Recent Patents on Nanotechnology

Author(s): Yingchun Chen*, Bei Yu and Lingling Peng

DOI: 10.2174/1872210517666230427161120

Two-dimensional MXene Nanomaterials: Preparation, Structure Modulation and the Applications in Electrochemical Energy Storage

Page: [92 - 116] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Background: MXenes have attracted intensive attention owing to their unique twodimensional (2D) layered structure, high specific surface area, excellent conductivity, superior surface hydrophilicity, and chemical stability. In recent years, selective etching of the A element layers from MAX phases by fluorine-containing etchants (HF, LiF-HCl, etc) is a common method to prepare multilayered MXene nanomaterials (NMs) with plentiful surface terminations. At present, many studies have been reported on the use of fluorine-free etchants (NaOH, ZnCl2, etc) to etch MAX phases. The properties of MXene NMs are dependent on their structures.

Objective: The purpose of this review is to focus on a comprehensive and systematical survey on the preparation, structure modulation, and applications of MXene NMs in electrochemical energy storage devices, including supercapacitors, lithium-ion battery, sodium-ion battery, potassium-ion battery, and aluminum-ion battery.

Methods: Extensive information related to the preparation and applications of 2D MXene NMs for electrochemical energy storage and their associated patents were collected. This review highlights the recently reported 2D MXene NMs which are used in supercapacitor and various metal ion.

Results: It is found that the preparation methods have great impacts on the layer spacing and surface terminations of MXenes, consequently affecting their performance. Hence, this paper summarizes the research progress of the preparation strategies, layer spacing and surface termination modulation of MXene NMs.

Conclusion: The applications of 2D MXene NMs in electrochemical energy storage are outlined. The forward-looking challenges and prospects for the development of MXenes are also proposed.

Graphical Abstract

[1]
Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005; 438(7065): 197-200.
[http://dx.doi.org/10.1038/nature04233] [PMID: 16281030]
[2]
Lin L, Sherrell P, Liu Y, et al. Engineered 2D transition metal dichalcogenides—a vision of viable hydrogen evolution reaction catalysis. Adv Energy Mater 2020; 10(16): 1903870.
[http://dx.doi.org/10.1002/aenm.201903870]
[3]
Tian L, Li J, Liang F, et al. Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater. Appl Catal B 2018; 225: 307-13.
[http://dx.doi.org/10.1016/j.apcatb.2017.11.082]
[4]
Liu H, Lei W, Tong Z, et al. Defect engineering of 2D materials for electrochemical energy storage. Adv Mater Interfaces 2020; 7(15): 2000494.
[http://dx.doi.org/10.1002/admi.202000494]
[5]
Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev 2019; 119(1): 478-598.
[http://dx.doi.org/10.1021/acs.chemrev.8b00311] [PMID: 30604969]
[6]
Huang Z, Zhang H, Zhang S. Growth of well-developed LaOCl microplates by chloride salt-assisted method. CrystEngComm 2017; 19(22): 2971-6.
[http://dx.doi.org/10.1039/C7CE00549K]
[7]
Guan K, Li J, Lei W, et al. Synthesis of sulfur doped g-C3N4 with enhanced photocatalytic activity in molten salt. J Materiomics 2021; 7(5): 1131-42.
[http://dx.doi.org/10.1016/j.jmat.2021.01.008]
[8]
Tian L, Li J, Liang F, et al. Facile molten salt synthesis of atomically thin boron nitride nanosheets and their co-catalytic effect on the performance of carbon nitride photocatalyst. J Colloid Interface Sci 2019; 536: 664-72.
[http://dx.doi.org/10.1016/j.jcis.2018.10.098] [PMID: 30396122]
[9]
Xuan X, Zhang Z, Guo W. Doping-stabilized two-dimensional black phosphorus. Nanoscale 2018; 10(17): 7898-904.
[http://dx.doi.org/10.1039/C8NR00445E] [PMID: 29682635]
[10]
Rosa M, Costa Bassetto V, Girault HH, Lesch A, Esposito V. Assembling Ni–Fe layered double hydroxide 2D thin films for oxygen evolution electrodes. ACS Appl Energy Mater 2020; 3(1): 1017-26.
[http://dx.doi.org/10.1021/acsaem.9b02055]
[11]
Sun L, Zhao Z, Li S, et al. Role of SnS2 in 2D–2D SnS2/TiO2 Nanosheet Heterojunctions for Photocatalytic Hydrogen Evolution. ACS Appl Nano Mater 2019; 2(4): 2144-51.
[http://dx.doi.org/10.1021/acsanm.9b00122]
[12]
Shan QY, Guan B, Zhu SJ, Zhang HJ, Zhang YX. Facile synthesis of carbon-doped graphitic C3N4@MnO2 with enhanced electrochemical performance. RSC Advances 2016; 6(86): 83209-16.
[http://dx.doi.org/10.1039/C6RA18265H]
[13]
Lei W, Xiao JL, Liu HP, Jia QL, Zhang HJ. Tungsten disulfide: Synthesis and applications in electrochemical energy storage and conversion. Tungsten 2020; 2(3): 217-39.
[http://dx.doi.org/10.1007/s42864-020-00054-6]
[14]
Zhou Y, Maleski K, Anasori B, et al. Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 2020; 14(3): 3576-86.
