Spider Silk: Biosynthesis, Properties & Bioengineering

Page: [83 - 91] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Due to the remarkable and unique qualities of spider silk, it has much applicability in the coming days. The complicated diversity and structure of spider silk ensure its use in both nature and industry. Based on the uniqueness and distinctive qualities associated with spider silks, advancements in cloning and expression of these silks are a growing area of research and industrial use. The environmentally triggered spider silk assembly and further disassembly, the creation of fibers, films, and novel chimeric composite materials from genetically modified spider silks are interesting areas of research in nanotechnology. In this context, we have discussed the creation of hybrids made of spider silk that combine with organic nanoparticles, both naturally occurring and bioengineered spider silk proteins. The diversity of spider silk, its composition and architecture, the distinctions between spider silk and silkworm silk, and the biosynthesis of natural silk are also discussed. This article describes the current issues and expected outcomes using biochemical data and processes.

Graphical Abstract

[1]
Huang W, Ling S, Li C, Omenetto FG, Kaplan DL. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev 2018; 47(17): 6486-504.
[http://dx.doi.org/10.1039/C8CS00187A] [PMID: 29938722]
[2]
Lewis RV. Spider silk: Ancient ideas for new biomaterials. Chem Rev 2006; 106(9): 3762-74.
[http://dx.doi.org/10.1021/cr010194g] [PMID: 16967919]
[3]
Agnarsson I, Kuntner M, Blackledge TA. Bioprospecting finds the toughest biological material: Extraordinary silk from a giant riverine orb spider. PLoS One 2010; 5(9): e11234.
[http://dx.doi.org/10.1371/journal.pone.0011234] [PMID: 20856804]
[4]
Huang X, Liu G, Wang X. New secrets of spider silk: Exceptionally high thermal conductivity and its abnormal change under stretching. Adv Mater 2012; 24(11): 1482-6.
[http://dx.doi.org/10.1002/adma.201104668] [PMID: 22388863]
[5]
Hinman MB, Lewis RV. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J Biol Chem 1992; 267(27): 19320-4.
[http://dx.doi.org/10.1016/S0021-9258(18)41777-2] [PMID: 1527052]
[6]
Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science 2010; 329(5991): 528-31.
[http://dx.doi.org/10.1126/science.1188936] [PMID: 20671180]
[7]
Liu Y, Shao Z, Vollrath F. Relationships between supercontraction and mechanical properties of spider silk. Nat Mater 2005; 4(12): 901-5.
[http://dx.doi.org/10.1038/nmat1534] [PMID: 16299506]
[8]
Bell FI, McEwen IJ, Viney C. Supercontraction stress in wet spider dragline. Nature 2002; 416(6876): 37.
[http://dx.doi.org/10.1038/416037a] [PMID: 11882884]
[9]
Liu D, Yu L, He Y, et al. Peculiar torsion dynamical response of spider dragline silk. Appl Phys Lett 2017; 111(1): 013701.
[http://dx.doi.org/10.1063/1.4990676] [PMID: 28104923]
[10]
Li J, Li S, Huang J, et al. Spider silk-inspired artificial fibers. Adv Sci 2022; 9(5): 2103965.
[http://dx.doi.org/10.1002/advs.202103965] [PMID: 34927397]
[11]
Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 2001; 291(5513): 2603-5.
[http://dx.doi.org/10.1126/science.1057561] [PMID: 11283372]
[12]
Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY. Blueprint for a high-performance biomaterial: Full-length spider dragline silk genes. PLoS One 2007; 2(6): e514.
[http://dx.doi.org/10.1371/journal.pone.0000514] [PMID: 17565367]
[13]
Garb JE, Ayoub NA, Hayashi CY. Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 2010; 10: 243.
[http://dx.doi.org/10.1186/1471-2148-10-243]
[14]
Harmer AMT, Blackledge TA, Madin JS, Herberstein ME. High-performance spider webs: Integrating biomechanics, ecology and behaviour. J R Soc Interface 2011; 8(57): 457-71.
