Selective Activation of G Protein-coupled Estrogen Receptor 1 Attenuates Atherosclerosis

Page: [4312 - 4319] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Atherosclerosis remains a leading contributor to cardiovascular disease-associated morbidity and mortality. Interestingly, atherosclerosis-associated mortality rate is higher in men than women. This suggested a protective role for estrogen in the cardiovasculature. These effects of estrogen were initially thought to be mediated by the classic estrogen receptors, ER alpha, and beta. However, genetic knockdown of these receptors did not abolish estrogen’s vasculoprotective effects suggesting that the other membranous Gprotein coupled estrogen receptor, GPER1, maybe the actual mediator. Indeed, in addition to its role in vasotone regulation, this GPER1 appears to play important roles in regulating vascular smooth cell phenotype, a critical player in the onset of atherosclerosis. Moreover, GPER1-selective agonists appear to reduce LDL levels by promoting the expression of LDL receptors as well as potentiating LDL re-uptake in liver cells. Further evidence also show that GPER1 can downregulate Proprotein Convertase Subtilisin/ Kexin type 9, leading to suppression of LDL receptor breakdown. Here, we review how selective activation of GPER1 might prevent or suppress atherosclerosis, with less side effects than those of the non-selective estrogen.

[1]
Centers for Disease Control and Prevention (CDC) Million hearts: strategies to reduce the prevalence of leading cardiovascular disease risk factors--United States, 2011. MMWR Morb Mortal Wkly Rep, 2011, 60(36), 1248-1251.
[2]
Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med., 2013, 11(1), 117.
[http://dx.doi.org/10.1186/1741-7015-11-117] [PMID: 23635324]
[3]
Baradaran, A.J.J.o.n. Lipoprotein (a), type 2 diabetes and nephropathy; the mystery continues. J. Nephropathol., 2012, 1(3), 126.
[http://dx.doi.org/10.5812/nephropathol.8107]
[4]
Grebe, A.; Latz, E. Cholesterol crystals and inflammation. Curr. Rheumatol. Rep., 2013, 15(3), 313.
[http://dx.doi.org/10.1007/s11926-012-0313-z] [PMID: 23412688]
[5]
Tavafi, M.J.J.o.r.i.p. Complexity of diabetic nephropathy pathogenesis and design of investigations. J. Renal Inj. Prev., 2013, 2(2), 59-62.
[http://dx.doi.org/10.12861/jrip.2013.20]
[6]
Douglas, G.; Channon, K.M. The pathogenesis of atherosclerosis. Medicine, 2014, 42(9), 480-484.
[http://dx.doi.org/10.1016/j.mpmed.2014.06.011]
[7]
Virmani, R.; Burke, A.P.; Farb, A.; Kolodgie, F.D.J.J.o.t.A.C.o.C. Pathology of the vulnerable plaque. J. Am. Coll Cardiol., 2006, 47(8S), C13-C18.
[http://dx.doi.org/10.1002/9780470987575.ch2]
[8]
Lusis, A.J. Atherosclerosis. Nature, 2000, 407(6801), 233-241.
[http://dx.doi.org/10.1038/35025203] [PMID: 11001066]
[9]
Badimon, L.; Vilahur, G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med., 2014, 276(6), 618-632.
[http://dx.doi.org/10.1111/joim.12296] [PMID: 25156650]
[10]
Yu, X.H.; Fu, Y.C.; Zhang, D.W.; Yin, K.; Tang, C.K. Foam cells in atherosclerosis. Clin. Chim. Acta, 2013, 424, 245-252.
[http://dx.doi.org/10.1016/j.cca.2013.06.006] [PMID: 23782937]
[11]
Grover, S.P.; Mackman, N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis, 2020, 307, 80-86.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.06.003] [PMID: 32674807]
[12]
Wilcox, J.N.; Smith, K.M.; Schwartz, S.M.; Gordon, D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc. Natl. Acad. Sci. USA, 1989, 86(8), 2839-2843.
