Müller, T. Kirchner, U. Pohl, M. Conrad, and H. Beck, "Endothelial dysfunction, and a prothrombotic, proinflammatory phenotype is caused by loss of mitochondrial thioredoxin reductase in endothelium", Arterioscler. Thromb. Vasc. Biol., vol. 36, no. 9, pp. 1891-1899, 2016.
[http://dx.doi.org/10.1161/ATVBAHA.116.307843] [PMID: 27386940]
[45]
H. Zhang, Y. Luo, W. Zhang, Y. He, S. Dai, R. Zhang, Y. Huang, P. Bernatchez, F.J. Giordano, G. Shadel, W.C. Sessa, and W. Min, "Endothelial-specific expression of mitochondrial thioredoxin improves endothelial cell function and reduces atherosclerotic lesions", Am. J. Pathol., vol. 170, no. 3, pp. 1108-1120, 2007.
[http://dx.doi.org/10.2353/ajpath.2007.060960] [PMID: 17322393]
[46]
H.J. Forman, H. Zhang, and A. Rinna, "Glutathione: Overview of its protective roles, measurement, and biosynthesis", Mol. Aspects Med., vol. 30, no. 1-2, pp. 1-12, 2009.
[http://dx.doi.org/10.1016/j.mam.2008.08.006] [PMID: 18796312]
[47]
B.N. Ames, R. Cathcart, E. Schwiers, and P. Hochstein, "Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis", Proc. Natl. Acad. Sci. USA, vol. 78, no. 11, pp. 6858-6862, 1981.
[http://dx.doi.org/10.1073/pnas.78.11.6858] [PMID: 6947260]
[48]
M.G. Traber, and J.F. Stevens, "Vitamins C and E: Beneficial effects from a mechanistic perspective", Free Radic. Biol. Med., vol. 51, no. 5, pp. 1000-1013, 2011.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.017] [PMID: 21664268]
[49]
A. Jayedi, A. Rashidy-Pour, M. Parohan, M.S. Zargar, and S. Shab-Bidar, "Dietary and circulating vitamin C, vitamin E, β-carotene and risk of total cardiovascular mortality: A systematic review and dose-response meta-analysis of prospective observational studies", Public Health Nutr., vol. 22, no. 10, pp. 1872-1887, 2019.
[http://dx.doi.org/10.1017/S1368980018003725] [PMID: 30630552]
[50]
D. Aune, N. Keum, E. Giovannucci, L.T. Fadnes, P. Boffetta, D.C. Greenwood, S. Tonstad, L.J. Vatten, E. Riboli, and T. Norat, "Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies", Am. J. Clin. Nutr., vol. 108, no. 5, pp. 1069-1091, 2018.
[http://dx.doi.org/10.1093/ajcn/nqy097] [PMID: 30475962]
[51]
A.W. Ashor, M. Siervo, J. Lara, C. Oggioni, S. Afshar, and J.C. Mathers, "Effect of vitamin C and vitamin E supplementation on endothelial function: A systematic review and meta-analysis of randomised controlled trials", Br. J. Nutr., vol. 113, no. 8, pp. 1182-1194, 2015.
[http://dx.doi.org/10.1017/S0007114515000227] [PMID: 25919436]
[52]
"Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial", Lancet, vol. 354, no. 9177, pp. 447-455, 1999.
[http://dx.doi.org/10.1016/S0140-6736(99)07072-5] [PMID: 10465168]
[53]
"Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy", Lancet, vol. 355, no. 9200, pp. 253-259, 2000.
[http://dx.doi.org/10.1016/S0140-6736(99)12323-7] [PMID: 10675071]
[54]
"MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20 536 high-risk individuals: A randomised placebo-controlled trial", Lancet, vol. 360, no. 9326, pp. 23-33, 2002.
[http://dx.doi.org/10.1016/S0140-6736(02)09328-5] [PMID: 12114037]
[55]
D. Tousoulis, C. Antoniades, C. Vassiliadou, M. Toutouza, C. Pitsavos, C. Tentolouris, A. Trikas, and C. Stefanadis, "Effects of combined administration of low dose atorvastatin and vitamin E on inflammatory markers and endothelial function in patients with heart failure", Eur. J. Heart Fail., vol. 7, no. 7, pp. 1126-1132, 2005.
[http://dx.doi.org/10.1016/j.ejheart.2005.03.007] [PMID: 16051518]
[56]
F.S. Hackenhaar, D. Martinez, T.M. Medeiros, C. Klein, P.V.G. Alabarse, M.V. Wainstein, S.C. Gonçalves, and M.S. Benfato, "Oxidized-LDL and paraoxonase-1 as biomarkers of coronary artery disease in patients with sleep-disordered breathing", Curr. Med. Chem., vol. 19, no. 25, pp. 4359-4366, 2012.
[http://dx.doi.org/10.2174/092986712802884312] [PMID: 22934769]
[57]
N.A. Porter, S.E. Caldwell, and K.A. Mills, "Mechanisms of free radical oxidation of unsaturated lipids", Lipids, vol. 30, no. 4, pp. 277-290, 1995.