[http://dx.doi.org/10.1021/acsnano.9b10066] [PMID: 32049485]
[15]
Ghidiu M, Naguib M, Shi C, et al. Synthesis and characterization of two-dimensional Nb4 C3 (MXene). Chem Commun 2014; 50(67): 9517-20.
[http://dx.doi.org/10.1039/C4CC03366C] [PMID: 25010704]
[16]
Li X, Li M, Yang Q, et al. Phase transition induced unusual electrochemical performance of V2CTX MXene for aqueous zinc hybrid-ion battery. ACS Nano 2020; 14(1): 541-51.
[http://dx.doi.org/10.1021/acsnano.9b06866] [PMID: 31917537]
[17]
Soundiraraju B, George BK. Two-dimensional titanium Nitride (Ti2 N) MXene: Synthesis, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano 2017; 11(9): 8892-900.
[http://dx.doi.org/10.1021/acsnano.7b03129] [PMID: 28846394]
[18]
Wu Y, Sun Y, Zheng J, Rong J, Li H, Niu L. MXenes: Advanced materials in potassium ion batteries. Chem Eng J 2021; 404: 126565.
[http://dx.doi.org/10.1016/j.cej.2020.126565]
[19]
Pang J, Mendes RG, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 2019; 48(1): 72-133.
[http://dx.doi.org/10.1039/C8CS00324F] [PMID: 30387794]
[20]
Shi J, Jiang B, Li C, et al. Review of transition metal nitrides and transition metal nitrides/carbon nanocomposites for supercapacitor electrodes. Mater Chem Phys 2020; 245: 122533.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122533]
[21]
Zhang CJ, Ma Y, Zhang X, et al. Two‐dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications. Energy Environ Mater 2020; 3(1): 29-55.
[http://dx.doi.org/10.1002/eem2.12058]
[22]
Peng J, Chen X, Ong WJ, Zhao X, Li N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem 2019; 5(1): 18-50.
[http://dx.doi.org/10.1016/j.chempr.2018.08.037]
[23]
Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011; 23(37): 4248-53.
[http://dx.doi.org/10.1002/adma.201102306] [PMID: 21861270]
[24]
Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv Mater 2014; 26(7): 992-1005.
[http://dx.doi.org/10.1002/adma.201304138] [PMID: 24357390]
[25]
Xu C, Wang L, Liu Z, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater 2015; 14(11): 1135-41.
[http://dx.doi.org/10.1038/nmat4374] [PMID: 26280223]
[26]
Geng D, Zhao X, Chen Z, et al. Direct synthesis of large‐area 2D Mo2C on in situ grown graphene. Adv Mater 2017; 29(35): 1700072.
[http://dx.doi.org/10.1002/adma.201700072] [PMID: 28722179]
[27]
Hu M, Hu T, Li Z, et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano 2018; 12(4): 3578-86.
[http://dx.doi.org/10.1021/acsnano.8b00676] [PMID: 29608045]
[28]
Wang C, Chen S, Song L. Tuning 2D MXenes by surface controlling and interlayer engineering: Methods, properties, and synchrotron radiation characterizations. Adv Funct Mater 2020; 30(47): 2000869.
[http://dx.doi.org/10.1002/adfm.202000869]
[29]
Kim H, Wang Z, Alshareef HN. MXetronics: Electronic and photonic applications of MXenes. Nano Energy 2019; 60: 179-97.
[http://dx.doi.org/10.1016/j.nanoen.2019.03.020]
[30]
Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano 2012; 6(2): 1322-31.
[http://dx.doi.org/10.1021/nn204153h] [PMID: 22279971]
[31]
VahidMohammadi A. Hadjikhani A, Shahbazmohamadi S, Beidaghi M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017; 11(11): 11135-44.
[http://dx.doi.org/10.1021/acsnano.7b05350] [PMID: 29039915]
[32]
Peng C, Wei P, Chen X, et al. A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance. Ceram Int 2018; 44(15): 18886-93.
[http://dx.doi.org/10.1016/j.ceramint.2018.07.124]
[33]
Fredrickson KD, Anasori B, Seh ZW, Gogotsi Y, Vojvodic A. Effects of applied potential and water intercalation on the surface chemistry of Ti2C and Mo2C MXenes. J Phys Chem C 2016; 120(50): 28432-40.
[http://dx.doi.org/10.1021/acs.jpcc.6b09109]
[34]
Deeva EB, Kurlov A, Abdala PM, et al. In situ XANES/XRD study of the structural stability of two-dimensional molybdenum carbide Mo2CTx: Implications for the catalytic activity in the water–gas shift reaction. Chem Mater 2019; 31(12): 4505-13.
[http://dx.doi.org/10.1021/acs.chemmater.9b01105]
[35]
Wang HW, Naguib M, Page K, Wesolowski DJ, Gogotsi Y. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chem Mater 2016; 28(1): 349-59.
[http://dx.doi.org/10.1021/acs.chemmater.5b04250]
[36]
Zhou J, Zha X, Chen FY, et al. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew Chem Int Ed 2016; 55(16): 5008-13.
[http://dx.doi.org/10.1002/anie.201510432] [PMID: 26959082]
[37]
Zhou J, Zha X, Zhou X, et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 2017; 11(4): 3841-50.