[http://dx.doi.org/10.1073/pnas.86.8.2839] [PMID: 2704749]
[13]
Cimmino, G.; D’Amico, C.; Vaccaro, V.; D’Anna, M.; Golino, P. The missing link between atherosclerosis, inflammation and thrombosis: Is it tissue factor? Expert Rev. Cardiovasc. Ther., 2011, 9(4), 517-523.
[http://dx.doi.org/10.1586/erc.11.40] [PMID: 21517734]
[14]
Toschi, V.; Gallo, R.; Lettino, M.; Fallon, J.T.; Gertz, S.D.; Ferna´ndez-Ortiz, A.; Chesebro, J.H.; Badimon, L.; Nemerson, Y.; Fuster, V.; Badimon, J.J. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation, 1997, 95(3), 594-599.
[http://dx.doi.org/10.1161/01.CIR.95.3.594] [PMID: 9024145]
[15]
Hoylaerts, M.; Rijken, D.C.; Lijnen, H.R.; Collen, D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J. Biol. Chem., 1982, 257(6), 2912-2919.
[http://dx.doi.org/10.1016/S0021-9258(19)81051-7] [PMID: 7199524]
[16]
Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Adams, R.J.; Berry, J.D.; Brown, T.M.; Carnethon, M.R.; Dai, S.; de Simone, G.; Ford, E.S.; Fox, C.S.; Fullerton, H.J.; Gillespie, C.; Greenlund, K.J.; Hailpern, S.M.; Heit, J.A.; Ho, P.M.; Howard, V.J.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Makuc, D.M.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McDermott, M.M.; Meigs, J.B.; Moy, C.S.; Mozaffarian, D.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Rosamond, W.D.; Sorlie, P.D.; Stafford, R.S.; Turan, T.N.; Turner, M.B.; Wong, N.D.; Wylie-Rosett, J. Heart disease and stroke statistics--2011 update: A report from the American Heart Association. Circulation, 2011, 123(4), e18-e209.
[http://dx.doi.org/10.1161/CIR.0b013e3182009701] [PMID: 21160056]
[17]
Shih, H.; Lee, B.; Lee, R.J.; Boyle, A.J. The aging heart and post-infarction left ventricular remodeling. J. Am. Coll. Cardiol., 2011, 57(1), 9-17.
[http://dx.doi.org/10.1016/j.jacc.2010.08.623] [PMID: 21185495]
[18]
Regitz-Zagrosek, V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat. Rev. Drug Discov., 2006, 5(5), 425-439.
[http://dx.doi.org/10.1038/nrd2032] [PMID: 16672926]
[19]
Hodis, H.N.; Mack, W.J. Hormone replacement therapy and the association with coronary heart disease and overall mortality: Clinical application of the timing hypothesis. J. Steroid Biochem. Mol. Biol., 2014, 142, 68-75.
[http://dx.doi.org/10.1016/j.jsbmb.2013.06.011] [PMID: 23851166]
[20]
Choi, Y.; Chang, Y.; Kim, B.K.; Kang, D.; Kwon, M.J.; Kim, C.W.; Jeong, C.; Ahn, Y.; Park, H.Y.; Ryu, S.; Cho, J. Menopausal stages and serum lipid and lipoprotein abnormalities in middle-aged women. Maturitas, 2015, 80(4), 399-405.
[http://dx.doi.org/10.1016/j.maturitas.2014.12.016] [PMID: 25631350]
[21]
Atsma, F.; Bartelink, M.L.E.L.; Grobbee, D.E.; van der Schouw, Y.T. Postmenopausal status and early menopause as independent risk factors for cardiovascular disease: A meta-analysis. Menopause, 2006, 13(2), 265-279.
[http://dx.doi.org/10.1097/01.gme.0000218683.97338.ea] [PMID: 16645540]
[22]
Turgeon, J.L.; McDonnell, D.P.; Martin, K.A.; Wise, P.M. Hormone therapy: Physiological complexity belies therapeutic simplicity. Science, 2004, 304(5675), 1269-1273.