[http://dx.doi.org/10.1007/BF02536034] [PMID: 7609594]
[58]
F. Ito, Y. Sono, and T. Ito, "Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: Oxidative stress in diabetes, atherosclerosis, and chronic inflammation", Antioxidants, vol. 8, no. 3, p. 72, 2019.
[http://dx.doi.org/10.3390/antiox8030072] [PMID: 30934586]
[59]
J.D. Morrow, K.E. Hill, R.F. Burk, T.M. Nammour, K.F. Badr, and L.J. Roberts II, "A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism", Proc. Natl. Acad. Sci. USA, vol. 87, no. 23, pp. 9383-9387, 1990.
[http://dx.doi.org/10.1073/pnas.87.23.9383] [PMID: 2123555]
[60]
D.M. Stafforini, J.R. Sheller, T.S. Blackwell, A. Sapirstein, F.E. Yull, T.M. McIntyre, J.V. Bonventre, S.M. Prescott, and L.J. Roberts II, "Release of free F2-isoprostanes from esterified phospholipids is catalyzed by intracellular and plasma platelet-activating factor acetylhydrolases", J. Biol. Chem., vol. 281, no. 8, pp. 4616-4623, 2006.
[http://dx.doi.org/10.1074/jbc.M507340200] [PMID: 16371369]
[61]
G.L. Milne, H. Yin, K.D. Hardy, S.S. Davies, and L.J. Roberts II, "Isoprostane generation and function", Chem. Rev., vol. 111, no. 10, pp. 5973-5996, 2011.
[http://dx.doi.org/10.1021/cr200160h] [PMID: 21848345]
[62]
M.B. Kadiiska, B.C. Gladen, D.D. Baird, D. Germolec, L.B. Graham, C.E. Parker, A. Nyska, J.T. Wachsman, B.N. Ames, S. Basu, N. Brot, G.A. FitzGerald, R.A. Floyd, M. George, J.W. Heinecke, G.E. Hatch, K. Hensley, J.A. Lawson, L.J. Marnett, J.D. Morrow, D.M. Murray, J. Plastaras, L.J. Roberts II, J. Rokach, M.K. Shigenaga, R.S. Sohal, J. Sun, R.R. Tice, D.H. Van Thiel, D. Wellner, P.B. Walter, K.B. Tomer, R.P. Mason, and J.C. Barrett, "Biomarkers of Oxidative Stress Study II: Are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning?", Free Radic. Biol. Med., vol. 38, no. 6, pp. 698-710, 2005.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.09.017] [PMID: 15721980]
[63]
T.A. Mori, K.D. Croft, I.B. Puddey, and L.J. Beilin, "An improved method for the measurement of urinary and plasma F2-isoprostanes using gas chromatography-mass spectrometry", Anal. Biochem., vol. 268, no. 1, pp. 117-125, 1999.
[http://dx.doi.org/10.1006/abio.1998.3037] [PMID: 10036170]
[64]
K.A. Smith, J. Shepherd, A. Wakil, and E.S. Kilpatrick, "A comparison of methods for the measurement of 8-isoPGF 2 α A marker of oxidative stress", Ann. Clin. Biochem., vol. 48, no. 2, pp. 147-154, 2011.
[http://dx.doi.org/10.1258/acb.2010.010151] [PMID: 21292864]
[65]
S. Lavi, E.H. Yang, A. Prasad, V. Mathew, G.W. Barsness, C.S. Rihal, L.O. Lerman, and A. Lerman, "The interaction between coronary endothelial dysfunction, local oxidative stress, and endogenous nitric oxide in humans", Hypertension, vol. 51, no. 1, pp. 127-133, 2008.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.099986] [PMID: 18086957]
[66]
J.D. Morrow, "Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans", Arterioscler. Thromb. Vasc. Biol., vol. 25, no. 2, pp. 279-286, 2005.
[http://dx.doi.org/10.1161/01.ATV.0000152605.64964.c0] [PMID: 15591226]
[67]
N. Delanty, M.P. Reilly, D. Pratico, J.A. Lawson, J.F. McCarthy, A.E. Wood, S.T. Ohnishi, D.J. Fitzgerald, and G.A. FitzGerald, "8-epi PGF2 alpha generation during coronary reperfusion. A potential quantitative marker of oxidant stress in vivo", Circulation, vol. 95, no. 11, pp. 2492-2499, 1997.
[http://dx.doi.org/10.1161/01.CIR.95.11.2492] [PMID: 9184579]
[68]
A. Nishibe, Y. Kijima, M. Fukunaga, N. Nishiwaki, T. Sakai, Y. Nakagawa, and T. Hata, "Increased isoprostane content in coronary plaques obtained from vulnerable patients", Prostaglandins Leukot. Essent. Fatty Acids, vol. 78, no. 4-5, pp. 257-263, 2008.
[http://dx.doi.org/10.1016/j.plefa.2008.03.001] [PMID: 18460418]
[69]
F. Cipollone, G. Ciabattoni, P. Patrignani, M. Pasquale, D. Di Gregorio, T. Bucciarelli, G. Davì, F. Cuccurullo, and C. Patrono, "Oxidant stress and aspirin-insensitive thromboxane biosynthesis in severe unstable angina", Circulation, vol. 102, no. 9, pp. 1007-1013, 2000.