[http://dx.doi.org/10.1021/acsnano.7b00030] [PMID: 28375599]
[38]
Anasori B, Xie Y, Beidaghi M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 2015; 9(10): 9507-16.
[http://dx.doi.org/10.1021/acsnano.5b03591] [PMID: 26208121]
[39]
Meshkian R, Tao Q, Dahlqvist M, Lu J, Hultman L, Rosen J. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater 2017; 125: 476-80.
[http://dx.doi.org/10.1016/j.actamat.2016.12.008]
[40]
Tran MH, Schäfer T, Shahrae A, et al. Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Appl Energy Mater 2018; 1(8): 3908-14.
[http://dx.doi.org/10.1021/acsaem.8b00652]
[41]
Zhao S, Meng X, Zhu K, et al. Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater 2017; 8: 42-8.
[http://dx.doi.org/10.1016/j.ensm.2017.03.012]
[42]
Liu F, Zhou J, Wang S, et al. Preparation of high-purity V2C MXene and electrochemical properties as Li-Ion batteries. J Electrochem Soc 2017; 164(4): A709-13.
[http://dx.doi.org/10.1149/2.0641704jes]
[43]
Halim J, Kota S, Lukatskaya MR, et al. Synthesis and characterization of 2D Molybdenum Carbide (MXene). Adv Funct Mater 2016; 26(18): 3118-27.
[http://dx.doi.org/10.1002/adfm.201505328]
[44]
Du F, Tang H, Pan L, et al. Environmental friendly scalable production of colloidal 2D Titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochim Acta 2017; 235: 690-9.
[http://dx.doi.org/10.1016/j.electacta.2017.03.153]
[45]
Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater 2016; 2(12): 1600255.
[http://dx.doi.org/10.1002/aelm.201600255]
[46]
Chen X, Zhu Y, Zhang M, et al. N- Butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano 2019; 13(8): 9449-56.
[http://dx.doi.org/10.1021/acsnano.9b04301] [PMID: 31374174]
[47]
Song Y, Sun Z, Fan Z, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy 2020; 70: 104555.
[http://dx.doi.org/10.1016/j.nanoen.2020.104555]
[48]
Yu M, Zhou S, Wang Z, Zhao J, Qiu J. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 2018; 44: 181-90.
[http://dx.doi.org/10.1016/j.nanoen.2017.12.003]
[49]
Feng A, Yu Y, Wang Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater Des 2017; 114: 161-6.
[http://dx.doi.org/10.1016/j.matdes.2016.10.053]
[50]
Feng A, Yu Y, Jiang F, et al. Fabrication and thermal stability of NH4HF2 -etched Ti3C2 MXene. Ceram Int 2017; 43(8): 6322-8.
[http://dx.doi.org/10.1016/j.ceramint.2017.02.039]
[51]
Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016; 8(22): 11385-91.
[http://dx.doi.org/10.1039/C6NR02253G] [PMID: 27211286]
[52]
Li T, Yao L, Liu Q, et al. Fluorine‐free synthesis of high‐purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew Chem Int Ed 2018; 57(21): 6115-9.
[http://dx.doi.org/10.1002/anie.201800887] [PMID: 29633442]
[53]
Yang S, Zhang P, Wang F, et al. Fluoride‐free synthesis of two‐dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem Int Ed 2018; 57(47): 15491-5.
[http://dx.doi.org/10.1002/anie.201809662]
[54]
Li M, Lu J, Luo K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc 2019; 141(11): 4730-7.
[http://dx.doi.org/10.1021/jacs.9b00574] [PMID: 30821963]
[55]
Li Y, Shao H, Lin Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater 2020; 19(8): 894-9.
[http://dx.doi.org/10.1038/s41563-020-0657-0] [PMID: 32284597]
[56]
Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2017; 2(2): 16098.
[http://dx.doi.org/10.1038/natrevmats.2016.98]
[57]
Lin DH, Ke T. In-situ synthesizing titanium dioxide-titanium carbide powder by using dimethyl sulfoxide intercalation and layering of titanium carbide powder comprises e.g. dispersing titanium aluminum carbide-MAX phase ceramic powder, and etching. CN109261180–A, 2018.
[58]
Lin DH, Ke T. Synthesizing titanium oxide-titanium carbide in in situ by isopropylamine intercalation and layering of titanium carbide comprises e.g. dispersing titanium-aluminum carbide-MAX phase ceramic powder in hydrogen fluoride solution and etching CN109261181–A, 2018.
[59]
Zhan X, Si C, Zhou J, Sun Z. MXene and MXene-based composites: Synthesis, properties and environment-related applications. Nanoscale Horiz 2020; 5(2): 235-58.
[http://dx.doi.org/10.1039/C9NH00571D]
[60]
Sun Z, Li S, Ahuja R, Schneider JM. Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta). Solid State Commun 2004; 129(9): 589-92.
[http://dx.doi.org/10.1016/j.ssc.2003.12.008]
[61]
Tang Y, Zhu J, Yang C, Wang F. Enhanced capacitive performance based on diverse layered structure of two-dimensional Ti3C2 MXene with long etching time. J Electrochem Soc 2016; 163(9): A1975-82.
[http://dx.doi.org/10.1149/2.0921609jes]
[62]
Su Y, Wang B, Guo XT. et al. BiOBrxI1–x Preparation of /MXene composite catalyst. Patent CN112121833–A, 2020.