[http://dx.doi.org/10.1126/science.1096725] [PMID: 15166356]
[23]
Fardoun, M.M.; Issa, K.; Maaliki, D.; Nasser, S.A.; Baydoun, E.; Eid, A.H. Estrogen increases expression of vascular alpha 2C adrenoceptor through the cAMP/Epac/JNK/AP-1 pathway and potentiates cold-induced vasoconstriction. Vascul. Pharmacol., 2020, 131, 106690.
[http://dx.doi.org/10.1016/j.vph.2020.106690] [PMID: 32407896]
[24]
Wehbe, Z.; Nasser, S.A.; El-Yazbi, A.; Nasreddine, S.; Eid, A.H. Estrogen and bisphenol A in hypertension. Curr. Hypertens. Rep., 2020, 22(3), 23.
[http://dx.doi.org/10.1007/s11906-020-1022-z] [PMID: 32114652]
[25]
Eid, A.H.; Maiti, K.; Mitra, S.; Chotani, M.A.; Flavahan, S.; Bailey, S.R.; Thompson-Torgerson, C.S.; Flavahan, N.A. Estrogen increases smooth muscle expression of α 2C -adrenoceptors and cold-induced constriction of cutaneous arteries. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(3), H1955-H1961.
[http://dx.doi.org/10.1152/ajpheart.00306.2007] [PMID: 17644575]
[26]
Thomas, P.; Pang, Y.; Filardo, E.J.; Dong, J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology, 2005, 146(2), 624-632.
[http://dx.doi.org/10.1210/en.2004-1064] [PMID: 15539556]
[27]
Fardoun, M.; Dehaini, H.; Shaito, A.; Mesmar, J.; El-Yazbi, A.; Badran, A.; Beydoun, E.; Eid, A.H. The hypertensive potential of estrogen: An untold story. Vascul. Pharmacol., 2020, 124, 106600.
[http://dx.doi.org/10.1016/j.vph.2019.106600] [PMID: 31629918]
[28]
Dehaini, H.; Fardoun, M.; Abou-Saleh, H.; El-Yazbi, A.; Eid, A.A.; Eid, A.H. Estrogen in vascular smooth muscle cells: A friend or a foe? Vascul. Pharmacol., 2018, 111, 15-21.
[http://dx.doi.org/10.1016/j.vph.2018.09.001] [PMID: 30227233]
[29]
Hutchens, M.P.; Nakano, T.; Kosaka, Y.; Dunlap, J.; Zhang, W.; Herson, P.S.; Murphy, S.J.; Anderson, S.; Hurn, P.D. Estrogen is renoprotective via a nonreceptor-dependent mechanism after cardiac arrest in vivo. Anesthesiology, 2010, 112(2), 395-405.
[http://dx.doi.org/10.1097/ALN.0b013e3181c98da9] [PMID: 20068453]
[30]
Chakrabarti, S.; Morton, J.S.; Davidge, S.T. Mechanisms of estrogen effects on the endothelium: An overview. Can. J. Cardiol., 2014, 30(7), 705-712.
[http://dx.doi.org/10.1016/j.cjca.2013.08.006] [PMID: 24252499]
[31]
Takada, Y.; Kato, C.; Kondo, S.; Korenaga, R.; Ando, J. Cloning of cDNAs encoding G protein-coupled receptor expressed in human endothelial cells exposed to fluid shear stress. Biochem. Biophys. Res. Commun., 1997, 240(3), 737-741.
[http://dx.doi.org/10.1006/bbrc.1997.7734] [PMID: 9398636]
[32]
Filardo, E.J.; Quinn, J.A.; Bland, K.I.; Frackelton, A.R., Jr Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol., 2000, 14(10), 1649-1660.