[http://dx.doi.org/10.1161/01.CIR.102.9.1007] [PMID: 10961965]
[70]
R.M. LeLeiko, C.S. Vaccari, S. Sola, N. Merchant, S.H. Nagamia, M. Thoenes, and B.V. Khan, "Usefulness of elevations in serum choline and free F2)-isoprostane to predict 30-day cardiovascular outcomes in patients with acute coronary syndrome", Am. J. Cardiol., vol. 104, no. 5, pp. 638-643, 2009.
[http://dx.doi.org/10.1016/j.amjcard.2009.04.047] [PMID: 19699337]
[71]
M. Roest, H.A.M. Voorbij, Y.T. Van der Schouw, P.H.M. Peeters, T. Teerlink, and P.G. Scheffer, "High levels of urinary F2-isoprostanes predict cardiovascular mortality in postmenopausal women", J. Clin. Lipidol., vol. 2, no. 4, pp. 298-303, 2008.
[http://dx.doi.org/10.1016/j.jacl.2008.06.004] [PMID: 21291746]
[72]
C. Vassalle, N. Botto, M.G. Andreassi, S. Berti, and A. Biagini, "Evidence for enhanced 8-isoprostane plasma levels, as index of oxidative stress in vivo, in patients with coronary artery disease", Coron. Artery Dis., vol. 14, no. 3, pp. 213-218, 2003.
[http://dx.doi.org/10.1097/01.mca.0000063504.13456.c3] [PMID: 12702924]
[73]
M.H. Shishehbor, R. Zhang, H. Medina, M.L. Brennan, D.M. Brennan, and S.G. Ellis, "E.J. Topol, and S.L. Hazen, “Systemic elevations of free radical oxidation products of arachidonic acid are associated with angiographic evidence of coronary artery disease”", Free Radic. Biol. Med., vol. 41, no. 11, pp. 1678-1683, 2006.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.09.001] [PMID: 17145556]
[74]
I. Basarici, R.E. Altekin, I. Demir, and H. Yilmaz, "Urinary 8-isoprostane levels can indicate the presence, severity and extent of angiographic coronary artery disease", Acta Cardiol., vol. 63, no. 4, pp. 415-422, 2008.
[http://dx.doi.org/10.2143/AC.63.4.2033038] [PMID: 18795577]
[75]
M. Gross, M. Steffes, D.R. Jacobs Jr, X. Yu, L. Lewis, C.E. Lewis, and C.M. Loria, "Plasma F2-isoprostanes and coronary artery calcification: The CARDIA Study", Clin. Chem., vol. 51, no. 1, pp. 125-131, 2005.
[http://dx.doi.org/10.1373/clinchem.2004.037630] [PMID: 15514100]
[76]
M. Woodward, K.D. Croft, T.A. Mori, H. Headlam, X.S. Wang, C. Suarna, M.J. Raftery, S.W. MacMahon, and R. Stocker, "Association between both lipid and protein oxidation and the risk of fatal or non-fatal coronary heart disease in a human population", Clin. Sci., vol. 116, no. 1, pp. 53-60, 2009.
[http://dx.doi.org/10.1042/CS20070404] [PMID: 18507534]
[77]
D.A. Slatter, C.H. Bolton, and A.J. Bailey, "The importance of lipid-derived malondialdehyde in diabetes mellitus", Diabetologia, vol. 43, no. 5, pp. 550-557, 2000.
[http://dx.doi.org/10.1007/s001250051342] [PMID: 10855528]
[78]
M.E. Haberland, A.M. Fogelman, and P.A. Edwards, "Specificity of receptor-mediated recognition of malondialdehyde-modified low density lipoproteins", Proc. Natl. Acad. Sci. USA, vol. 79, no. 6, pp. 1712-1716, 1982.
[http://dx.doi.org/10.1073/pnas.79.6.1712] [PMID: 6281781]
[79]
D. Tsikas, "Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges", Anal. Biochem., vol. 524, pp. 13-30, 2017.
[http://dx.doi.org/10.1016/j.ab.2016.10.021] [PMID: 27789233]
[80]
J. Lykkesfeldt, "Determination of malondialdehyde as dithiobarbituric acid adduct in biological samples by HPLC with fluorescence detection: Comparison with ultraviolet-visible spectrophotometry", Clin. Chem., vol. 47, no. 9, pp. 1725-1727, 2001.
[http://dx.doi.org/10.1093/clinchem/47.9.1725] [PMID: 11514418]
[81]
R.J. Bevan, M.F. Durand, P.T. Hickenbotham, G.D. Kitas, P.R. Patel, I.D. Podmore, H.R. Griffiths, H.L. Waller, and J. Lunec, "Validation of a novel ELISA for measurement of MDA-LDL in human plasma", Free Radic. Biol. Med., vol. 35, no. 5, pp. 517-527, 2003.
[http://dx.doi.org/10.1016/S0891-5849(03)00359-9] [PMID: 12927601]
[82]
E.R. Miller III, L.J. Appel, L. Jiang, and T.H. Risby, "Association between cigarette smoking and lipid peroxidation in a controlled feeding study", Circulation, vol. 96, no. 4, pp. 1097-1101, 1997.