[http://dx.doi.org/10.1098/rsif.2010.0454] [PMID: 21036911]
[15]
Vollrath F. Strength and structure of spiders’ silks. J Biotechnol 2000; 74(2): 67-83.
[PMID: 11763504]
[16]
Allmeling C, Jokuszies A, Reimers K, Kall S, Vogt PM. Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med 2006; 10(3): 770-7.
[http://dx.doi.org/10.1111/j.1582-4934.2006.tb00436.x] [PMID: 16989736]
[17]
Porter D, Guan J, Vollrath F. Spider silk: Super material or thin fibre? Adv Mater 2013; 25(9): 1275-9.
[http://dx.doi.org/10.1002/adma.201204158] [PMID: 23180482]
[18]
Buehler MJ. Materials by design-A perspective from atoms to structures. MRS Bull 2013; 38(2): 169-76.
[http://dx.doi.org/10.1557/mrs.2013.26] [PMID: 24163499]
[19]
Babu KM. Silk from silkworms and spiders as high-performance fibers. Structure and Properties of High-Performance Fibers. Cambridge, UK: Woodhead Publishing 2017; pp. 327-66.
[http://dx.doi.org/10.1016/B978-0-08-100550-7.00013-9]
[20]
Gosline JM, Guerette PA, Ortlepp CS, Savage KN. The mechanical design of spider silks: From fibroin sequence to mechanical function. J Exp Biol 1999; 202(23): 3295-303.
[http://dx.doi.org/10.1242/jeb.202.23.3295] [PMID: 10562512]
[21]
Römer L, Scheibel T. The elaborate structure of spider silk. Prion 2008; 2(4): 154-61.
[http://dx.doi.org/10.4161/pri.2.4.7490] [PMID: 19221522]
[22]
Eisoldt L, Smith A, Scheibel T. Decoding the secrets of spider silk. Mater Test 2011; 14(3): 80-6.
[23]
Vollrath F, Porter D. Silks as ancient models for modern polymers. Polymer 2009; 50(24): 5623-32.
[http://dx.doi.org/10.1016/j.polymer.2009.09.068]
[24]
Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials 2003; 24(3): 401-16.
[http://dx.doi.org/10.1016/S0142-9612(02)00353-8] [PMID: 12423595]
[25]
Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL. Spider silks and their applications. Trends Biotechnol 2008; 26(5): 244-51.
[http://dx.doi.org/10.1016/j.tibtech.2008.02.006] [PMID: 18367277]
[26]
Shao Z, Vollrath F. Surprising strength of silkworm silk. Nature 2002; 418(6899): 741-1.
[http://dx.doi.org/10.1038/418741a] [PMID: 12181556]
[27]
Du N, Yang Z, Liu XY, Li Y, Xu HY. Structural origin of the strain-hardening of spider silk. Adv Funct Mater 2011; 21(4): 772-8.
[http://dx.doi.org/10.1002/adfm.201001397]
[28]
Vasconcelos A, Freddi G, Cavaco-Paulo A. Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 2008; 9(4): 1299-305.
[http://dx.doi.org/10.1021/bm7012789] [PMID: 18355027]
[29]
Hakimi O, Knight DP, Vollrath F, Vadgama P. Spider and mulberry silkworm silks as compatible biomaterials. Compos, Part B Eng 2007; 38(3): 324-37.
[http://dx.doi.org/10.1016/j.compositesb.2006.06.012]
[30]
Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci 2007; 32(8-9): 991-1007.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.013] [PMID: 19543442]
[31]
Sirichaisit J, Young RJ, Vollrath F. Molecular deformation in spider dragline silk subjected to stress. Polymer 2000; 41(3): 1223-7.
[http://dx.doi.org/10.1016/S0032-3861(99)00293-1]
[32]
Davies GJG, Knight DP, Vollrath F. Chitin in the silk gland ducts of the spider Nephila edulis and the silkworm Bombyx mori. PLoS One 2013; 8(8): e73225.