[http://dx.doi.org/10.1210/mend.14.10.0532] [PMID: 11043579]
[33]
Zimmerman, M.A.; Budish, R.A.; Kashyap, S.; Lindsey, S.H. GPER–novel membrane oestrogen receptor. Clin. Sci., 2016, 130(12), 1005-1016.
[http://dx.doi.org/10.1042/CS20160114]
[34]
Meyer, M.R.; Amann, K.; Field, A.S.; Hu, C.; Hathaway, H.J.; Kanagy, N.L.; Walker, M.K.; Barton, M.; Prossnitz, E.R. Deletion of G protein-coupled estrogen receptor increases endothelial vasoconstriction. Hypertension, 2012, 59(2), 507-512.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.184606] [PMID: 22203741]
[35]
Prabhushankar, R.; Krueger, C.; Manrique, C. Membrane estrogen receptors: Their role in blood pressure regulation and cardiovascular disease. Curr. Hypertens. Rep., 2014, 16(1), 408.
[http://dx.doi.org/10.1007/s11906-013-0408-6] [PMID: 24343167]
[36]
Barton, M.; Prossnitz, E.R. Emerging roles of GPER in diabetes and atherosclerosis. Trends Endocrinol. Metab., 2015, 26(4), 185-192.
[http://dx.doi.org/10.1016/j.tem.2015.02.003] [PMID: 25767029]
[37]
Burke, A.P.; Farb, A.; Malcom, G.; Virmani, R. Effect of menopause on plaque morphologic characteristics in coronary atherosclerosis. Am. Heart J., 2001, 141(S2), S58-S62.
[http://dx.doi.org/10.1067/mhj.2001.109946] [PMID: 11174360]
[38]
Sever, R.; Glass, C.K. Signaling by nuclear receptors. Cold Spring Harb. Perspect. Biol., 2013, 5(3), a016709.
[http://dx.doi.org/10.1101/cshperspect.a016709] [PMID: 23457262]
[39]
Klinge, C.M.; Blankenship, K.A.; Risinger, K.E.; Bhatnagar, S.; Noisin, E.L.; Sumanasekera, W.K.; Zhao, L.; Brey, D.M.; Keynton, R.S. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J. Biol. Chem., 2005, 280(9), 7460-7468.
[http://dx.doi.org/10.1074/jbc.M411565200] [PMID: 15615701]
[40]
Cunningham, K.S.; Gotlieb, A.I. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Invest., 2005, 85(1), 9-23.
[http://dx.doi.org/10.1038/labinvest.3700215] [PMID: 15568038]
[41]
Kaplan, J.R.; Manuck, S.B. Premenopausal reproductive health modulates future cardiovascular risk - comparative evidence from monkeys and women. Yale J. Biol. Med., 2017, 90(3), 499-507.
[PMID: 28955188]
[42]
Fairweather, D. Sex differences in inflammation during atherosclerosis. Clin. Med. Insights Cardiol., 2015, 8(S3), 49-59.
[PMID: 25983559]
[43]
Saha, K.R.; Rahman, M.M.; Paul, A.R.; Das, S.; Haque, S.; Jafrin, W.; Mia, A.R. Changes in lipid profile of postmenopausal women. Mymensingh Med. J., 2013, 22(4), 706-711.
[PMID: 24292300]
[44]
Vaisar, T.; Gordon, J.L.; Wimberger, J.; Heinecke, J.W.; Hinderliter, A.L.; Rubinow, D.R.; Girdler, S.S.; Rubinow, K.B. Perimenopausal transdermal estradiol replacement reduces serum HDL cholesterol efflux capacity but improves cardiovascular risk factors. J. Clin. Lipidol., 2021, 15(1), 151-161.e0.
[http://dx.doi.org/10.1016/j.jacl.2020.11.009] [PMID: 33288437]
[45]
Lee, J.Y.; Hyun, H.S.; Park, H.G.; Seo, J.H.; Lee, E.Y.; Lee, J.S.; Lee, D.Y.; Choi, D.S.; Yoon, B.K. Effects of hormone therapy on serum lipid levels in postmenopausal korean women. J. Menopausal Med., 2015, 21(2), 104-111.