[http://dx.doi.org/10.1161/01.CIR.96.4.1097] [PMID: 9286935]
[83]
M. Ragab, H. Hassan, T. Zaytoun, W. Refai, B. Rocks, and M. Elsammak, "Evaluation of serum neopterin, high-sensitivity C-reactive protein and thiobarbituric acid reactive substances in Egyptian patients with acute coronary syndromes", Exp. Clin. Cardiol., vol. 10, no. 4, pp. 250-255, 2005.
[PMID: 19641675]
[84]
S. Stranges, J.M. Dorn, R.P. Donahue, R.W. Browne, J.L. Freudenheim, K.M. Hovey, and M. Trevisan, "Oxidation, type 2 diabetes, and coronary heart disease: A complex interaction: Findings from a population-based study", Diabetes Care, vol. 31, no. 9, pp. 1864-1866, 2008.
[http://dx.doi.org/10.2337/dc08-0558] [PMID: 18535189]
[85]
B.V. Khan, S. Navalkar, Q.A. Khan, S.T. Rahman, and S. Parthasarathy, "Irbesartan, an angiotensin type 1 receptor inhibitor, regulates the vascular oxidative state in patients with coronary artery disease", J. Am. Coll. Cardiol., vol. 38, no. 6, pp. 1662-1667, 2001.
[http://dx.doi.org/10.1016/S0735-1097(01)01615-1] [PMID: 11704378]
[86]
V. Melenovsky, J. Malik, D. Wichterle, J. Simek, A. Pisarikova, J. Skrha, R. Poledne, P. Stavek, and R. Ceska, "Comparison of the effects of atorvastatin or fenofibrate on nonlipid biochemical risk factors and the LDL particle size in subjects with combined hyperlipidemia", Am. Heart J., vol. 144, no. 4, p. E6, 2002.
[http://dx.doi.org/10.1016/S0002-8703(02)00142-4] [PMID: 12360175]
[87]
R.B. Singh, G. Fatima, P. Kumar, J. Fedacko, V. Mojto, and A. Isaza, "N. SinghVerma, A. Maheshwari, S. Joshi, B. Saboo, and M. Saxena, “Effects of empagliflozin on proinflammatory cytokines and other coronary risk factors in patients with type 2 diabetes mellitus: A single-arm real-world observation”", Int. J. Clin. Pharmacol. Ther., vol. 59, no. 1, pp. 17-25, 2021.
[http://dx.doi.org/10.5414/CP203787] [PMID: 33094728]
[88]
N. Sakuma, T. Hibino, T. Sato, N. Ohte, S. Akita, N. Tamai, K. Sasai, T. Yoshimata, and T. Fujinami, "Levels of thiobarbituric acid-reactive substance in plasma from coronary artery disease patients", Clin. Biochem., vol. 30, no. 6, pp. 505-507, 1997.
[http://dx.doi.org/10.1016/S0009-9120(97)00050-7] [PMID: 9316747]
[89]
M.F. Walter, R.F. Jacob, B. Jeffers, M.M. Ghadanfar, G.M. Preston, J. Buch, and R.P. Mason, "Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease", J. Am. Coll. Cardiol., vol. 44, no. 10, pp. 1996-2002, 2004.
[http://dx.doi.org/10.1016/j.jacc.2004.08.029] [PMID: 15542282]
[90]
S. Tanaka, T. Miki, S. Sha, K. Hirata, Y. Ishikawa, and M. Yokoyama, "Serum levels of thiobarbituric acid-reactive substances are associated with risk of coronary heart disease", J. Atheroscler. Thromb., vol. 18, no. 7, pp. 584-591, 2011.
[http://dx.doi.org/10.5551/jat.6585] [PMID: 21427508]
[91]
M.H. Shishehbor, R.J. Aviles, M.L. Brennan, X. Fu, M. Goormastic, G.L. Pearce, N. Gokce, J.F. Keaney Jr, M.S. Penn, D.L. Sprecher, J.A. Vita, and S.L. Hazen, "Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy", JAMA, vol. 289, no. 13, pp. 1675-1680, 2003.
[http://dx.doi.org/10.1001/jama.289.13.1675] [PMID: 12672736]
[92]
R. Kehm, T. Baldensperger, J. Raupbach, and A. Höhn, "Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases", Redox Biol., vol. 42, p. 101901, 2021.
[http://dx.doi.org/10.1016/j.redox.2021.101901] [PMID: 33744200]
[93]
A.R. Knight, E.L. Taylor, R. Lukaszewski, K.T. Jensen, H.E. Jones, J.E. Carré, M.N. Isupov, J.A. Littlechild, S.J. Bailey, E. Brewer, T.J. McDonald, A.R. Pitt, C.M. Spickett, and P.G. Winyard, "A high-sensitivity electrochemiluminescence-based ELISA for the measurement of the oxidative stress biomarker, 3-nitrotyrosine, in human blood serum and cells", Free Radic. Biol. Med., vol. 120, pp. 246-254, 2018.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.026] [PMID: 29555590]
[94]
R. Marfella, K. Esposito, F. Nappo, M. Siniscalchi, F.C. Sasso, M. Portoghese, M. Pia Di Marino, A. Baldi, S. Cuzzocrea, C. Di Filippo, G. Barboso, F. Baldi, F. Rossi, M. D’Amico, and D. Giugliano, "Expression of angiogenic factors during acute coronary syndromes in human type 2 diabetes", Diabetes, vol. 53, no. 9, pp. 2383-2391, 2004.