[63]
Ren PG, Zhang FD, Guo ZZ, Ren F. Preparation method of CNF/MXene-silver nanowire composite film. Patent CN113004 556-A, 2021.
[64]
Jiang JB, Sun R, Huang X. et al. Synthesis of zinc-doped cobalt phosphide MXene/nickel foam composite material used for electrocatalysis integral water decomposition by etching inorganic salt with titanium aluminum carbide, adding nickel foam into MXene, and reacting. Patent CN114059093-A, 2021.
[65]
Cheng QF, Zhou TZ. Preparing titanium carbide MXene functionalized graphene nanocomposite film in a flexible supercapacitor, involves etching raw material titanium aluminum carbide, using lithium fluoride (LiF) and hydrochloric acid (HCl) as etching agents. Patent CN111252768-B, 2020.
[66]
Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014; 114(23): 11503-618.
[http://dx.doi.org/10.1021/cr500003w] [PMID: 25351820]
[67]
Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum MW. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 2020; 6(3): 616-30.
[http://dx.doi.org/10.1016/j.chempr.2020.01.019]
[68]
Naguib M, Presser V, Tallman D, et al. On the topotactic transformation of Ti2AlC into a Ti–C–O–F cubic phase by heating in molten lithium fluoride in air. J Am Ceram Soc 2011; 94(12): 4556-61.
[http://dx.doi.org/10.1111/j.1551-2916.2011.04896.x]
[69]
Barsoum MW, Natu VR. Manufacturing two-dimensional inorganic compound (MXene) material by contacting a metal carbide or nitride (MAX)-phase material with an etchant containing salt, polar solvent and non-polar solvent and crown ether. Patent WO2021076639-A1, 2019.
[70]
Liu HJ, Yang LX, Zeng CL. Preparing laminated MXene material for battery material by directly mixing carbon material powder and second raw material to form multi-element conductive ceramic material, reacting in molten salt, cooling, removing molten salt, and etching. Patent CN110304632-A, 2018.
[71]
Dong Y, Wu ZS, Zheng S, et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 2017; 11(5): 4792-800.
[http://dx.doi.org/10.1021/acsnano.7b01165] [PMID: 28460161]
[72]
Liu Y, Li Y, Li F, et al. Conversion of Ti2AlC to C-K2Ti4O9via a KOH assisted hydrothermal treatment and its application in lithium-ion battery anodes. Electrochim Acta 2019; 295: 599-604.
[http://dx.doi.org/10.1016/j.electacta.2018.11.003]
[73]
Lukatskaya MR, Halim J, Dyatkin B, et al. Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew Chem Int Ed 2014; 53(19): 4877-80.
[http://dx.doi.org/10.1002/anie.201402513] [PMID: 24692047]
[74]
Sun W, Shah SA, Chen Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A Mater Energy Sustain 2017; 5(41): 21663-8.
[http://dx.doi.org/10.1039/C7TA05574A]
[75]
Pang SY, Wong YT, Yuan S, et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J Am Chem Soc 2019; 141(24): 9610-6.
[http://dx.doi.org/10.1021/jacs.9b02578] [PMID: 31117483]
[76]
Li JL, Zhong JJ, Huo XG, Yang Z. Preparation of MXene anode material used for aluminum ion battery by assembling MAX electrode, high-purity aluminum sheet anode and glass fiber separator in aluminum ion battery, and etching MAX phase to obtain MXene material. CN113381010-A, 2021.
[77]
Chen JZ, Chen MF. Preparing fluorine-free MXene by electrochemical etching method involves taking two MAX respectively as working electrode and counter electrode, soaking in mixed aqueous solution of hydroxide and chloride, and applying voltage, and stirring. CN113461010-A, 2021.
[78]
Hu PF, Liu ZS, Wen HJ, Zhang X, Bian YT, Zhang TX. Preparing MXene by electrochemical etching used as suspension in preparation of composite fiber, involves soaking MAX in absolute ethyl alcohol, performing ultrasonic treatment to remove surface dust, nd drying to prepare electroetching solution, and dispersing MXene in solution. CN114737227-A, 2022.
[79]
Fashandi H, Dahlqvist M, Lu J, et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nat Mater 2017; 16(8): 814-8.
[http://dx.doi.org/10.1038/nmat4896] [PMID: 28459444]
[80]
Wang S, Cheng J, Zhu S, et al. A novel route to prepare a Ti3SnC2/Al2O3 composite. Scr Mater 2017; 131: 80-3.
[http://dx.doi.org/10.1016/j.scriptamat.2017.01.013]
[81]
Mashtalir O, Naguib M, Mochalin VN, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 2013; 4(1): 1716.
[http://dx.doi.org/10.1038/ncomms2664] [PMID: 23591883]
[82]
Mashtalir O, Lukatskaya MR, Kolesnikov AI, et al. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale 2016; 8(17): 9128-33.
[http://dx.doi.org/10.1039/C6NR01462C] [PMID: 27088300]
[83]
Mashtalir O, Lukatskaya MR, Zhao MQ, Barsoum MW, Gogotsi Y. Amine‐assisted delamination of Nb2C MXene for Li‐ion energy storage devices. Adv Mater 2015; 27(23): 3501-6.
[http://dx.doi.org/10.1002/adma.201500604] [PMID: 25930685]
[84]
Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 2017; 29(18): 7633-44.