[http://dx.doi.org/10.6118/jmm.2015.21.2.104] [PMID: 26357648]
[46]
Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; Nordestgaard, B.G.; Watts, G.F.; Bruckert, E.; Fazio, S.; Ference, B.A.; Graham, I.; Horton, J.D.; Landmesser, U.; Laufs, U.; Masana, L.; Pasterkamp, G.; Raal, F.J.; Ray, K.K.; Schunkert, H.; Taskinen, M.R.; van de Sluis, B.; Wiklund, O.; Tokgozoglu, L.; Catapano, A.L.; Ginsberg, H.N. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J., 2020, 41(24), 2313-2330.
[http://dx.doi.org/10.1093/eurheartj/ehz962] [PMID: 32052833]
[47]
Langer, G.; Bader, B.; Meoli, L.; Isensee, J.; Delbeck, M.; Noppinger, P.R.; Otto, C.J.S. A critical review of fundamental controversies in the field of GPR30 research. Steroids., 2010, 75(8-9), 603-610.
[http://dx.doi.org/10.1016/j.steroids.2009.12.006]
[48]
Meyer, M.R.; Fredette, N.C.; Howard, T.A.; Hu, C.; Ramesh, C.; Daniel, C.; Amann, K.; Arterburn, J.B.; Barton, M.; Prossnitz, E.R. G protein-coupled estrogen receptor protects from atherosclerosis. Sci. Rep., 2014, 4(1), 7564.
[http://dx.doi.org/10.1038/srep07564] [PMID: 25532911]
[49]
Hussain, Y.; Ding, Q.; Connelly, P.W.; Brunt, J.H.; Ban, M.R.; McIntyre, A.D.; Huff, M.W.; Gros, R.; Hegele, R.A.; Feldman, R.D. G-protein estrogen receptor as a regulator of low-density lipoprotein cholesterol metabolism: Cellular and population genetic studies. Arterioscler. Thromb. Vasc. Biol., 2015, 35(1), 213-221.
[http://dx.doi.org/10.1161/ATVBAHA.114.304326] [PMID: 25395619]
[50]
Fu, W.; Gao, X.P.; Zhang, S.; Dai, Y.P.; Zou, W.J.; Yue, L.M. 17β-estradiol inhibits pcsk9-mediated LDLR degradation through GPER/PLC activation in HepG2 Cells. Front. Endocrinol., 2020, 10, 930-930.
[http://dx.doi.org/10.3389/fendo.2019.00930] [PMID: 32082252]
[51]
Ding, Q.; Gros, R.; Limbird, L.E.; Chorazyczewski, J.; Feldman, R.D.J.A.J.o.P.-C.P. Estradiol-mediated ERK phosphorylation and apoptosis in vascular smooth muscle cells requires GPR 30. Am. J. Physiol. Cell Physiol., 2009, 297(5), C1178-C1187.
[http://dx.doi.org/10.1152/ajpcell.00185.2009] [PMID: 19741198]
[52]
Gros, R.; Hussain, Y.; Chorazyczewski, J.; Pickering, J.G.; Ding, Q.; Feldman, R.D.J.H. Extent of vascular remodeling is dependent on the balance between estrogen receptor α and G-protein–coupled estrogen receptor. Hypertension., 2016, 68(5), 1225-1235.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07859]
[53]
Sharma, G.; Prossnitz, E.R. Targeting the G protein-coupled estrogen receptor (GPER) in obesity and diabetes. Endo. Metab. Sci., 2021, 2, 100080.
