Drug Metabolism and Bioanalysis Letters

Author(s): Manu Singhai and Sankha Bhattacharya*

DOI: 10.2174/2949681016666230501172824

Bigels; A Charismatic Drug Delivery Formulation

Page: [27 - 49] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Bigels are a novel concept in contrast to previous gel formulations. To look like one gel, bigels are made by merging two gel phases at high shear rates. Colloidal gels can be the same (as in water-in-water bigels, which are phase-separated systems), the same but different, or a combination of a hydrogel and an oleogel. These colloidal gels are utilized to construct bigels (oleogel-in-hydrogel bigels or hydrogel-in-oleogel bigels). Bigels have appealing qualities like hydrophilic and hydrophobic properties, improved spreadability, improved drug penetration, higher stratum corneum hydration, and the capacity to control the drug release rate. Bigels' mechanical, structural, thermal, physical, rheological, and electrical properties are crucial to their practical and successful use in a variety of commercial applications. In this compilation, we have talked about the convenience and interest of bigels as a formulation for novel applications in the pharmaceutical, cosmetic, and food industries. The use of several notable bigels is also discussed in the paper. The Bigels are widely utilized in the food and pharmaceutical industries as well. The Bigels are now being researched as possible drug delivery matrices.

[1]
Rehman, K.; Zulfakar, M.H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm., 2014, 40(4), 433-440.
[http://dx.doi.org/10.3109/03639045.2013.828219] [PMID: 23937582]
[2]
Esposito, C.L.; Roullin, V.G.; Kirilov, P. Encapsulation of food ingredients by nanoorganogels (nanooleogels). In: Lipid-Based Nanostructures for Food Encapsulation Purposes; Academic Press: Cambridge, USA, 2019; pp. 271-343.
[http://dx.doi.org/10.1016/B978-0-12-815673-5.00008-8]
[3]
Maatar, W.; Alila, S.; Boufi, S. Cellulose based organogel as an adsorbent for dissolved organic compounds. Ind. Crops Prod., 2013, 49, 33-42.
[http://dx.doi.org/10.1016/j.indcrop.2013.04.022]
[4]
Behera, B.; Singh, V.K.; Kulanthaivel, S.; Bhattacharya, M.K.; Paramanik, K.; Banerjee, I.; Pal, K. Physical and mechanical properties of sunflower oil and synthetic polymers based bigels for the delivery of nitroimidazole antibiotic – A therapeutic approach for controlled drug delivery. Eur. Polym. J., 2015, 64, 253-264.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.01.018]
[5]
Andonova, V.Y.; Peneva, P.T.; Apostolova, E.G.; Dimcheva, T.D.; Peychev, Z.L.; Kassarova, M.I. Carbopol hydrogel/sorbitan monostearate-almond oil based organogel biphasic formulations: Preparation and characterization of the bigels. Trop. J. Pharm. Res., 2017, 16(7), 1455-1463.
[http://dx.doi.org/10.4314/tjpr.v16i7.1]
[6]
Singh, V.K. Polymeric Gels; Elsevier: Amsterdam, 2018, pp. 265-282.
[7]
Singh, V.K.; Banerjee, I.; Agarwal, T.; Pramanik, K.; Bhattacharya, M.K.; Pal, K. Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids Surf. B Biointerfaces, 2014, 123, 582-592.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.056] [PMID: 25444661]
[8]
Mitura, S.; Sionkowska, A.; Jaiswal, A. Biopolymers for hydrogels in cosmetics. review. J. Mater. Sci. Mater. Med., 2020, 31(6), 50.
[http://dx.doi.org/10.1007/s10856-020-06390-w] [PMID: 32451785]
[9]
Martinez, R.M.; Rosado, C.; Velasco, M.V.R.; Lannes, S.C.S.; Baby, A.R. Main features and applications of organogels in cosmetics. Int. J. Cosmet. Sci., 2019, 41(2), 109-117.