[http://dx.doi.org/10.2337/diabetes.53.9.2383] [PMID: 15331549]
[95]
P. Bencsik, V. Sasi, K. Kiss, K. Kupai, M. Kolossváry, P. Maurovich-Horvat, T. Csont, I. Ungi, B. Merkely, and P. Ferdinandy, "Serum lipids and cardiac function correlate with nitrotyrosine and MMP activity in coronary artery disease patients", Eur. J. Clin. Invest., vol. 45, no. 7, pp. 692-701, 2015.
[http://dx.doi.org/10.1111/eci.12458] [PMID: 25944577]
[96]
C.L. Heslop, J.J. Frohlich, and J.S. Hill, "Myeloperoxidase and C-reactive protein have combined utility for long-term prediction of cardiovascular mortality after coronary angiography", J. Am. Coll. Cardiol., vol. 55, no. 11, pp. 1102-1109, 2010.
[http://dx.doi.org/10.1016/j.jacc.2009.11.050] [PMID: 20223364]
[97]
A.V.L. Quidim, T. Bruno, P.C.L. Leocádio, I.S. Santos, J.I. Alvarez-Leite, P.L. dos Reis Menta, P.A. Lotufo, I.M. Benseñor, and A.C. Goulart, "The prognostic value of nitrotyrosine levels in coronary heart disease: long-term evaluation in the Acute Coronary Syndrome Registry Strategy (ERICO study)", Clin. Biochem., vol. 66, pp. 37-43, 2019.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.02.006] [PMID: 30776353]
[98]
V. Witko-Sarsat, M. Friedlander, C. Capeillère-Blandin, T. Nguyen-Khoa, A.T. Nguyen, J. Zingraff, P. Jungers, and B. Descamps-Latscha, "Advanced oxidation protein products as a novel marker of oxidative stress in uremia", Kidney Int., vol. 49, no. 5, pp. 1304-1313, 1996.
[http://dx.doi.org/10.1038/ki.1996.186] [PMID: 8731095]
[99]
Z. Bagyura, A. Takács, L. Kiss, E. Dósa, R. Vadas, T.D. Nguyen, E. Dinya, P. Soós, Z. Szelid, O. Láng, and É. Pállinger, "L. Kőhidai, and B. Merkely, “Level of advanced oxidation protein products is associated with subclinical atherosclerosis”", BMC Cardiovasc. Disord., vol. 22, no. 1, p. 5, 2022.
[http://dx.doi.org/10.1186/s12872-021-02451-2] [PMID: 34996369]
[100]
A. Ungurianu, and D. Margin, "Lipoprotein redox status evaluation as a marker of cardiovascular disease risk in patients with inflammatory disease", Mol. Med. Rep., vol. 15, no. 1, pp. 256-262, 2017.
[http://dx.doi.org/10.3892/mmr.2016.5972] [PMID: 27909725]
[101]
H. Kaneda, J. Taguchi, K. Ogasawara, T. Aizawa, and M. Ohno, "Increased level of advanced oxidation protein products in patients with coronary artery disease", Atherosclerosis, vol. 162, no. 1, pp. 221-225, 2002.
[http://dx.doi.org/10.1016/S0021-9150(01)00706-7] [PMID: 11947918]
[102]
Q. Zhou, S. Wu, J. Jiang, J. Tian, J. Chen, X. Yu, P. Chen, C. Mei, F. Xiong, W. Shi, W. Zhou, X. Liu, S. Sun, D. Xie, J. Liu, X. Xu, M. Liang, and F. Hou, "Accumulation of circulating advanced oxidation protein products is an independent risk factor for ischaemic heart disease in maintenance haemodialysis patients", Nephrology (Carlton), vol. 17, no. 7, pp. 642-649, 2012.
[http://dx.doi.org/10.1111/j.1440-1797.2012.01640.x] [PMID: 22738256]
[103]
A. Barsotti, P. Fabbi, M. Fedele, S. Garibaldi, M. Balbi, G.P. Bezante, D. Risso, F. Indiveri, G. Ghigliotti, and C. Brunelli, "Role of advanced oxidation protein products and Thiol ratio in patients with acute coronary syndromes", Clin. Biochem., vol. 44, no. 8-9, pp. 605-611, 2011.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.03.134] [PMID: 21458436]
[104]
Y. Feng, C. Shen, G. Ma, J. Wang, Z. Chen, Q. Dai, H. Zhi, C. Yang, Q. Fu, G. Shang, and Y. Guan, "Prolonged pain to hospital time is associated with increased plasma advanced oxidation protein products and poor prognosis in patients with percutaneous coronary intervention for ST-elevation myocardial infarction", Heart Vessels, vol. 25, no. 5, pp. 374-378, 2010.