[http://dx.doi.org/10.1016/j.endmts.2021.100080] [PMID: 35321004]
[54]
Haas, E.; Bhattacharya, I.; Brailoiu, E.; Damjanović, M.; Brailoiu, G.C.; Gao, X.; Mueller-Guerre, L.; Marjon, N.A.; Gut, A.; Minotti, R.; Meyer, M.R.; Amann, K.; Ammann, E.; Perez-Dominguez, A.; Genoni, M.; Clegg, D.J.; Dun, N.J.; Resta, T.C.; Prossnitz, E.R.; Barton, M. Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ. Res., 2009, 104(3), 288-291.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.190892] [PMID: 19179659]
[55]
Sharma, G.; Hu, C.; Brigman, J.L.; Zhu, G.; Hathaway, H.J.; Prossnitz, E.R. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state. Endocrinology, 2013, 154(11), 4136-4145.
[http://dx.doi.org/10.1210/en.2013-1357] [PMID: 23970785]
[56]
Davis, K.E.; Carstens, E.J.; Irani, B.G.; Gent, L.M.; Hahner, L.M.; Clegg, D.J. Sexually dimorphic role of G protein-coupled estrogen receptor (GPER) in modulating energy homeostasis. Horm. Behav., 2014, 66(1), 196-207.
[http://dx.doi.org/10.1016/j.yhbeh.2014.02.004] [PMID: 24560890]
[57]
Sharma, G.; Hu, C.; Staquicini, D.I.; Brigman, J.L.; Liu, M.; Mauvais-Jarvis, F.; Pasqualini, R.; Arap, W.; Arterburn, J.B.; Hathaway, H.J.; Prossnitz, E.R. Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes. Sci. Transl. Med., 2020, 12(528), eaau5956.
[http://dx.doi.org/10.1126/scitranslmed.aau5956] [PMID: 31996464]
[58]
Mårtensson, U.E.A.; Salehi, S.A.; Windahl, S.; Gomez, M.F.; Swärd, K.; Daszkiewicz-Nilsson, J.; Wendt, A.; Andersson, N.; Hellstrand, P.; Grände, P.O.; Owman, C.; Rosen, C.J.; Adamo, M.L.; Lundquist, I.; Rorsman, P.; Nilsson, B.O.; Ohlsson, C.; Olde, B.; Leeb-Lundberg, L.M.F. Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology, 2009, 150(2), 687-698.
[http://dx.doi.org/10.1210/en.2008-0623] [PMID: 18845638]
[59]
Muller, C.; Brown-Glaberman, U.A.; Chaney, M.F.; Garyantes, T.; LoRusso, P.; McQuade, J.L.; Mita, A.C.; Mita, M.M.; Natale, C.; Orloff, M.; Papadopoulos, K.P.; Sato, T.; Yilmaz, E.; Rodon, J. Phase 1 trial of a novel, first-in-class G protein-coupled estrogen receptor (GPER) agonist, LNS8801, in patients with advanced or recurrent treatment-refractory solid malignancies. J. Clin. Oncol., 2021, 39(S15), 3084-3084.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.3084]
[60]
Beyoğlu, A.; Kurutaş, E.B.; Karaküçük, Y.; Çömez, A.; Meşen, A. Comparing the effects of serum GPER-1 and oxidant/antioxidant levels on retinopathy in patients with diabetes and healthy individuals: a pilot study. Arq. Bras. Oftalmol., 2022, S0004-27492022005008205.
[PMID: 35857982]
[61]
Kastenberger, I.; Lutsch, C.; Schwarzer, C. Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol. Psychopharmacology, 2012, 221(3), 527-535.
[http://dx.doi.org/10.1007/s00213-011-2599-3] [PMID: 22143579]
[62]
Sarma, S.; Sockalingam, S.; Dash, S. Obesity as a MULTISYSTEM disease: Trends in obesity rates and OBESITY‐RELATED complications. Diabetes Obes. Metab., 2021, 23(S1), 3-16.
[http://dx.doi.org/10.1111/dom.14290] [PMID: 33621415]
[63]
Sandesara, P.B.; Virani, S.S.; Fazio, S.; Shapiro, M.D. The forgotten lipids: Triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr. Rev., 2019, 40(2), 537-557.