[http://dx.doi.org/10.1111/ics.12519] [PMID: 30994939]
[10]
Lupi, F.R.; Gentile, L.; Gabriele, D.; Mazzulla, S.; Baldino, N.; de Cindio, B. Olive oil and hyperthermal water bigels for cosmetic uses. J. Colloid Interface Sci., 2015, 459, 70-78.
[http://dx.doi.org/10.1016/j.jcis.2015.08.013] [PMID: 26263497]
[11]
Esposito, C.L.; Kirilov, P.; Roullin, V.G. Organogels, promising drug delivery systems: An update of state-of-the-art and recent applications. J. Control. Release, 2018, 271, 1-20.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.019] [PMID: 29269143]
[12]
Charyulu, R.N.; Muaralidharan, A.; Sandeep, D.S. Design and evaluation of bigels containing flurbiprofen. Res. J. Pharm. Technol., 2018, 11(1), 143-152.
[http://dx.doi.org/10.5958/0974-360X.2018.00028.8]
[13]
Assadpour, E.; Jafari, S.M. An overview of lipid-based nanostructures for encapsulation of food ingredients. In: Lipid-Based Nanostructures For Food Encapsulation Purposes; Academic Press: Cambridge, USA, 2019; pp. 1-34.
[http://dx.doi.org/10.1016/B978-0-12-815673-5.00001-5]
[14]
Shakeel, A.; Lupi, F.R.; Gabriele, D.; Baldino, N.; De Cindio, B. Bigels: A unique class of materials for drug delivery applications. Soft Mater., 2018, 16(2), 77-93.
[http://dx.doi.org/10.1080/1539445X.2018.1424638]
[15]
Zheng, H.; Mao, L.; Cui, M.; Liu, J.; Gao, Y. Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocoll., 2020, 105, 105855.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105855]
[16]
Hamed, R.; AbuRezeq, A.; Tarawneh, O. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis. Drug Dev. Ind. Pharm., 2018, 44(9), 1488-1497.
[http://dx.doi.org/10.1080/03639045.2018.1464021] [PMID: 29669437]
[17]
Bollom, M.A.; Clark, S.; Acevedo, N.C. Development and characterization of a novel soy lecithin-stearic acid and whey protein concentrate bigel system for potential edible applications. Food Hydrocoll., 2020, 101, 105570.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105570]
[18]
Tomczykowa, M.; Wróblewska, M.; Winnicka, K.; Wieczorek, P.; Majewski, P. Celińska-Janowicz, K.; Sawczuk, R.; Miltyk, W.; Tryniszewska, E.; Tomczyk, M. Novel gel formulations as topical carriers for the essential oil of bidens tripartita for the treatment of candidiasis. Molecules, 2018, 23(10), 2517.
[http://dx.doi.org/10.3390/molecules23102517] [PMID: 30275354]
[19]
Kodela, S.P.; Pandey, P.M.; Nayak, S.K.; Uvanesh, K.; Anis, A.; Pal, K. Novel agar–stearyl alcohol oleogel-based bigels as structured delivery vehicles. Int. J. Polym. Mater., 2017, 66(13), 669-678.
[http://dx.doi.org/10.1080/00914037.2016.1252362]
[20]
Lupi, F.R.; Shakeel, A.; Greco, V.; Oliviero Rossi, C.; Baldino, N.; Gabriele, D. A rheological and microstructural characterisation of bigels for cosmetic and pharmaceutical uses. Mater. Sci. Eng. C, 2016, 69, 358-365.
[http://dx.doi.org/10.1016/j.msec.2016.06.098]
[21]
Andonova, V.; Peneva, P.; Georgiev, G.S.; Toncheva, V.T.; Apostolova, E.; Peychev, Z.; Dimitrova, S.; Katsarova, M.; Petrova, N.; Kassarova, M. Ketoprofen-loaded polymer carriers in bigel formulation: An approach to enhancing drug photostability in topical application forms. Int. J. Nanomed, 2017, 12, 6221-6238.