[http://dx.doi.org/10.1371/journal.pone.0073225] [PMID: 24015298]
[33]
Blackledge TA, Hayashi CY. Silken toolkits: Biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J Exp Biol 2006; 209(13): 2452-61.
[http://dx.doi.org/10.1242/jeb.02275] [PMID: 16788028]
[34]
Hu X, Yuan J, Wang X, et al. Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 2007; 46(11): 3294-303.
[http://dx.doi.org/10.1021/bi602507e] [PMID: 17311422]
[35]
Joel AC, Rawal A, Yao Y, et al. Physico-chemical properties of functionally adhesive spider silk nanofibres. Biomater Sci 2023; 11(6): 2139-50.
[http://dx.doi.org/10.1039/D2BM01599D]
[36]
Yarger JL, Cherry BR, van der Vaart A. Uncovering the structure-function relationship in spider silk. Nat Rev Mater 2018; 3(3): 18008.
[http://dx.doi.org/10.1038/natrevmats.2018.8]
[37]
Ko FK, Jovicic J. Modeling of mechanical properties and structural design of spider web. Biomacromolecules 2004; 5(3): 780-5.
[http://dx.doi.org/10.1021/bm0345099] [PMID: 15132661]
[38]
Madurga R, Plaza GR, Blackledge TA, Guinea GV, Elices M, Pérez-Rigueiro J. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter. Sci Rep 2016; 6(1): 18991.
[http://dx.doi.org/10.1038/srep18991] [PMID: 26755434]
[39]
Kiseleva AP, Krivoshapkin PV, Krivoshapkina EF. Recent advances in development of functional spider silk-based hybrid materials. Front Chem 2020; 8: 554.
[http://dx.doi.org/10.3389/fchem.2020.00554] [PMID: 32695749]
[40]
Blamires SJ, Spicer PT, Flanagan PJ. Spider silk biomimetics programs to inform the development of new wearable technologies. Front Mater 2020; 7: 29.
[http://dx.doi.org/10.3389/fmats.2020.00029]
[41]
Zhang S, Marini DM, Hwang W, Santoso S. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol 2002; 6(6): 865-71.
[http://dx.doi.org/10.1016/S1367-5931(02)00391-5] [PMID: 12470743]
[42]
Anton AM, Heidebrecht A, Mahmood N, Beiner M, Scheibel T, Kremer F. Foundation of the outstanding toughness in biomimetic and natural spider silk. Biomacromolecules 2017; 18(12): 3954-62.
[http://dx.doi.org/10.1021/acs.biomac.7b00990] [PMID: 28954189]
[43]
He W, Qian D, Wang Y, et al. A protein-like nanogel for spinning hierarchically structured artificial spider silk. Adv Mater 2022; 34(27): 2201843.
[http://dx.doi.org/10.1002/adma.202201843] [PMID: 35509216]
[44]
Humenik M, Smith AM, Scheibel T. Recombinant spider silks-biopolymers with potential for future applications. Polymers (Basel) 2011; 3(1): 640-61.
[http://dx.doi.org/10.3390/polym3010640]
[45]
Kucharczyk K, Rybka JD, Hilgendorff M, et al. Composite spheres made of bioengineered spider silk and iron oxide nanoparticles for theranostics applications. PLoS One 2019; 14(7): e0219790.
[http://dx.doi.org/10.1371/journal.pone.0219790] [PMID: 31306458]
[46]
Cohen N. The underlying mechanisms behind the hydration-induced and mechanical response of spider silk. J Mech Phys Solids 2023; 172: 105141.
[http://dx.doi.org/10.1016/j.jmps.2022.105141]
[47]
Wang Q, McArdle P, Wang SL, et al. Protein secondary structure in spider silk nanofibrils. Nat Commun 2022; 13(1): 4329.