[http://dx.doi.org/10.1210/er.2018-00184] [PMID: 30312399]
[64]
Huang, D.; Wang, X.; Zhu, Y.; Gong, J.; Liang, J.; Song, Y.; Zhang, Y.; Liu, L.; Wei, C. Bazi bushen capsule alleviates post-menopausal atherosclerosis via gper1-dependent anti-inflammatory and anti-apoptotic effects. Front. Pharmacol., 2021, 12, 658998.
[http://dx.doi.org/10.3389/fphar.2021.658998] [PMID: 34248622]
[65]
Beral, V.; Bull, D.; Reeves, G. Endometrial cancer and hormone-replacement therapy in the Million Women Study. Lancet, 2005, 365(9470), 1543-1551.
[http://dx.doi.org/10.1016/S0140-6736(05)66455-0] [PMID: 15866308]
[66]
Furness, S.; Roberts, H.; Marjoribanks, J.; Lethaby, A. Hormone therapy in postmenopausal women and risk of endometrial hyperplasia. Cochrane Database Syst. Rev., 2012, 2012(8), CD000402.
[http://dx.doi.org/10.1002/14651858.CD000402.pub4]
[67]
Wildemeersch, D. Why perimenopausal women should consider to use a levonorgestrel intrauterine system. Gynecol. Endocrinol., 2016, 32(8), 659-661.
[http://dx.doi.org/10.3109/09513590.2016.1153056] [PMID: 26930021]
[68]
Pinkerton, J.V.; Pickar, J.H.; Racketa, J.; Mirkin, S. Bazedoxifene/conjugated estrogens for menopausal symptom treatment and osteoporosis prevention. Climacteric, 2012, 15(5), 411-418.
[http://dx.doi.org/10.3109/13697137.2012.696289] [PMID: 22853444]
[69]
Singh, G.; Puckett, Y. Endometrial Hyperplasia. In StatPearls; StatPearls Publishing Copyright© 2022; StatPearls Publishing LLC: Treasure Island, FL, 2022.
[70]
Hamoda, H.; Panay, N.; Pedder, H.; Arya, R.; Savvas, M. The british menopause society & women’s health concern 2020 recommendations on hormone replacement therapy in menopausal women. Post Reprod. Health, 2020, 26(4), 181-209.
[http://dx.doi.org/10.1177/2053369120957514] [PMID: 33045914]
[71]
Gompel, A. Progesterone and endometrial cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2020, 69, 95-107.
[http://dx.doi.org/10.1016/j.bpobgyn.2020.05.003] [PMID: 32732107]
[72]
De Medeiros, S.F.; Yamamoto, M.M.W.; Barbosa, J.S. Abnormal bleeding during menopause hormone therapy: insights for clinical management. Clin. Med. Insights Womens Health, 2013, 6, CMWH.S10483.
[http://dx.doi.org/10.4137/CMWH.S10483] [PMID: 24665210]
[73]
Edwards, M.; Can, A.S. In StatPearls; StatPearls Publishing Copyright© 2022; StatPearls Publishing LLC: Treasure Island, FL, 2022.
[74]
Mu, E.; Kulkarni, J. Hormonal contraception and mood disorders. Aust. Prescr., 2022, 45(3), 75-79.
[http://dx.doi.org/10.18773/austprescr.2022.025] [PMID: 35755988]
[75]
Dennis, M.K.; Burai, R.; Ramesh, C.; Petrie, W.K.; Alcon, S.N.; Nayak, T.K.; Bologa, C.G.; Leitao, A.; Brailoiu, E.; Deliu, E.; Dun, N.J.; Sklar, L.A.; Hathaway, H.J.; Arterburn, J.B.; Oprea, T.I.; Prossnitz, E.R. In vivo effects of a GPR30 antagonist. Nat. Chem. Biol., 2009, 5(6), 421-427.
[http://dx.doi.org/10.1038/nchembio.168] [PMID: 19430488]
[76]
Barton, M. Position paper: The membrane estrogen receptor GPER – Clues and questions. Steroids, 2012, 77(10), 935-942.