[http://dx.doi.org/10.2147/IJN.S140934] [PMID: 28894363]
[22]
Martín-Illana, A.; Cazorla-Luna, R.; Notario-Pérez, F.; Bedoya, L.M.; Ruiz-Caro, R.; Veiga, M.D. Freeze-dried bioadhesive vaginal bigels for controlled release of Tenofovir. Eur. J. Pharm. Sci., 2019, 127, 38-51.
[http://dx.doi.org/10.1016/j.ejps.2018.10.013] [PMID: 30343152]
[23]
Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials. Review. Prog. Polym. Sci., 2011, 36(9), 1254-1276.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.05.003]
[24]
Libster, D.; Aserin, A.; Garti, N. Oleogels based on nonlamellar lyotropic liquid crystalline structures for food applications. Edible Oleogels; Elsevier: Amsterdam, 2018, pp. 249-283.
[http://dx.doi.org/10.1016/B978-0-12-814270-7.00011-3]
[25]
Shahzamani, M.; Taheri, S.; Roghanizad, A.; Naseri, N.; Dinari, M. Preparation and characterization of hydrogel nanocomposite based on nanocellulose and acrylic acid in the presence of urea. Int. J. Biol. Macromol., 2020, 147, 187-193.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.038] [PMID: 31917218]
[26]
Heras, D.l.; Tavares, J.M.; da Gama, M.M.T. Bicontinuous and mixed gels in binary mixtures of patchy colloidal particles. Soft Matter, 2012, 8(6), 1785-1794.
[27]
Behera, B. Preparation and evaluation of sorbitan monopalmitate and sunflower oil based biphasic formulation as matrices for controlled delivery; National institute of technology: Rourkela, 2014.
[28]
Zulfakar, M.H.; Chan, L.M.; Rehman, K.; Wai, L.K.; Heard, C.M. Coenzyme Q10-loaded fish oil-based bigel system: probing the delivery across porcine skin and possible interaction with fish oil fatty acids. AAPS PharmSciTech, 2018, 19, 1116-1123.
[http://dx.doi.org/10.1208/s12249-017-0923-x]
[29]
Behera, B. Preparation and evaluation of sorbitan monopalmitate and sunflower oil-based biphasic formulation as matrices for controlled delivery. Biol. Mat. Sci., 2016.
[30]
Sagiri, S.S.; Singh, V.K.; Kulanthaivel, S.; Banerjee, I.; Basak, P.; Battachrya, M.K.; Pal, K. Stearate organogel–gelatin hydrogel based bigels: Physicochemical, thermal, mechanical characterizations and in vitro drug delivery applications. J. Mech. Behav. Biomed. Mater., 2015, 43, 1-17.
[http://dx.doi.org/10.1016/j.jmbbm.2014.11.026] [PMID: 25549573]
[31]
Gyles, D.A.; Castro, L.D.; Silva, J.O.C., Jr; Ribeiro-Costa, R.M. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J., 2017, 88, 373-392.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.01.027]
[32]
Caccavo, D. An overview on the mathematical modeling of hydrogels’ behavior for drug delivery systems. Int. J. Pharm., 2019, 560, 175-190.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.076] [PMID: 30763681]
[33]
Larrañeta, E.; Stewart, S.; Ervine, M.; Al-Kasasbeh, R.; Donnelly, R. Hydrogels for hydrophobic drug delivery. Classification, synthesis, and applications. J. Funct. Biomater., 2018, 9(1), 13.
[http://dx.doi.org/10.3390/jfb9010013] [PMID: 29364833]
[34]
Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C, 2017, 79, 958-971.
[http://dx.doi.org/10.1016/j.msec.2017.05.096] [PMID: 28629101]
[35]
parhi, R. Cross-linked hydrogel for pharmaceutical applications: A review. Adv. Pharm. Bull., 2017, 7(4), 515-530.