[http://dx.doi.org/10.1007/s00380-009-1220-8] [PMID: 20676958]
[105]
B. Descamps-Latscha, V. Witko-Sarsat, T. Nguyen-Khoa, A.T. Nguyen, V. Gausson, N. Mothu, G.M. London, and P. Jungers, "Advanced oxidation protein products as risk factors for atherosclerotic cardiovascular events in nondiabetic predialysis patients", Am. J. Kidney Dis., vol. 45, no. 1, pp. 39-47, 2005.
[http://dx.doi.org/10.1053/j.ajkd.2004.09.011] [PMID: 15696442]
[106]
G. Ndrepepa, "Myeloperoxidase - A bridge linking inflammation and oxidative stress with cardiovascular disease", Clin. Chim. Acta, vol. 493, pp. 36-51, 2019.
[http://dx.doi.org/10.1016/j.cca.2019.02.022] [PMID: 30797769]
[107]
R. Zhang, M.L. Brennan, X. Fu, R.J. Aviles, G.L. Pearce, and M.S. Penn, "E.J. Topol, D.L. Sprecher, and S.L. Hazen, “Association between myeloperoxidase levels and risk of coronary artery disease”", JAMA, vol. 286, no. 17, pp. 2136-2142, 2001.
[http://dx.doi.org/10.1001/jama.286.17.2136] [PMID: 11694155]
[108]
M.C. Meuwese, E.S.G. Stroes, S.L. Hazen, J.N. van Miert, J.A. Kuivenhoven, R.G. Schaub, N.J. Wareham, R. Luben, J.J.P. Kastelein, K.T. Khaw, and S.M. Boekholdt, "Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: The EPIC-Norfolk Prospective Population Study", J. Am. Coll. Cardiol., vol. 50, no. 2, pp. 159-165, 2007.
[http://dx.doi.org/10.1016/j.jacc.2007.03.033] [PMID: 17616301]
[109]
J. Shih, S.A. Datwyler, S.C. Hsu, M.S. Matias, D.P. Pacenti, C. Lueders, C. Mueller, O. Danne, and M. Möckel, "Effect of collection tube type and preanalytical handling on myeloperoxidase concentrations", Clin. Chem., vol. 54, no. 6, pp. 1076-1079, 2008.
[http://dx.doi.org/10.1373/clinchem.2007.101568] [PMID: 18509013]
[110]
J. Talib, G.J. Maghzal, D. Cheng, and R. Stocker, "Detailed protocol to assess in vivo and ex vivo myeloperoxidase activity in mouse models of vascular inflammation and disease using hydroethidine", Free Radic. Biol. Med., vol. 97, pp. 124-135, 2016.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.05.004] [PMID: 27184954]
[111]
M. Nahrendorf, D. Sosnovik, J.W. Chen, P. Panizzi, J.L. Figueiredo, E. Aikawa, P. Libby, F.K. Swirski, and R. Weissleder, "Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury", Circulation, vol. 117, no. 9, pp. 1153-1160, 2008.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.756510] [PMID: 18268141]
[112]
F. Afshinnia, L. Zeng, J. Byun, C.A. Gadegbeku, M.C. Magnone, C. Whatling, B. Valastro, M. Kretzler, S. Pennathur, and C.I.G. Michigan Kidney Translational Core, "Myeloperoxidase levels and its product 3-chlorotyrosine predict chronic kidney disease severity and associated coronary artery disease", Am. J. Nephrol., vol. 46, no. 1, pp. 73-81, 2017.
[http://dx.doi.org/10.1159/000477766] [PMID: 28668952]
[113]
R.V. Wainstein, M.V. Wainstein, J.P. Ribeiro, L.V. Dornelles, P. Tozzati, P. Ashton-Prolla, I.P. Ewald, G. Vietta, and C.A. Polanczyk, "Association between myeloperoxidase polymorphisms and its plasma levels with severity of coronary artery disease", Clin. Biochem., vol. 43, no. 1-2, pp. 57-62, 2010.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.07.022] [PMID: 19651119]
[114]
L. Kubala, G. Lu, S. Baldus, L. Berglund, and J.P. Eiserich, "Plasma levels of myeloperoxidase are not elevated in patients with stable coronary artery disease", Clin. Chim. Acta, vol. 394, no. 1-2, pp. 59-62, 2008.
[http://dx.doi.org/10.1016/j.cca.2008.04.001] [PMID: 18440308]
[115]
T.K. Rudolph, N. Schaper, A. Klinke, C. Demir, B. Goldmann, D. Lau, R. Köster, M. Hellmich, T. Meinertz, S. Baldus, and V. Rudolph, "Liberation of vessel-adherent myeloperoxidase reflects plaque burden in patients with stable coronary artery disease", Atherosclerosis, vol. 231, no. 2, pp. 354-358, 2013.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.09.016] [PMID: 24267251]
[116]
G. Ndrepepa, S. Braun, J. Mehilli, N. Von Beckerath, A. Schömig, and A. Kastrati, "Myeloperoxidase level in patients with stable coronary artery disease and acute coronary syndromes", Eur. J. Clin. Invest., vol. 38, no. 2, pp. 90-96, 2008.