[http://dx.doi.org/10.1016/j.steroids.2012.04.001] [PMID: 22521564]
[77]
DeLeon, C.; Wang, D.Q.H.; Arnatt, C.K. G protein-coupled estrogen receptor, GPER1, offers a novel target for the treatment of digestive diseases. Front. Endocrinol., 2020, 11, 578536.
[http://dx.doi.org/10.3389/fendo.2020.578536] [PMID: 33281743]
[78]
Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol., 2019, 116, 135-170.
[http://dx.doi.org/10.1016/bs.apcsb.2019.01.001] [PMID: 31036290]
[79]
Rodriguez, A.C.; Blanchard, Z.; Maurer, K.A.; Gertz, J. Estrogen signaling in endometrial cancer: A key oncogenic pathway with several open questions. Horm. Cancer, 2019, 10(2-3), 51-63.
[http://dx.doi.org/10.1007/s12672-019-0358-9] [PMID: 30712080]
[80]
Krakstad, C.; Trovik, J.; Wik, E.; Engelsen, I.B.; Werner, H.M.J.; Birkeland, E.; Raeder, M.B.; Øyan, A.M.; Stefansson, I.M.; Kalland, K.H.; Akslen, L.A.; Salvesen, H.B. Loss of GPER identifies new targets for therapy among a subgroup of ERα-positive endometrial cancer patients with poor outcome. Br. J. Cancer, 2012, 106(10), 1682-1688.
[http://dx.doi.org/10.1038/bjc.2012.91] [PMID: 22415229]
[81]
Skrzypczak, M.; Schüler, S.; Lattrich, C.; Ignatov, A.; Ortmann, O.; Treeck, O. G protein-coupled estrogen receptor (GPER) expression in endometrial adenocarcinoma and effect of agonist G-1 on growth of endometrial adenocarcinoma cell lines. Steroids, 2013, 78(11), 1087-1091.
[http://dx.doi.org/10.1016/j.steroids.2013.07.007] [PMID: 23921077]
[82]
Levine, D.A.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; Benz, C.C.; Yau, C.; Laird, P.W.; Ding, L.; Zhang, W.; Mills, G.B.; Kucherlapati, R.; Mardis, E.R.; Levine, D.A. Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497(7447), 67-73.
[http://dx.doi.org/10.1038/nature12113] [PMID: 23636398]
[83]
Kim, K.H.; Bender, J.R. Rapid, estrogen receptor-mediated signaling: Why is the endothelium so special? Sci. STKE, 2005, 2005(288), pe28.
[http://dx.doi.org/10.1126/stke.2882005pe28] [PMID: 15956360]
[84]
Otto, C.; Fuchs, I.; Kauselmann, G.; Kern, H.; Zevnik, B.; Andreasen, P.; Schwarz, G.; Altmann, H.; Klewer, M.; Schoor, M.; Vonk, R.; Fritzemeier, K.H. GPR30 does not mediate estrogenic responses in reproductive organs in mice. Biol. Reprod., 2009, 80(1), 34-41.
[http://dx.doi.org/10.1095/biolreprod.108.071175] [PMID: 18799753]
[85]
Isensee, J.; Meoli, L.; Zazzu, V.; Nabzdyk, C.; Witt, H.; Soewarto, D.; Effertz, K.; Fuchs, H.; Gailus-Durner, V.; Busch, D.; Adler, T.; de Angelis, M.H.; Irgang, M.; Otto, C.; Noppinger, P.R. Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice. Endocrinology, 2009, 150(4), 1722-1730.
[http://dx.doi.org/10.1210/en.2008-1488] [PMID: 19095739]
[86]
Fardoun, M.; Mondello, S.; Kobeissy, F.; Eid, A.H. G protein estrogen receptor as a potential therapeutic target in Raynaud’s phenomenon. Front. Pharmacol., 2022, 13, 1061374.
[http://dx.doi.org/10.3389/fphar.2022.1061374] [PMID: 36438809]