[http://dx.doi.org/10.15171/apb.2017.064] [PMID: 29399542]
[36]
Onaciu, A.; Munteanu, R.A.; Moldovan, A.I.; Moldovan, C.S.; Berindan-Neagoe, I. Hydrogels based drug delivery synthesis, characterization, and administration. Pharmaceutics, 2019, 11(9), 432.
[http://dx.doi.org/10.3390/pharmaceutics11090432] [PMID: 31450869]
[37]
Delmar, K.; Bianco-Peled, H. Composite chitosan hydrogels for extended release of hydrophobic drugs. Carbohydr. Polym., 2016, 136, 570-580.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.072] [PMID: 26572389]
[38]
Moshe, H.; Davizon, Y.; Menaker, R. M.; Sosnik, A. Novel poly(vinyl alcohol)-based amphiphilic nanogels by non-covalent boric acid crosslinking of polymeric micelles. Biomater. Sci., 2017, 5(11), 2295-2309.
[http://dx.doi.org/10.1039/C7BM00675F] [PMID: 29019482]
[39]
Oliveira, C. V.M.; Stringhetti, F. C., B.; Evangelista, R.C.; Daflon Gremião, M.P. Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications. J. Mech. Behav. Biomed. Mater., 2017, 65, 317-333.
[http://dx.doi.org/10.1016/j.jmbbm.2016.08.005] [PMID: 27631170]
[40]
Sharma, S.; Tiwari, S. A review on biomacromolecular hydrogel classification and its applications. Int. J. Biol. Macromol., 2020, 162, 737-747.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.110] [PMID: 32553961]
[41]
Shang, J.; Theato, P. Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation. Soft Matter, 2018, 14(41), 8401-8407.
[http://dx.doi.org/10.1039/C8SM01728J] [PMID: 30311935]
[42]
Wang, X.L.; Yao, H-F.; Li, X-Y.; Wang, X.; Huang, Y-P.; Liu, Z-S. pH/temperature-sensitive hydrogel-based molecularly imprinted polymers (hydroMIPs) for drug delivery by frontal polymerization. RSC Adv, 2016, 6(96), 94038-94047.
[http://dx.doi.org/10.1039/C6RA20626C]
[43]
Wang, D.; Zhu, L.; Qiu, J.; Zhu, P. Poly(acrylic acid)/palygorskite microgel via radical polymerization in aqueous phase for reinforcing poly(vinyl alcohol) hydrogel. Appl. Clay Sci., 2020, 185, 105421.
[http://dx.doi.org/10.1016/j.clay.2019.105421]
[44]
Sung, Y.; Kim, T.H.; Lee, B. Syntheses of carboxymethylcellulose/graphene nanocomposite superabsorbent hydrogels with improved gel properties using electron beam radiation. Macromol. Res., 2016, 24(2), 143-151.
[http://dx.doi.org/10.1007/s13233-016-4020-x]
[45]
Klinpituksa, P.; Kosaiyakanon, P. Superabsorbent polymer based on sodium carboxymethyl cellulose grafted polyacrylic acid by inverse suspension polymerization. Int. J. Polymer Sci., 2017, 2017, 3476921.
[http://dx.doi.org/10.1155/2017/3476921]
[46]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[47]
Papadaki, A.; Kopsahelis, N.; Mallouchos, A.; Mandala, I.; Koutinas, A.A. Bioprocess development for the production of novel oleogels from soybean and microbial oils. Food Res. Int., 2019, 126, 108684.
[http://dx.doi.org/10.1016/j.foodres.2019.108684] [PMID: 31732046]
[48]
Valoppi, F.; Calligaris, S.; Marangoni, A.G. Stearyl Alcohol Oleogels. Edible Oleogels; Elsevier: Amsterdam, 2018, pp. 219-234.
