Decreased Expression of EP3 Receptor mRNA in the Brain of Mouse Model of Autism Spectrum Disorder

Page: [221 - 226] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: Accumulating evidence has implicated the role of neuroinflammation in the pathology of autism spectrum disorder (ASD), a neurodevelopmental disorder.

Objectives: To investigate the expression of prostaglandin EP3 (EP3) receptor mRNA in the brain of ASD mouse model.

Methods: Pregnant mice were injected with valproic acid (VPA) 500 mg/kg intraperitoneally at 12.5 d gestation. The offspring were tested at the age of 5-6 weeks old for their social interaction behavior. Each mouse was assessed for prostaglandin EP3 receptor expression in the prefrontal cortical, hippocampal and cerebellar areas one day after the behavioral test.

Results: Compared to the naive, mice born to dams treated with VPA demonstrated a significantly shorter duration of sniffing behavior, a model of social interaction. Results further showed that the expression of EP3 receptor mRNA was significantly lower in all three brain regions of the mice born to VPA-treated dams.

Conclusion: The present study provides further evidence of the relevance of the arachidonic acid cascade as an essential part of neuroinflammation in the pathology of ASD.

Graphical Abstract

[1]
Patterson PH. Maternal infection and immune involvement in autism. Trends Mol Med 2011; 17(7): 389-94.
[http://dx.doi.org/10.1016/j.molmed.2011.03.001] [PMID: 21482187]
[2]
Capasso A. Further studies on the involvement of the arachidonic acid cascade in the acute dependence produced by μ κ and δ opioid agonists in isolated tissues. Neuropharmacology 1999; 38(6): 871-7.
[http://dx.doi.org/10.1016/S0028-3908(99)00004-0] [PMID: 10465690]
[3]
Anggadiredja K, Yamaguchi T, Tanaka H, Shoyama Y, Watanabe S, Yamamoto T. Prostaglandin E2 attenuates SR141716A-precipitated withdrawal in tetrahydrocannabinol-dependent mice. Brain Res 2003; 966(1): 47-53.
[http://dx.doi.org/10.1016/S0006-8993(02)04169-0] [PMID: 12646307]
[4]
Anggadiredja K, Nakamichi M, Hiranita T, et al. Endocannabinoid system modulates relapse to methamphetamine seeking: Possible mediation by the arachidonic acid cascade. Neuropsychopharmacology 2004; 29(8): 1470-8.
[http://dx.doi.org/10.1038/sj.npp.1300454] [PMID: 15085091]
[5]
Su H, Zhang J, Ren W, et al. Anxiety level and correlates in methamphetamine-dependent patients during acute withdrawal. Medicine 2017; 96(15): e6434.
[http://dx.doi.org/10.1097/MD.0000000000006434] [PMID: 28403074]
[6]
Kelly MM, Grant C, Cooper S, Cooney JL. Anxiety and smoking cessation outcomes in alcohol-dependent smokers. Nicotine Tob Res 2013; 15(2): 364-75.
[http://dx.doi.org/10.1093/ntr/nts132] [PMID: 22955245]
[7]
White SW, Oswald D, Ollendick T, Scahill L. Anxiety in children and adolescents with autism spectrum disorders. Clin Psychol Rev 2009; 29(3): 216-29.
[http://dx.doi.org/10.1016/j.cpr.2009.01.003] [PMID: 19223098]
[8]
Schmitz N, Rubia K, van Amelsvoort T, Daly E, Smith A, Murphy DGM. Neural correlates of reward in autism. Br J Psychiatry 2008; 192(1): 19-24.
[http://dx.doi.org/10.1192/bjp.bp.107.036921] [PMID: 18174503]
[9]
Scott-Van Zeeland AA, Dapretto M, Ghahremani DG, Poldrack RA, Bookheimer SY. Reward processing in autism. Autism Res 2010; 3(2): 53-67.
[PMID: 20437601]
[10]
Markram K, Rinaldi T, Mendola DL, Sandi C, Markram H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology 2008; 33(4): 901-12.
[http://dx.doi.org/10.1038/sj.npp.1301453] [PMID: 17507914]
[11]
Shoji Y, Takahashi M, Kitamura T, et al. Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut 2004; 53(8): 1151-8.
[http://dx.doi.org/10.1136/gut.2003.028787] [PMID: 15247185]
[12]
Anggadiredja K, Yamaguchi T, Tanaka H, Shoyama Y, Watanabe S, Yamamoto T. Decrease in prostaglandin level is a prerequisite for the expression of cannabinoid withdrawal: A quasi abstinence approach. Brain Res 2005; 1066(1-2): 201-5.
[http://dx.doi.org/10.1016/j.brainres.2005.10.065] [PMID: 16336946]
[13]
Yamamoto T, Anggadiredja K, Hiranita T. New perspectives in the studies on endocannabinoid and cannabis: A role for the endocannabinoid-arachidonic acid pathway in drug reward and long-lasting relapse to drug taking. J Pharmacol Sci 2004; 96(4): 382-8.
[http://dx.doi.org/10.1254/jphs.FMJ04003X5] [PMID: 15599102]
[14]
Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 2005; 15(2): 225-30.