[http://dx.doi.org/10.1111/j.1365-2362.2007.01908.x] [PMID: 18226042]
[117]
G. Ferrante, M. Nakano, F. Prati, G. Niccoli, M.T. Mallus, V. Ramazzotti, R.A. Montone, F.D. Kolodgie, R. Virmani, and F. Crea, "High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: A clinicopathological study", Circulation, vol. 122, no. 24, pp. 2505-2513, 2010.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.955302] [PMID: 21126969]
[118]
M.M. Vroegindewey, V.J. van den Berg, E. Bouwens, K.M. Akkerhuis, R.M. Oemrawsingh, F.W. Asselbergs, T. Lenderink, P. van der Harst, E. Ronner, V.A.W.M. Umans, I. Kardys, and E. Boersma, "Temporal evolution of myeloperoxidase and galectin 3 during 1 year after acute coronary syndrome admission", Am. Heart J., vol. 216, pp. 143-146, 2019.
[http://dx.doi.org/10.1016/j.ahj.2019.02.016] [PMID: 31053235]
[119]
M.L. Brennan, M.S. Penn, F. Van Lente, V. Nambi, M.H. Shishehbor, R.J. Aviles, M. Goormastic, M.L. Pepoy, and E.S. McErlean, "E.J. Topol, S.E. Nissen, and S.L. Hazen, “Prognostic value of myeloperoxidase in patients with chest pain”", N. Engl. J. Med., vol. 349, no. 17, pp. 1595-1604, 2003.
[http://dx.doi.org/10.1056/NEJMoa035003] [PMID: 14573731]
[120]
H. Scharnagl, M.E. Kleber, B. Genser, S. Kickmaier, W. Renner, G. Weihrauch, T. Grammer, C. Rossmann, B.R. Winkelmann, B.O. Boehm, W. Sattler, W. März, and E. Malle, "Association of myeloperoxidase with total and cardiovascular mortality in individuals undergoing coronary angiography—The LURIC study", Int. J. Cardiol., vol. 174, no. 1, pp. 96-105, 2014.
[http://dx.doi.org/10.1016/j.ijcard.2014.03.168] [PMID: 24746542]
[121]
C. Khatana, N.K. Saini, S. Chakrabarti, V. Saini, A. Sharma, R.V. Saini, and A.K. Saini, "Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis", Oxid. Med. Cell. Longev., vol. 2020, pp. 1-14, 2020.
[http://dx.doi.org/10.1155/2020/5245308] [PMID: 33014272]
[122]
A. Hartley, D. Haskard, and R. Khamis, "Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis - Novel insights and future directions in diagnosis and therapy", Trends Cardiovasc. Med., vol. 29, no. 1, pp. 22-26, 2019.
[http://dx.doi.org/10.1016/j.tcm.2018.05.010] [PMID: 29934015]
[123]
J.K. Pai, G.C. Curhan, C.C. Cannuscio, N. Rifai, P.M. Ridker, and E.B. Rimm, "Stability of novel plasma markers associated with cardiovascular disease: Processing within 36 hours of specimen collection", Clin. Chem., vol. 48, no. 10, pp. 1781-1784, 2002.
[http://dx.doi.org/10.1093/clinchem/48.10.1781] [PMID: 12324497]
[124]
T. Ueba, S. Nomura, T. Nishikawa, M. Kajiwara, and K. Yamashita, "Circulating oxidized LDL, measured with FOH1a/DLH3 antibody, is associated with metabolic syndrome and the coronary heart disease risk score in healthy Japanese", Atherosclerosis, vol. 203, no. 1, pp. 243-248, 2009.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.05.048] [PMID: 18635189]
[125]
S. Wagner, M. Apetrii, Z.A. Massy, M.E. Kleber, G.E. Delgado, H. Scharnagel, W. März, M. Metzger, P. Rossignol, A. Jardine, H. Holdaas, B. Fellström, R. Schmieder, B. Stengel, and F. Zannad, "Oxidized LDL, statin use, morbidity, and mortality in patients receiving maintenance hemodialysis", Free Radic. Res., vol. 51, no. 1, pp. 14-23, 2017.
[http://dx.doi.org/10.1080/10715762.2016.1241878] [PMID: 27667446]
[126]
P. Holvoet, J. Vanhaecke, S. Janssens, F. Van de Werf, and D. Collen, "Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease", Circulation, vol. 98, no. 15, pp. 1487-1494, 1998.
[http://dx.doi.org/10.1161/01.CIR.98.15.1487] [PMID: 9769301]
[127]
L. Xu, X. Yan, Z. Tang, and B. Feng, "Association between circulating oxidized OxLDL/LDL-C ratio and the severity of coronary atherosclerosis, along with other emerging biomarkers of cardiovascular disease in patients with type 2 diabetes", Diabetes Res. Clin. Pract., vol. 191, p. 110040, 2022.
[http://dx.doi.org/10.1016/j.diabres.2022.110040] [PMID: 35985428]
[128]
N. Johnston, T. Jernberg, B. Lagerqvist, A. Siegbahn, and L. Wallentin, "Improved identification of patients with coronary artery disease by the use of new lipid and lipoprotein biomarkers", Am. J. Cardiol., vol. 97, no. 5, pp. 640-645, 2006.