[http://dx.doi.org/10.1038/s41467-022-31883-3] [PMID: 35902573]
[48]
Kandas I, Shehata N, Hassounah I, Sobolčiak P, Krupa I Sr, Lewis R. Optical fluorescent spider silk electrospun nanofibers with embedded cerium oxide nanoparticles. J Nanophotonics 2018; 12(2): 1.
[http://dx.doi.org/10.1117/1.JNP.12.026016]
[49]
Huang J, Wong C, George A, Kaplan DL. The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 2007; 28(14): 2358-67.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.021] [PMID: 17289141]
[50]
Wong Po Foo C, Patwardhan SV, Belton DJ, et al. Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci USA 2006; 103(25): 9428-33.
[http://dx.doi.org/10.1073/pnas.0601096103] [PMID: 16769898]
[51]
Mieszawska AJ, Fourligas N, Georgakoudi I, et al. Osteoinductive silk–silica composite biomaterials for bone regeneration. Biomaterials 2010; 31(34): 8902-10.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.109] [PMID: 20817293]
[52]
Belton DJ, Mieszawska AJ, Currie HA, Kaplan DL, Perry CC. Silk-silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution. Langmuir 2012; 28(9): 4373-81.
[http://dx.doi.org/10.1021/la205084z] [PMID: 22313382]
[53]
Mieszawska AJ, Nadkarni LD, Perry CC, Kaplan DL. Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration. Chem Mater 2010; 22(20): 5780-5.
[http://dx.doi.org/10.1021/cm101940u] [PMID: 20976116]
[54]
Rauscher S, Baud S, Miao M, Keeley FW, Pomès R. Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure 2006; 14(11): 1667-76.
[http://dx.doi.org/10.1016/j.str.2006.09.008] [PMID: 17098192]
[55]
Lefèvre T, Rousseau ME, Pézolet M. Protein secondary structure and orientation in silk as revealed by raman spectromicroscopy. Biophys J 2007; 92(8): 2885-95.
[http://dx.doi.org/10.1529/biophysj.106.100339] [PMID: 17277183]
[56]
Agnarsson I, Dhinojwala A, Sahni V, Blackledge TA. Spider silk as a novel high performance biomimetic muscle driven by humidity. J Exp Biol 2009; 212(13): 1990-4.
[http://dx.doi.org/10.1242/jeb.028282] [PMID: 19525423]
[57]
Chu M, Sun Y. Self-assembly method for the preparation of near-infrared fluorescent spider silk coated with CdTe nanocrystals. Smart Mater Struct 2007; 16(6): 2453.
[http://dx.doi.org/10.1088/0964-1726/16/6/048]
[58]
Steven E, Park JG, Paravastu A, et al. Physical characterization of functionalized spider silk: Electronic and sensing properties. Sci Technol Adv Mater 2011; 12(5): 055002.
[59]
Zheng JS, Zhang XS, Li P, et al. Oxygen reduction reaction properties of carbon nanofibers: Effect of metal purification. Electrochim Acta 2008; 53(10): 3587-96.
[http://dx.doi.org/10.1016/j.electacta.2007.11.081]
[60]
Liu D, Zhang X, You T. Urea-treated carbon nanofibers as efficient catalytic materials for oxygen reduction reaction. J Power Sources 2015; 273: 810-5.
[http://dx.doi.org/10.1016/j.jpowsour.2014.09.104]
[61]
Liang HW, Wu ZY, Chen LF, Li C, Yu SH. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 2015; 11: 366-76.
[http://dx.doi.org/10.1016/j.nanoen.2014.11.008]
[62]
Asiabi M, Mehdinia A, Jabbari A. Spider-web-like chitosan/MIL-68(Al) composite nanofibers for high-efficient solid phase extraction of Pb(II) and Cd(II). Mikrochim Acta 2017; 184(11): 4495-501.
[http://dx.doi.org/10.1007/s00604-017-2473-z]