[http://dx.doi.org/10.1016/B978-0-12-814270-7.00009-5]
[49]
Scharfe, M.; Ahmane, Y.; Seilert, J.; Keim, J.; Flöter, E. On the Effect of Minor Oil Components on β-Sitosterol/γ-oryzanol Oleogels. Eur. J. Lipid Sci. Technol., 2019, 121(8), 1800487.
[http://dx.doi.org/10.1002/ejlt.201800487]
[50]
Sagiri, S.S.; Rao, K. Natural and bioderived molecular gelator–based oleogels and their applications. Biopolymer-Based Formulations; Elsevier: Amsterdam, 2020, pp. 513-559.
[http://dx.doi.org/10.1016/B978-0-12-816897-4.00022-9]
[51]
Patel, A.R. Innovative dispersion strategies for creating structured oil systems. In: Edible Oil Structuring; Royal Society of Chemistry: London, UK, 2017; pp. 308-330.
[http://dx.doi.org/10.1039/9781788010184-00308]
[52]
Satapathy, S.; Singh, V.K.; Sagiri, S.S.; Agarwal, T.; Banerjee, I.; Bhattacharya, M.K.; Kumar, N.; Pal, K. Development and characterization of gelatin-based hydrogels, emulsion hydrogels, and bigels: A comparative study. J. Appl. Polym. Sci., 2015, 132(8) n/a.
[http://dx.doi.org/10.1002/app.41502]
[53]
Wakhet, S.; Singh, V.K.; Sahoo, S.; Sagiri, S.S.; Kulanthaivel, S.; Bhattacharya, M.K.; Kumar, N.; Banerjee, I.; Pal, K. Characterization of gelatin–agar based phase separated hydrogel, emulgel and bigel: A comparative study. J. Mater. Sci. Mater. Med., 2015, 26(2), 118.
[http://dx.doi.org/10.1007/s10856-015-5434-2] [PMID: 25672596]
[54]
Ibrahim, M.M.; Hafez, S.A.; Mahdy, M.M. Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride. Asian J. Pharm. Sci., 2013, 8(1), 48-57.
[55]
Rehman, K.; Mohd Amin, M.C.I.; Zulfakar, M.H. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle. J. Oleo Sci., 2014, 63(10), 961-970.
[http://dx.doi.org/10.5650/jos.ess14101] [PMID: 25252741]
[56]
Shakeel, A.; Farooq, U.; Iqbal, T.; Yasin, S.; Lupi, F.R.; Gabriele, D. Key characteristics and modelling of bigels systems: A review. Mater. Sci. Eng. C, 2019, 97, 932-953.
[http://dx.doi.org/10.1016/j.msec.2018.12.075] [PMID: 30678982]
[57]
Rehman, K.; Zulfakar, M.H. Novel fish oil-based bigel system for Controlled drug delivery and its influence on immunomodulatory activity of imiquimod against skin cancer. Pharm. Res., 2017, 34(1), 36-48.
[http://dx.doi.org/10.1007/s11095-016-2036-8] [PMID: 27620176]
[58]
Khelifi, I.; Saada, M.; Hayouni, E.A.; Tourette, A.; Bouajila, J.; Ksouri, R. Development and characterization of novel bigel-based 1,4-naphthoquinones for topical application with antioxidant potential. Arab. J. Sci. Eng., 2020, 45(1), 53-61.
[http://dx.doi.org/10.1007/s13369-019-04055-7]
[59]
Sagiri, S.S. Studies on the synthesis and characterization of encapsulated organogels for controlled drug delivery applications. PhD Dissertation, NIT Rourkela, 2014.
[60]
Mao, L.; Lu, Y.; Cui, M.; Miao, S.; Gao, Y. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Crit. Rev. Food Sci. Nutr., 2020, 60(10), 1651-1666.