[http://dx.doi.org/10.1016/j.amjcard.2005.09.123] [PMID: 16490429]
[129]
Y. Matsuo, T. Kubo, Y. Okumoto, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, H. Kitabata, K. Hirata, T. Imanishi, H. Akagi, and T. Akasaka, "Circulating malondialdehyde-modified low-density lipoprotein levels are associated with the presence of thin-cap fibroatheromas determined by optical coherence tomography in coronary artery disease", Eur. Heart J. Cardiovasc. Imaging, vol. 14, no. 1, pp. 43-50, 2013.
[http://dx.doi.org/10.1093/ehjci/jes094] [PMID: 22573905]
[130]
S. Ehara, M. Ueda, T. Naruko, K. Haze, A. Itoh, M. Otsuka, R. Komatsu, T. Matsuo, H. Itabe, T. Takano, Y. Tsukamoto, M. Yoshiyama, K. Takeuchi, J. Yoshikawa, and A.E. Becker, "Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes", Circulation, vol. 103, no. 15, pp. 1955-1960, 2001.
[http://dx.doi.org/10.1161/01.CIR.103.15.1955] [PMID: 11306523]
[131]
C. Meisinger, J. Baumert, N. Khuseyinova, H. Loewel, and W. Koenig, "Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population", Circulation, vol. 112, no. 5, pp. 651-657, 2005.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.529297] [PMID: 16043640]
[132]
T. Wu, W.C. Willett, N. Rifai, I. Shai, J.E. Manson, and E.B. Rimm, "Is plasma oxidized low-density lipoprotein, measured with the widely used antibody 4E6, an independent predictor of coronary heart disease among U.S. men and women?", J. Am. Coll. Cardiol., vol. 48, no. 5, pp. 973-979, 2006.
[http://dx.doi.org/10.1016/j.jacc.2006.03.057] [PMID: 16949489]
[133]
S. Gao, D. Zhao, M. Wang, F. Zhao, X. Han, Y. Qi, and J. Liu, "Association between circulating oxidized ldl and atherosclerotic cardiovascular disease: a meta-analysis of observational studies", Can. J. Cardiol., vol. 33, no. 12, pp. 1624-1632, 2017.
[http://dx.doi.org/10.1016/j.cjca.2017.07.015] [PMID: 29173602]
[134]
C. Bergmark, A. Dewan, A. Orsoni, E. Merki, E.R. Miller, M.J. Shin, C.J. Binder, S. Hörkkö, R.M. Krauss, M.J. Chapman, J.L. Witztum, and S. Tsimikas, "A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma", J. Lipid Res., vol. 49, no. 10, pp. 2230-2239, 2008.
[http://dx.doi.org/10.1194/jlr.M800174-JLR200] [PMID: 18594118]
[135]
S. Tsimikas, E.S. Brilakis, E.R. Miller, J.P. McConnell, R.J. Lennon, K.S. Kornman, J.L. Witztum, and P.B. Berger, "Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease", N. Engl. J. Med., vol. 353, no. 1, pp. 46-57, 2005.
[http://dx.doi.org/10.1056/NEJMoa043175] [PMID: 16000355]
[136]
S. Tsimikas, C. Bergmark, R.W. Beyer, R. Patel, J. Pattison, E. Miller, J. Juliano, and J.L. Witztum, "Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes", J. Am. Coll. Cardiol., vol. 41, no. 3, pp. 360-370, 2003.
[http://dx.doi.org/10.1016/S0735-1097(02)02769-9] [PMID: 12575961]
[137]
S. Kiechl, J. Willeit, M. Mayr, B. Viehweider, M. Oberhollenzer, F. Kronenberg, C.J. Wiedermann, S. Oberthaler, Q. Xu, J.L. Witztum, and S. Tsimikas, "Oxidized phospholipids, lipoprotein(a), lipoprotein-associated phospholipase A2 activity, and 10-year cardiovascular outcomes: Prospective results from the Bruneck study", Arterioscler. Thromb. Vasc. Biol., vol. 27, no. 8, pp. 1788-1795, 2007.
[http://dx.doi.org/10.1161/ATVBAHA.107.145805] [PMID: 17541022]
[138]
S. Tsimikas, P. Willeit, J. Willeit, P. Santer, M. Mayr, Q. Xu, A. Mayr, J.L. Witztum, and S. Kiechl, "Oxidation-specific biomarkers, prospective 15-year cardiovascular and stroke outcomes, and net reclassification of cardiovascular events", J. Am. Coll. Cardiol., vol. 60, no. 21, pp. 2218-2229, 2012.
[http://dx.doi.org/10.1016/j.jacc.2012.08.979] [PMID: 23122790]
[139]
Y.S. Byun, X. Yang, W. Bao, D. DeMicco, R. Laskey, J.L. Witztum, S. Tsimikas, and S.T. Investigators, "Oxidized Phospholipids on Apolipoprotein B-100 and Recurrent Ischemic Events Following Stroke or Transient Ischemic Attack", J. Am. Coll. Cardiol., vol. 69, no. 2, pp. 147-158, 2017.
[http://dx.doi.org/10.1016/j.jacc.2016.10.057] [PMID: 28081824]