[http://dx.doi.org/10.1021/acs.chemmater.7b02847]
[85]
Wang Z, Xuan J, Zhao Z, Li Q, Geng F. Versatile cutting method for producing fluorescent ultrasmall mxene sheets. ACS Nano 2017; 11(11): 11559-65.
[http://dx.doi.org/10.1021/acsnano.7b06476] [PMID: 29111669]
[86]
Luo J, Zhang W, Yuan H, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 2017; 11(3): 2459-69.
[http://dx.doi.org/10.1021/acsnano.6b07668] [PMID: 27998055]
[87]
Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013; 341(6153): 1502-5.
[http://dx.doi.org/10.1126/science.1241488] [PMID: 24072919]
[88]
Luo J, Tao X, Zhang J, et al. Sn4+ Ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016; 10(2): 2491-9.
[http://dx.doi.org/10.1021/acsnano.5b07333] [PMID: 26836262]
[89]
Lu M, Zhang Y, Chen J, et al. K+ alkalization promoted Ca2+ intercalation in V2CT MXene for enhanced Li storage. J Energy Chem 2020; 49: 358-64.
[http://dx.doi.org/10.1016/j.jechem.2020.03.002]
[90]
Al-Temimy A, Prenger K, Golnak R, Lounasvuori M, Naguib M, Petit T. Impact of cation intercalation on the electronic structure of Ti3C2Tx MXenes in Sulfuric Acid. ACS Appl Mater Interfaces 2020; 12(13): 15087-94.
[http://dx.doi.org/10.1021/acsami.9b22122] [PMID: 32134245]
[91]
Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014; 516(7529): 78-81.
[http://dx.doi.org/10.1038/nature13970] [PMID: 25470044]
[92]
Magne D, Mauchamp V, Célérier S, Chartier P, Cabioc’h T. Site-projected electronic structure of two-dimensional Ti3C2 MXene: The role of the surface functionalization groups. Phys Chem Chem Phys 2016; 18(45): 30946-53.
[http://dx.doi.org/10.1039/C6CP05985F] [PMID: 27805183]
[93]
Zhao MQ, Ren CE, Ling Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 2015; 27(2): 339-45.
[http://dx.doi.org/10.1002/adma.201404140] [PMID: 25405330]
[94]
Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y. Pseudocapacitive electrodes produced by oxidant‐free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater 2016; 28(7): 1517-22.
[http://dx.doi.org/10.1002/adma.201504705] [PMID: 26660424]
[95]
Li J, Wang H, Xiao X. Intercalation in two‐dimensional transition metal carbides and nitrides (MXenes) toward electrochemical capacitor and beyond. Energy Environ Mater 2020; 3(3): 306-22.
[http://dx.doi.org/10.1002/eem2.12090]
[96]
Zhang P, Zhu Q, Soomro RA, et al. In situ ice template approach to fabricate 3D flexible mxene film‐based electrode for high performance supercapacitors. Adv Funct Mater 2020; 30(47): 2000922.
[http://dx.doi.org/10.1002/adfm.202000922]
[97]
Sun N, Guan Z, Zhu Q, Anasori B, Gogotsi Y, Xu B. Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett 2020; 12(1): 89.
[http://dx.doi.org/10.1007/s40820-020-00426-0] [PMID: 34138104]
[98]
Zhang P, Soomro RA, Guan Z, Sun N, Xu B. 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater 2020; 29: 163-71.
[http://dx.doi.org/10.1016/j.ensm.2020.04.016]
[99]
Hu MM, Li ZJ, Meng AL. Regulation and control method of twodimensional layered supercapacitor electrode titanium carbide MXene interlayer structure by preparing electrode, placing to sulfate aqueous solution and performing constant-current chargedischarge cycle. CN111029172-A, 2019.
[100]
Wang GG, Zhang SY, Zhao DQ. Preparing porous foam structure MXene-based electromagnetic shielding film comprises preparing MXene dispersion, using hydrogen to cross-link MXene to obtain hydrogen cross-linked processing MXene, compounding hydrogen cross-linked MXene with bacterial cellulose, freezing and casting. CN113881105-A, 2021.
[101]
Tao Y, Wu ZT, Liu XC. et al. Preparing MXene dense porous film with adjustable pore space comprises e.g. preparing MXene microgel dispersion with nano-sheet cross-linked structure from MXene dispersion by cross-linking method, and mixing MXene micro-gel dispersion with MXene dispersion. CN113285070-A, 2021.
[102]
Xie Y, Naguib M, Mochalin VN, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc 2014; 136(17): 6385-94.
[http://dx.doi.org/10.1021/ja501520b] [PMID: 24678996]
[103]
Harris KJ, Bugnet M, Naguib M, Barsoum MW, Goward GR. Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CTx using NMR spectroscopy. J Phys Chem C 2015; 119(24): 13713-20.
[http://dx.doi.org/10.1021/acs.jpcc.5b03038]
[104]
Hope MA, Forse AC, Griffith KJ, et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys Chem Chem Phys 2016; 18(7): 5099-102.
[http://dx.doi.org/10.1039/C6CP00330C] [PMID: 26818187]
[105]
Xu D, Li Z, Li L, Wang J. Insights into the photothermal conversion of 2D MXene nanomaterials: Synthesis, mechanism, and applications. Adv Funct Mater 2020; 30(47): 2000712.