[http://dx.doi.org/10.1080/10408398.2019.1587737] [PMID: 30892058]
[61]
Mazurkeviciute, A.; Ramanauskiene, K.; Ivaskiene, M.; Grigonis, A.; Briedis, V. Topical antifungal bigels: Formulation, characterization and evaluation. Acta Pharm., 2018, 68(2), 223-233.
[http://dx.doi.org/10.2478/acph-2018-0014] [PMID: 29702483]
[62]
Rathod, H.J.; Mehta, D.P. A review on pharmaceutical gel. Int. J. Pharma Sci., 2015, 1(1), 33-47.
[63]
Pal, K.; Banerjee, I. Polymeric gels: Characterization, properties and biomedical applications; Woodhead Publishing: Cambride, UK, 2018.
[64]
Singh, V.K.; Anis, A.; Banerjee, I.; Pramanik, K.; Bhattacharya, M.K.; Pal, K. Preparation and characterization of novel carbopol based bigels for topical delivery of metronidazole for the treatment of bacterial vaginosis. Mater. Sci. Eng. C, 2014, 44, 151-158.
[http://dx.doi.org/10.1016/j.msec.2014.08.026] [PMID: 25280691]
[65]
Limón, D.; Talló, D. K.; Garduño-Ramírez, M.L.; Andrade, B.; Calpena, A.C.; Pérez-García, L. Nanostructured supramolecular hydrogels: Towards the topical treatment of Psoriasis and other skin diseases. Colloids Surf. B Biointerfaces, 2019, 181, 657-670.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.018] [PMID: 31212138]
[66]
Nayak, A.K.; Das, B. Introduction to polymeric gels. Polymeric Gels; Elsevier: Amsterdam, 2018, pp. 3-27.
[http://dx.doi.org/10.1016/B978-0-08-102179-8.00001-6]
[68]
Annex, V. Asean guidelines on stability study and shelf-life of traditional medicines and health supplements. Available from: http://fdd.gov.la/download/contentfiles/2020-07 27_030959pm_ANNEX%20V%20ASEAN%20GL%20Stability%20and%20ShelfLife%20of%20TMHS%20V1%200%20(13Nov14).pdf
[69]
Singh, V.K.; Pramanik, K.; Ray, S.S.; Pal, K. Development and characterization of sorbitan monostearate and sesame oil-based organogels for topical delivery of antimicrobials. AAPS PharmSciTech, 2015, 16(2), 293-305.
[http://dx.doi.org/10.1208/s12249-014-0223-7] [PMID: 25277240]
[70]
Behera, B.; Sagiri, S.S.; Singh, V.K.; Pal, K.; Anis, A. Mechanical properties and delivery of drug/probiotics from starch and non-starch based novel bigels: A comparative study. Stärke, 2014, 66(9-10), 865-879.
[http://dx.doi.org/10.1002/star.201400045]
[71]
Berthomieu, C.; Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res., 2009, 101(2-3), 157-170.
[http://dx.doi.org/10.1007/s11120-009-9439-x] [PMID: 19513810]
[72]
Paraskevaidi, M.; Martin-Hirsch, P.L.; Martin, F.L. ATR-FTIR spectroscopy tools for medical diagnosis and disease investigation. Nanotechnology characterization tools for biosensing and medical diagnosis; Springer, 2018, pp. 163-211.
[http://dx.doi.org/10.1007/978-3-662-56333-5_4]
[73]
Paskevicius, M.; Tian, H-Y.; Sheppard, D.A.; Webb, C.J.; Pitt, M.P.; Gray, E.M.A.; Kirby, N.M.; Buckley, C.E. Magnesium hydride formation within carbon aerogel. J. Phys. Chem. C, 2011, 115(5), 1757-1766.
[http://dx.doi.org/10.1021/jp1100768]
[74]
Singh, V.K. FTIR, electrochemical impedance and iontophoretic delivery analysis of guar gum and sesame oil based bigels. Int. J. Electrochem. Sci., 2014, 9, 5640-5650.