[http://dx.doi.org/10.1016/j.conb.2005.03.001 ] [PMID: 15831407]
[15]
Buxhoeveden DP, Semendeferi K, Buckwalter J, Schenker N, Switzer R, Courchesne E. Reduced minicolumns in the frontal cortex of patients with autism. Neuropathol Appl Neurobiol 2006; 32(5): 483-91.
[http://dx.doi.org/10.1111/j.1365-2990.2006.00745.x ] [PMID: 16972882]
[16]
Broek JAC, Guest PC, Rahmoune H, Bahn S. Proteomic analysis of post mortem brain tissue from autism patients: Evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins. Mol Autism 2014; 5(1): 41.
[http://dx.doi.org/10.1186/2040-2392-5-41 ] [PMID: 25126406]
[17]
Voineagu I, Wang X, Johnston P, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011; 474(7351): 380-4.
[http://dx.doi.org/10.1038/nature10110] [PMID: 21614001]
[18]
Campbell DB, D’Oronzio R, Garbett K, et al. Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann Neurol 2007; 62(3): 243-50.
[http://dx.doi.org/10.1002/ana.21180] [PMID: 17696172]
[19]
Codagnone MG, Podestá MF, Uccelli NA, Reinés A. Differential Local Connectivity and neuroinflammation profiles in the medial prefrontal cortex and hippocampus in the valproic acid rat model of autism. Dev Neurosci 2015; 37(3): 215-31.
[http://dx.doi.org/10.1159/000375489] [PMID: 25895486]
[20]
Eissa N, Azimullah S, Jayaprakash P, et al. The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chem Biol Interact 2019; 312: 108775.
[http://dx.doi.org/10.1016/j.cbi.2019.108775] [PMID: 31369746]
[21]
Zhang Q, Wu H, Zou M, et al. Folic acid improves abnormal behavior via mitigation of oxidative stress, inflammation, and ferroptosis in the BTBR T+ tf/J mouse model of autism. J Nutr Biochem 2019; 71: 98-109.
[http://dx.doi.org/10.1016/j.jnutbio.2019.05.002] [PMID: 31323609]
[22]
Wei H, Zou H, Sheikh AM, et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation 2011; 8(1): 52.
[http://dx.doi.org/10.1186/1742-2094-8-52] [PMID: 21595886]
[23]
Yamamoto M, Kim M, Imai H, Itakura Y, Ohtsuki G. Microglia-triggered plasticity of intrinsic excitability modulates psychomotor behaviors in acute cerebellar inflammation. Cell Rep 2019; 28(11): 2923-2938.e8.
[http://dx.doi.org/10.1016/j.celrep.2019.07.078] [PMID: 31509752]
[24]
Yui K, Koshiba M, Nakamura S, Onishi M. Therapeutic effects of larger doses of arachidonic acid added to DHA on social impairment and its relation to alterations of polyunsaturated fatty acids in individuals with autism spectrum disorders. Nihon Shinkei Seishin Yakurigaku Zasshi 2011; 31(3): 117-24.
[PMID: 21800702]
[25]
Yui K, Imataka G, Kawasaki Y, Yamada H. Down-regulation of a signaling mediator in association with lowered plasma arachidonic acid levels in individuals with autism spectrum disorders. Neurosci Lett 2016; 610: 223-8.
[http://dx.doi.org/10.1016/j.neulet.2015.11.006 ] [PMID: 26552013]
[26]
Parletta N, Niyonsenga T, Duff J. Omega-3 and Omega-6 polyunsaturated fatty acid levels and correlations with symptoms in children with attention deficit hyperactivity disorder, autistic spectrum disorder and typically developing controls. PLoS One 2016; 11(5): e0156432.
[http://dx.doi.org/10.1371/journal.pone.0156432] [PMID: 27232999]
[27]
Shankaran H, Wiley HS, Resat H. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors. BMC Syst Biol 2007; 1(1): 48.
[http://dx.doi.org/10.1186/1752-0509-1-48 ] [PMID: 17996096]
[28]
Cao DD, Li L, Chan WY. MicroRNAs: Key regulators in the central nervous system and their implication in neurological diseases. Int J Mol Sci 2016; 17(6): 842.
[http://dx.doi.org/10.3390/ijms17060842] [PMID: 27240359]
[29]
Banerjee-Basu S, Larsen E, Muend S. Common microRNAs Target Established ASD Genes. Front Neurol 2014; 5: 205.
[http://dx.doi.org/10.3389/fneur.2014.00205] [PMID: 25389413]
[30]
Liu T, Wan RP, Tang LJ, et al. A microrna profile in fmr1 knockout mice reveals microrna expression alterations with possible roles in fragile x syndrome. Mol Neurobiol 2015; 51(3): 1053-63.
[http://dx.doi.org/10.1007/s12035-014-8770-1] [PMID: 24906954]
[31]
Lin Y, Wu Z. MicroRNA-128 inhibits proliferation and invasion of glioma cells by targeting COX-2. Gene 2018; 658: 63-9.
[http://dx.doi.org/10.1016/j.gene.2018.03.020] [PMID: 29524580]
[32]
Chen ZG, Zheng CY, Cai WQ, et al. miR-26b mimic inhibits glioma proliferation in vitro and in vivo suppressing COX-2 expression. Oncol Res 2019; 27(2): 147-55.
[http://dx.doi.org/10.3727/096504017X15021536183517 ] [PMID: 28800785]