[http://dx.doi.org/10.1002/adfm.202000712]
[106]
Hu T, Li Z, Hu M, et al. Chemical origin of termination-functionalized MXenes: Ti3C2T2 as a case study. J Phys Chem C 2017; 121(35): 19254-61.
[http://dx.doi.org/10.1021/acs.jpcc.7b05675]
[107]
Fu ZH, Zhang QF, Legut D, et al. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys Rev B 2016; 94(10): 104103.
[http://dx.doi.org/10.1103/PhysRevB.94.104103]
[108]
Xie Y, Kent PRC. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers. Phys Rev B Condens Matter Mater Phys 2013; 87(23): 235441.
[http://dx.doi.org/10.1103/PhysRevB.87.235441]
[109]
He C L, Ji J J, Liu Z P. MXene silicon-carbon composite material useful in negative electrode, comprises silicon oxide compound base material, nano-carbon coated on surface of silicon oxide base material, and MXene coated on surface of nano-carbon. CN112038641-A, 2020.
[110]
Zhang HT, Huang JF, Sun T. Preparing highly ordered end-group MXene useful in electrode material comprises obtaining MXene etching product, washing, drying, adding MXene powder into dispersion liquid, performing ultrasonic and centrifugation treatments in sequence, collecting upper layer dispersion liquid and plasma etching. CN114843700-A, 2022.
[111]
Huang Q, Li M, Li YB, Luo K, Zhou XB, Du SY. MXene material having a surface group of chlorine useful for preparing electrodes for electrochemical energy storage material, super capacitor material, electromagnetic absorption and shielding material or catalyst. WO2020114196-A1, CN109437177-A, 2018.
[112]
Xu ZH, Lu JM, Hubbard D, Lu ZG. Mxene material grafted with organic chelating functional groups on surface used as capacitive deionization electrode material for removing heavy metal ions in water, is prepared by combining Mxene material and grafting agent comprising amino groups and/or carboxyl groups by siliconoxygen bonds. WO2022165989-A1, CN113003675-A, 2021.
[113]
Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 2012; 134(40): 16909-16.
[http://dx.doi.org/10.1021/ja308463r] [PMID: 22989058]
[114]
Meng Q, Ma J, Zhang Y, et al. The S-functionalized Ti3C2 Mxene as a high capacity electrode material for Na-ion batteries: A DFT study. Nanoscale 2018; 10(7): 3385-92.
[http://dx.doi.org/10.1039/C7NR07649E] [PMID: 29388646]
[115]
Xie Y, Dall’Agnese Y, Naguib M, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 2014; 8(9): 9606-15.
[http://dx.doi.org/10.1021/nn503921j] [PMID: 25157692]
[116]
Dall’Agnese Y, Lukatskaya MR, Cook KM, Taberna PL, Gogotsi Y, Simon P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem Commun 2014; 48: 118-22.
[http://dx.doi.org/10.1016/j.elecom.2014.09.002]
[117]
Karlsson LH, Birch J, Halim J, Barsoum MW, Persson POÅ. Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett 2015; 15(8): 4955-60.
[http://dx.doi.org/10.1021/acs.nanolett.5b00737] [PMID: 26177010]
[118]
Lai S, Jeon J, Jang SK, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O). Nanoscale 2015; 7(46): 19390-6.
[http://dx.doi.org/10.1039/C5NR06513E] [PMID: 26535782]
[119]
Li J, Yuan X, Lin C, et al. Achieving high pseudocapacitance of 2D Titanium Carbide (MXene) by cation intercalation and surface modification. Adv Energy Mater 2017; 7(15): 1602725.
[http://dx.doi.org/10.1002/aenm.201602725]
[120]
Peng Q, Guo J, Zhang Q, et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc 2014; 136(11): 4113-6.
[http://dx.doi.org/10.1021/ja500506k] [PMID: 24588686]
[121]
Kamysbayev V, Filatov AS, Hu H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020; 369(6506): 979-83.
[http://dx.doi.org/10.1126/science.aba8311] [PMID: 32616671]
[122]
Wang H, Wu Y, Zhang J, et al. Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Mater Lett 2015; 160: 537-40.
[http://dx.doi.org/10.1016/j.matlet.2015.08.046]
[123]
Halim J, Persson I, Eklund P, Persson POÅ, Rosen J. Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti3C2 (MXene) epitaxial thin film. RSC Advances 2018; 8(64): 36785-90.
[http://dx.doi.org/10.1039/C8RA07270A] [PMID: 35558912]
[124]
Huang Q, Ding HM, Li YB. MXene material crystal comprises nitrogen group element end group, where molecular expression of MXene material crystal. CN114395800-A, 2021.
[125]
Koo CM. In IS, Ko TY, et al. Two-dimensional MXene surfacemodified with catechol derivative used as MXene organic ink in electrically conductive film, comprises polyphenol moiety in form of phenyl group containing 2-5 hydroxyl (OH) groups. US2021269664-A1, KR2021103399-A, EP4047062-A1, 2021.
[126]
In IS, Lee JH, Kim SY, Park SM. Surface-modified twodimensional MXene used for e.g. sensor, comprises twodimensional MXene whose outer surface is modified with compound comprising hydroxyl group(s) and/or ionic compound. WO2022107992-A1, KR2022067653-A, 2021.