[75]
Thomas, M.A.P. Formulation and evaluation of ethosomal gel of tazarotene for topical delivery. Asian J. Pharm., 2019, 13(01), 90-117.
[76]
Beek, A.D.T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem., 2016, 35(4), 823-835.
[77]
Minkus, D.; Jurgita, D. E-pharmacies’ online environment and social media promotions. In: The Joint International Scientific Practical Conference Contemporary Pharmacy: Issues, Challenges and Expectations 2022; Lithuanian University of Health Sciences: Kaunas, Lithuania, 2022.
[78]
Patel, B.B.; Patel, J.K.; Chakraborty, S.; Shukla, D. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm. J., 2015, 23(4), 352-365.
[http://dx.doi.org/10.1016/j.jsps.2013.12.013] [PMID: 27134535]
[79]
Rehman, K.; Aluwi, M.F.F.M.; Rullah, K.; Wai, L.K.; Mohd Amin, M.C.I.; Zulfakar, M.H. Probing the effects of fish oil on the delivery and inflammation-inducing potential of imiquimod. Int. J. Pharm., 2015, 490(1-2), 131-141.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.045] [PMID: 26003416]
[80]
Paul, S.R.; Qureshi, D.; Yogalakshmi, Y.; Nayak, S.K.; Singh, V.K.; Syed, I.; Sarkar, P.; Pal, K. Development of bigels based on stearic acid–rice bran oil oleogels and tamarind gum hydrogels for controlled delivery applications. J. Surfactants Deterg., 2018, 21(1), 17-29.
[http://dx.doi.org/10.1002/jsde.12022]
[81]
Wróblewska, M. Szymańska, E.; Szekalska, M.; Winnicka, K. Different types of gel carriers as metronidazole delivery systems to the oral mucosa. Polymers, 2020, 12(3), 680.
[http://dx.doi.org/10.3390/polym12030680] [PMID: 32204334]
[82]
Almeida, I.F.; Fernandes, A.R.; Fernandes, L.; Pena, F.M.R.; Costa, P.C.; Bahia, M.F. Moisturizing effect of oleogel/hydrogel mixtures. Pharm. Dev. Technol., 2008, 13(6), 487-494.
[http://dx.doi.org/10.1080/10837450802282447] [PMID: 18720247]
[83]
Behera, B.; Dey, S.; Sharma, V.; Pal, K. Rheological and viscoelastic properties of novel sunflower oil-span 40-biopolymer-based bigels and their role as a functional material in the delivery of antimicrobial agents. Adv. Polym. Technol., 2015, 34(2)
[http://dx.doi.org/10.1002/adv.21488]
[84]
Sahoo, S.; Singh, V.K.; Uvanesh, K.; Biswal, D.; Anis, A.; Rana, U.A.; Al-Zahrani, S.M.; Pal, K. Development of ionic and non-ionic natural gum-based bigels: Prospects for drug delivery application. J. Appl. Polym. Sci., 2015, 132(38)
[http://dx.doi.org/10.1002/app.42561]
[85]
Behera, B.; Sagiri, S.S.; Pal, K.; Pramanik, K.; Rana, U.A.; Shakir, I.; Anis, A. Sunflower oil and protein-based novel bigels as matrices for drug delivery applications—characterization and in vitro antimicrobial efficiency. Polym. Plast. Technol. Eng., 2015, 54(8), 837-850.
[http://dx.doi.org/10.1080/03602559.2014.974268]
[86]
Blumlein, A.; McManus, J.J. Bigels formed via spinodal decomposition of unfolded protein. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(17), 3429-3435.
[http://dx.doi.org/10.1039/C5TB00131E] [PMID: 32262225]
[87]
Lupi, F.R.; De Santo, M.P.; Ciuchi, F.; Baldino, N.; Gabriele, D. A rheological modelling and microscopic analysis of bigels. Rheol. Acta, 2017, 56(9), 753-763.
[http://dx.doi.org/10.1007/s00397-017-1030-3]