[127]
Aslam MK, Niu Y, Xu M. MXenes for non‐lithium‐ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv Energy Mater 2021; 11(2): 2000681.
[http://dx.doi.org/10.1002/aenm.202000681]
[128]
Bärmann P, Nölle R, Siozios V, et al. Solvent co-intercalation into few-layered Ti3C2Tx MXenes in lithium-ion batteries induced by acidic or basic post-treatment. ACS Nano 2021; 15(2): 3295-308.
[http://dx.doi.org/10.1021/acsnano.0c10153] [PMID: 33522794]
[129]
Cao B, Liu H, Zhang P, et al. Flexible MXene Framework as a Fast Electron/Potassium‐Ion Dual‐Function Conductor Boosting Stable Potassium Storage in Graphite Electrodes. Adv Funct Mater 2021; 31(32): 2102126.
[http://dx.doi.org/10.1002/adfm.202102126]
[130]
Zhao Q, Zhu Q, Miao J, Zhang P, Xu B. 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium–sulfur batteries. Nanoscale 2019; 11(17): 8442-8.
[http://dx.doi.org/10.1039/C8NR09653H] [PMID: 30985850]
[131]
Zhao Q, Zhu Q, Liu Y, Xu B. Status and prospects of MXene‐based lithium–sulfur batteries. Adv Funct Mater 2021; 31(21): 2100457.
[http://dx.doi.org/10.1002/adfm.202100457]
[132]
Xu P, Xiao H, Liang X, et al. A MXene-based EDA-Ti3C2Tx intercalation compound with expanded interlayer spacing as high performance supercapacitor electrode material. Carbon 2021; 173: 135-44.
[http://dx.doi.org/10.1016/j.carbon.2020.11.010]
[133]
Zhu Q, Li J, Simon P, Xu B. Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Mater 2021; 35: 630-60.
[http://dx.doi.org/10.1016/j.ensm.2020.11.035]
[134]
Yu L, Hu L, Anasori B, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett 2018; 3(7): 1597-603.
[http://dx.doi.org/10.1021/acsenergylett.8b00718]
[135]
Barsoum MW, Carey MS, Pai RN, Kalra V, Natu VR. Method of effecting cation exchange in MXene material of composite used in production of cathode of electrochemical cell, by replacing exchangeable first cation with organic cation to obtain enhanced MXene material. WO2021113509-A1, 2019.
[136]
Wu ZS, Zheng SH, Ma JX. Aqueous MXene inkjet printing conductive ink used for preparing MXene film useful in microsupercapacitors, comprises MXene nanosheet, additive and water. CN113881286-A, 2020.
[137]
Sun YM, Wang RC. Manufacturing interdigital paper-based miniature supercapacitors involves forming MXene/carbon nanotube slurry, using photoresist method to make interdigital micro-pattern grooves on filter paper to prepare interdigital electrode template. CN111863460-A, 2020.
[138]
An C, Gou JS, Kim HR, Hee LY, Da-Rae S. Manufacturing MXene film used for e.g., micro supercapacitors by preparing MXene solution, forming a MXene sheet by spraying the solution, collecting the formed MXene sheets using barrier, and attaching MXene sheets to substrate. KR2365011-B1, 2019.
[139]
Zhou S, Fang JY, Su YR, Lyu LX, Guo SY, Han PG. Preparing MXene two-dimensional material useful in preparing supercapacitors and batteries, comprises uniformly dispersing titaniumaluminum carbide and sodium hydroxide, reacting, centrifuging, obtaining lower layer precipitate, obtaining gray precipitate, and vacuum-drying gray precipitate. CN113735124-A, 2021.
[140]
Liu YT, Zhang P, Sun N, et al. Self‐assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv Mater 2018; 30(23): 1707334.
[http://dx.doi.org/10.1002/adma.201707334] [PMID: 29707827]
[141]
Zhang P, Zhu Q, Guan Z, Zhao Q, Sun N, Xu B. A flexible Si@C Electrode with excellent stability employing an MXene as a multifunctional binder for lithium‐ion batteries. ChemSusChem 2020; 13(6): 1621-8.
[http://dx.doi.org/10.1002/cssc.201901497] [PMID: 31318177]
[142]
Zhao J, Wen J, Xiao J, et al. Nb2CT MXene: High capacity and ultra-long cycle capability for lithium-ion battery by regulation of functional groups. J Energy Chem 2021; 53: 387-95.
[http://dx.doi.org/10.1016/j.jechem.2020.05.037]
[143]
He XS, Zhou L, Zhu YW, Wen XL, Li YL, Xiong BQ. MXene doped and surface-coated modified lithium ion battery cathode material comprises lithium-ion battery cathode material, MXene nanodot coating layer and MXene nanofiber material. CN112331839-A, 2020.
[144]
Wu WW, Liu HK, Wang JL. Conductive agent for lithium ion battery negative electrode slurry of lithium ion battery, has MXene titanium carbide nanosheets, and solid component whose thickness of nanosheets are in specific range respectively. CN111769281-A, 2020.
[145]
Zhang C, Ma JQ, Miao LX. Silicon-carbon composite material useful in lithium-ion battery, electronic device electric traffic, aerospace, military and medicine fields, comprises silicon/graphene composite material and MXene, where nano-particles are compounded on the MXene sheet layer. CN114335527-A, 2020.
[146]
Zhang XY, Qin JQ, Liu RP. Cobalt-layered double hydroxide/ MXene composite for cathode of lithium ion batteries, electrocatalysis, and supercapacitors, comprises MXene and cobalt layered double hydroxide grown on surface of MXene. CN113540419-B, 2021.
[147]
Deng YF, Lu ZY. Electrostatic self-assembly tin(iv) oxide@ nitrogen-doped porous carbon or MXene nano-compex material in lithium-ion battery and lithium-ion capacitor, comprises multi-level hole structure of the MXene nanosheet layer and the nitrogen doped porous carbon filled by the nano tin(iv) oxide. CN114613952-A, 2022.
[148]
Dong Y, Shi H, Wu ZS. Recent advances and promise of MXene‐based nanostructures for high‐performance metal ion batteries. Adv Funct Mater 2020; 30(47): 2000706.
[http://dx.doi.org/10.1002/adfm.202000706]
[149]
Hosaka T, Kubota K, Hameed AS, Komaba S. Research development on K-ion batteries. Chem Rev 2020; 120(14): 6358-466.
[http://dx.doi.org/10.1021/acs.chemrev.9b00463] [PMID: 31939297]
[150]
Liang Y, Dong H, Aurbach D, Yao Y. Current status and future directions of multivalent metal-ion batteries. Nat Energy 2020; 5(9): 646-56.
[http://dx.doi.org/10.1038/s41560-020-0655-0]
[151]
Kajiyama S, Szabova L, Sodeyama K, et al. Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 2016; 10(3): 3334-41.
[http://dx.doi.org/10.1021/acsnano.5b06958] [PMID: 26891421]
[152]
Gentile A, Ferrara C, Tosoni S, et al. Enhanced functional properties of Ti3C2Tx MXenes as negative electrodes in sodium‐ion batteries by chemical tuning. Small Methods 2020; 4(9): 2000314.
[http://dx.doi.org/10.1002/smtd.202000314]
[153]
Liu F, Liu Y, Zhao X, Liu X, Fan LZ. Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. J Mater Chem A Mater Energy Sustain 2019; 7(28): 16712-9.
[http://dx.doi.org/10.1039/C9TA02212K]
[154]
Li JH, Zhang J, Rui BL, Lin L, Chang LM, Nie P. Application of MXene and its composites in sodium/potassium ion batteries. Huaxue Jinzhan 2019; 31(9): 1283.
[155]
Zhao R, Di H, Wang C, et al. Encapsulating ultrafine Sb nanoparticles in Na+ pre-intercalated 3D porous Ti3C2Tx MXene nanostructures for enhanced potassium storage performance. ACS Nano 2020; 14(10): 13938-51.
[http://dx.doi.org/10.1021/acsnano.0c06360] [PMID: 32931254]
[156]
Yuan DD, Guan SQ, Ruan ZH, Cheng C. Preparation of sodiumion battery cathode material by adding lanthanum chloride solution into MXene dispersion under stirring, centrifuging, washing and drying. CN110148725-A, 2022.
[157]
Zhang YL, Zhou JW, Xu XD, Sun HY, Liu Z. Preparing nanorhenium disulfide/MXene composite material for potassium ion battery, by dissolving rhenium source material, mixing sulfur source material, MXene nanosheets and water, heating, hydrothermally reacting, calcining and cooling. CN112018351-A, 2020.
[158]
He Q, Hu HH, Zhang DW. Preparing MXene conductive paper and paper battery useful in wear-resistant devices, microsupercapacitors, metal-ion batteries and lithium-sulfur batteries, comprises e.g. etching MAX phase material, dispersing nanolayered MXene powder in deionized water, and ultrasonically dispersing. CN114843433-A, 2021.
[159]
Luo J, Zheng J, Nai J, et al. Atomic Sulfur Covalently Engineered Interlayers of Ti3C2 MXene for Ultra‐Fast Sodium‐Ion Storage by Enhanced Pseudocapacitance. Adv Funct Mater 2019; 29(10): 1808107.
[http://dx.doi.org/10.1002/adfm.201808107]
[160]
Sun N, Zhu Q, Anasori B, et al. MXene‐bonded flexible hard carbon film as anode for stable Na/K‐ion storage. Adv Funct Mater 2019; 29(51): 1906282.
[http://dx.doi.org/10.1002/adfm.201906282]
[161]
Xu M, Lei S, Qi J, et al. Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 2018; 12(4): 3733-40.
[http://dx.doi.org/10.1021/acsnano.8b00959] [PMID: 29543438]
[162]
Niu LY, Zhang YS, Liu MC, Zhang XM. Preparation for ferrous ion supporting MXene for sodium ion battery cathode material, involves dissolving iron chloride in deionized water to obtain aqueous solution of iron chloride and dispersing MXene powder in deionized water. CN110165172-A, 2019.
[163]
Guo J, Peng Q, Fu H, Zou G, Zhang Q. Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J Phys Chem C 2015; 119(36): 20923-30.
[http://dx.doi.org/10.1021/acs.jpcc.5b05426]
[164]
Ghidiu M, Halim J, Kota S, Bish D, Gogotsi Y, Barsoum MW. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem Mater 2016; 28(10): 3507-14.
[http://dx.doi.org/10.1021/acs.chemmater.6b01275]